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Mapping nanoscale carrier 
confinement in polycrystalline 
graphene by terahertz 
spectroscopy
Patrick R. Whelan 1,2, Domenico De Fazio 3,4, Iwona Pasternak 5,6, Joachim D. Thomsen 1, 
Steffen Zelzer 2, Martin O. Mikkelsen 2, Timothy J. Booth 1,7, Lars Diekhöner 2, Ugo Sassi 3, 
Duncan Johnstone 8, Paul A. Midgley 8, Wlodek Strupinski 5,6, Peter U. Jepsen 7,9, 
Andrea C. Ferrari 3 & Peter Bøggild 1,7*

Terahertz time-domain spectroscopy (THz-TDS) can be used to map spatial variations in electrical 
properties such as sheet conductivity, carrier density, and carrier mobility in graphene. Here, 
we consider wafer-scale graphene grown on germanium by chemical vapor deposition with non-
uniformities and small domains due to reconstructions of the substrate during growth. The THz 
conductivity spectrum matches the predictions of the phenomenological Drude–Smith model for 
conductors with non-isotropic scattering caused by backscattering from boundaries and line defects. 
We compare the charge carrier mean free path determined by THz-TDS with the average defect 
distance assessed by Raman spectroscopy, and the grain boundary dimensions as determined by 
transmission electron microscopy. The results indicate that even small angle orientation variations 
below 5° within graphene grains influence the scattering behavior, consistent with significant 
backscattering contributions from grain boundaries.

Production of single layer graphene (SLG) on a large scale by chemical vapor deposition (CVD) is reaching 
industrial  maturity1–7. In most cases, this involves a subsequent transfer process, where SLG is moved to a tar-
get substrate, such as oxidized Si or  polymer6–11. As this process can result in contamination of and damage to 
 SLG12, significant efforts have been made to identify routes to circumvent this  step13–16. CVD most often leads to 
polycrystalline growth, where the presence of grain boundaries (GBs) impair transport  properties3–5. Wafer-scale 
graphene growth has been pursued by enabling multiple fully or nearly co-oriented grains to grow together to 
form single-crystals4,5,17. It is relevant to investigate how sensitive electron transport is to the grain size distribu-
tion, as well as to orientation angle distribution.

Industrial applications of SLG require a systematic approach to large-area characterization of properties such 
as coverage, defect density, and electrical characteristics. This is also crucial for development of new growth reci-
pes, for monitoring of post-process influence on device key performance indicators, for quality control during 
production, and for studies of transport mechanisms on a more fundamental level.

Practical and industrially relevant characterization methods for spatially mapping the properties of wafer-
scale SLG are emerging. These include automated quantitative optical  microscopy18, Raman  spectroscopy19–22, 
fast-turn-around device fabrication and characterization  schemes23, scanning micro four-point  probes24–26, as 
well as far-field mapping techniques based on terahertz time-domain spectroscopy (THz-TDS)27–32, eddy cur-
rents, and microwave impedance  measurements32, Using such methods it is possible to obtain spatial information 
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about coverage, defect density, number of layers, conductivity, doping, strain, and carrier mobility, all of which 
are essential for the optimization of growth, transfer and device fabrication.

Raman spectroscopy is an integral part of graphene research. It is used to determine the number and orienta-
tion of  layers21, the quality and types of  edges33, and the effects of  perturbations20, such as  electric34 and magnetic 
 fields35,36,  strain22,  doping34,37,38,  disorder39,40 and functional  groups41. In terms of electrical properties, THz-TDS 
gives reliable estimates of not just conductivity, but also carrier density and  mobility42–44, as well as electrical 
continuity of  SLG25,32,45, while being able to rapidly scan wafer-sized samples, i.e. 300 mm graphene wafer with a 
1 mm step size in 1  h32,45. Far-field THz-TDS is thus excellently suited for large-scale, high-speed mapping of the 
electrical properties of graphene films. However, due to the ~ 0.1–1 mm size diffraction limited  spotsize32, it is not 
able to provide useful spatial information on the sub-mm scale. This analysis, however, relies on the Drude-like 
form of the THz optical  conductivity46, arising from the predominance of intra-band scattering in this frequency 
 range46. Fitting the frequency-dependent Drude conductivity to the THz conductivity allows one to extract the 
scattering time (momentum relaxation time) and the DC (low-frequency)  conductivity32. Using the semiclas-
sical Boltzmann equation under the assumption of diffusive  transport47, the carrier density and scattering time 
can then be  estimated42. For uniformly conducting SLG, the electrical properties derived from THz-TDS using 
the Drude model generally agree well with conventional contact-based electrical measurements.26,30,31,42,44,45.

The Drude model, however, assumes isotropic  scattering48, where by every scattering event randomizes 
the carrier momentum. This model is adequate when the distance between fully or partially reflecting line 
defects (such as grain boundaries (GBs)) is significantly larger than the transport lengths, i.e. the carrier mean 
free path and the characteristic THz electron diffusion length that are both ~ 20–100 nm for typical CVD SLG 
on  SiO2 and THz spectroscopic frequency  ranges32,45.

Polycrystalline SLG with small grains below a few µm may change this picture. Here, a high of GBs den-
sity may act as reflecting or partially reflecting line defects, altering overall scattering behavior and momen-
tum  distribution49–52. In this case, the conductivity spectrum is better described by the phenomenological 
Drude–Smith (DS)  model25,53. This introduces a backscattering parameter, -1 ≤ c ≤ 0, which represents the overall 
degree of preferential backscattering experienced by charge carriers thus, indirectly, the effective density of GBs 
and other line  defects53.

Here we spatially map c in SLG and extract the carrier mean free path from THz-TDS measurements. We 
show that this is in good agreement with the defect density derived from Raman spectroscopy. The mean free 
path is further compared to the SLG grain size from transmission electron microscopy (TEM). Our results 
suggest that even small angle misalignments < 5° between SLG grains may have a large impact on the carrier 
scattering behavior.

Experimental
SLG is grown by CVD on 3 µm thin film Ge on  Si54,55. Surface reconstruction of the growth substrate leads to 
formation of a highly faceted Ge surface pattern after the CVD  process55. For this reason, this type of SLG is 
polycrystalline with a small grain size, allowing us to correlate information on the submicron grain structure 
extracted from THz-TDS with three local characterisation techniques: scanning tunnelling microscopy (STM), 
Raman spectroscopy and selective electron diffraction (SED). STM analysis indicates that the electron local 
density of states of these SLG films can vary down to a sub-100 nm length  scale55.

SLG is then transferred from Ge(100)/Si(100) onto 4-inch high-resistivity Si (HR-Si, ρ > 10 kΩ·cm) by elec-
trochemical delamination in aqueous solution (2 M potassium chloride) with samples submerged at a rate of 
1 mm/s and − 10 to − 30 V applied relative to a carbon counter  electrode56.

THz-TDS measurements are performed using a commercial fiber-coupled Picometrix  spectrometer30. The 
sample is raster-scanned in the focal plane of the THz beam at normal incidence to form a spatial map with a 
200 μm step size and a diffraction-limited spot size ~ 350 μm at 1 THz. The complex frequency-dependent SLG 
sheet conductivity, σ̃s(ω) = σ1 + iσ2 , can be determined for each pixel in the scanned map from the transmission 
function T̃film(ω) = Ẽfilm(ω)/ẼE(ω) , where Ẽfilm(ω) and Ẽsub(ω) are the Fourier transforms of the THz waveforms 
transmitted through SLG-covered and non-covered Si,  respectively32. σ̃s(ω) is extracted from the transmission 
function after one internal reflection inside the Si substrate as:25

where Z0 is the vacuum impedance, nA = ̃nsub + 1 and nB = ̃nsub − 1 for a substrate with refractive index ñsub . Tim-
ing jitter corrections are used to increase the accuracy of the electrical properties determined from THz-TDS57. 
Two 4-inch wafers are prepared and measured by THz-TDS.

Raman spectra are measured with a Thermo Fisher DXRxi spectrometer using a 532 nm laser at 1 mW power, 
acquiring 20 scans per point. The spot size is ~ 1 µm.

The distribution of SLG grain size, ℓC, is mapped by  SED58, after transferring SLG onto TEM  grids59,60. SED 
is performed in a scanning TEM and involves the acquisition of an electron diffraction pattern at each probe 
position in a two-dimensional scan  region61, using a Philips CM300 field emission gun TEM operated at 50 kV, 
well below the threshold for SLG knock-on  damage62, and fitted with a NanoMegas Digistar system. This enables 
the simultaneous scan and acquisition of diffraction patterns with an external optical charge coupled device 
imaging the phosphor viewing screen of the microscope. In this way, nanobeam electron diffraction patterns 
are acquired with a step size ∼10 nm.

The resulting SED dataset is analysed to determine the grain structure. First, a spatially averaged diffrac-
tion pattern for the scanned region is calculated by summing all patterns, in analogy to selected area electron 
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 diffraction63,64. Diffraction contrast  images63 are formed from the SED dataset by plotting the intensity within a 
selected subset of pixels in each diffraction pattern as a function of probe  position61,65. Quantitative mapping of 
the crystallographic orientation at each probe position is done by template  matching66, whereby each diffraction 
pattern is compared to a library of patterns simulated for all possible orientations to find the best match. The 
resulting orientation maps are analysed with the MTEX MATLAB  toolbox67. A median filter is applied to remove 
spurious single pixels arising due to mis-indexation and GBs are then defined where the pixel-to-pixel angular 
deviation is > 5°. GBs are extracted and the distance between boundary points is determined using the “test line 
intercept method”, in which a series of random straight lines are drawn across the GB structure and the distance 
between the intersections of the boundary lines with the test lines is  measured68.

STM is performed on SLG transferred to n-doped (ρ < 0.025 Ω·cm) Si(100)59,60. Samples are annealed for 5 h at 
500 °C at ultra-high vacuum to remove polymer residues after transfer. STM is done at ~ 80 K and with − 500 mV 
sample bias applied with a mechanically cut Pt-Ir tip.

We note that, while STM and SED extract spatial information by direct imaging of SLG, both Raman spec-
troscopy and THz-TDS relly on analysis methods to obtain the weighted average of transport lengths and grain 
structure across the diffraction limited spot sizes, which are ~ 0.5 μm for Raman spectroscopy and 350 mm for 
THz-TDS.

Results and discussion
CVD SLG grown on thin film Ge and transferred to 4-inch HR-Si is measured with THz-TDS. σDC appears 
uniform in the central region of the wafer, Fig. 1a. A plot of σ̃s(ω) from a single measurement point on the map 
(Fig. 1b) shows the real and imaginary parts of the conductivity to be increasing and decreasing, respectively. This 
DS behavior is characteristic of discontinuous SLG, i.e. with a significant amount of fully or partially reflecting 
line defects. In the DS model, σ̃s(ω) can be written as:25,53,69

where τ is the scatttering time, WD is the Drude weight, related to the DC conductivity as σDC = WD(1 + c), and c 
is the backscattering parameter, −1 ≤ c ≤  025,53,69. If c = 0, the Drude model is recovered, while c =  − 1 corresponds 
to maximum backscattering, where σDC =  069. The carrier mean free path, ℓmfp, can be determined from τ as 
ℓmfp = νFτ25, where νF is the Fermi velocity. Using a substrate (Si) with dielectric constant εs = 11.6770 and for a 
doping level  ~ 1·1013 ×  cm−2, as estimated from Raman spectroscopy, νF is ~ 1.0 ×  106 m/s44.

The DS model is fitted to σ̃s(ω) for all measurement points inside the region highlighted in Fig.  1a 
(∼7200 pixels). For the representative example in Fig. 1b, the DS model is fitted to the measured σ̃s(ω) with 
c =  − 0.88, τ = 8.76 fs and σDC = 0.24 mS, which shows that carriers in the corresponding region are experiencing 
preferential backscattering.

Figures 2a–f show maps and histograms of σDC, τ and c from the highlighted area in Fig. 1a. From the median 
τ we determine ℓmfp = νFτ =  ~ 11.3 nm. The median is -0.83 for c, not far from the case of fully reflective boundaries 
or defects (c =  − 1). The microscopic origins of the DS and modified DS models are described in Ref.71. These 
models, as well as  others72–74, could in principle be extended to polycrystalline SLG and provide more detailed 
and quantitative information on the relation between scattering processes and THz response, but this has not 
yet been done, to the best of our knowledge.

The maps in Fig. 2b,c indicate that c moves towards 0 where τ is highest. In the correlation plot of c and τ in 
Fig. 2g, τ decreases towards 0 as charge carriers are increasingly backscattered, i.e., as c approaches − 1. This sup-
ports the notion that the preferential backscattering originates from GBs, lowering the carrier mean free  path75,76. 
Without GBs or extended damage, the momentum relaxation time and carrier mobility of CVD SLG is typically 
limited by impurity scattering, often originating from traps, contamination and water, all of which maintain a 
Drude-like  behavior25. The distribution is fan-shaped, with a tendency of splitting into a dominant band (Fig. 2g, 
red region), as well as a fainter scatter of points with a very short scattering time ~ 3–4 fs, independent on c 
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Figure 1.  THz-TDS measurement of SLG transferred from Ge to HR-Si. (a) Map of σDC for SLG on a 4-inch Si 
wafer. (b) σ̃s(ω) spectra from a pixel in (a) with fits to the DS model.
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(Fig. 2g. between green lines). The substructure in the distribution could be related to slight non-uniformities 
in the region of interest (sample zone in Fig. 1a. marked with a dashed rectangle). The large spread in extracted 
scattering times (Fig. 2e) corresponds to a variation of mean free path, as  vF is constant in SLG, ~ 106 m/s , so that 
10 fs translates to 10 nm. The distribution of mean free paths in Fig. 2g thus extends to 60 nm.

Raman characterization of Ge-grown SLG transferred to Si/SiO2 reveals a substantial D-peak (Fig. 3a), indi-
cating a high defect  density19. A Raman spectrum of as-grown SLG on Ge is shown for comparison, where 
the D-peak is already present. From the Raman D to G peak intensity ratio (Fig. 3b), I(D)/I(G), the average 

Figure 2.  Maps and histograms of (a, d) σs,DC, (b, e) τ and (c, f) c. (g) Correlation plot of c and τ, showing a 
dominant band (red region) and a weaker horizontal band (between green lines). All data are extracted from the 
pixels in the highlighted rectangle in Fig. 1a.
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distance between defects, ℓD, can be determined as ℓD
2 (in  nm2) = (1.2 ± 0.3) ×  103· (I(D)/I(G))−1·EF

−0.54±0.04/EL
4, 

where EL is the laser excitation energy in  eV40. The Fermi energy,  EF, can be estimated from a combined analysis 
of the 2D to G peak intensity ratio, I(2D)/I(G), the 2D to G area ratio, A(2D)/A(G), and the 2D peak posi-
tion, Pos(2D)34,77. We fit Pos(2D) ~ 2693.8 ± 1.3  cm−1, I(2D)/I(G) ~ 1.4 ± 0.4, and A(2D)/A(G) ~ 2.8 ± 0.4. These 
correspond to EF ~  − 0.4 ± 0.2 eV and a doping density ~ 1 ×  1013  cm−234,77. I(D)/I(G) ~ 0.8 ± 0.2 translates into 
ℓD ~ 9 ± 3 nm. From the histogram of τ in Fig. 2e the mean free path of carriers is ℓmfp = 11.3 nm, consistent with 
the average Raman defect distance. We note that the relations used are limited to Raman-active defects. Perfect 
zigzag  edges33,78, charged  impurities34,38,  intercalants79, uniaxial and biaxial  strain22,80 do not generate a D peak.

SED and STM characterization are then carried out to inspect the GBs. Figure 4a plots the spatially averaged 
diffraction pattern calculated by summing all acquired patterns for a sample. Two sets of diffraction peaks with 
hexagonal geometry are observed, corresponding to two major orientations of the underlying SLG lattice within 
the scanned region. The diffraction peaks are however spread in the azimuthal direction indicating that there 
is variation around each of the major orientations with a magnitude ∼2°. The images formed by integrating the 
intensity of pixels within each of the circles marked in Fig. 4a yield the diffraction contrast images in Fig. 4b. 
Although there are only two major orientations within the scanned region, this reveals that there are many grains 
and GBs where they meet. The grains have a wide range of diameters ∼10–1000 nm, while the grain morphologies 
are irregular, and the GBs follow tortuous paths. This suggests that the prevalence of only two orientations is likely 
related to surface reconstructions of the substrate during growth. A grain orientation map (Fig. 4c) is derived 
from the diffraction contrast with GBs, defined when the pixel-to-pixel angular deviation is > 5°. Figure 4c shows 
that the misorientation angle between the two major orientations is ~ 30°, further supported by STM imaging 
(Fig. 5), where GBs meet at an angle ∼29 ± 9°. The SLG lattice is still visible after two transfer processes, although 
with nm-scale buckling of the SLG. 

The distance between boundary points in Fig. 4c is shown in Fig. 6. The peak of the distance distribution 
from the Gaussian kernel density estimation  method82 is ~ 129 nm, while in Fig. 2e, the distribution of scattering 

Figure 3.  (a) Representative Raman spectra of as-grown SLG on Ge and after transfer to Si/SiO2. (b) Histogram 
of I(D)/I(G). The blue curve is a fitted normal distribution.

Figure 4.  SED characterization of SLG transferred onto a TEM grid. (a) Spatially averaged diffraction pattern 
in which two sets of diffraction spots are present, indicating two main orientations. (b) Diffraction contrast 
image, showing the grain structure, formed by integrating the intensity within the red and green circles marked 
in (a) and superimposing the resulting images. (c) Orientation map plotting the absolute orientation angle of the 
SLG lattice at each probe position.
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time above 60 fs (corresponding to 60 nm) is vanishing. ℓC derived from the GBs with large angle differences 
does not match ℓD from Raman spectroscopy nor ℓmfp from THz-TDS. This suggests that the large angle (~ 30°) 
GBs are not the main contributors to the strong reflective backscattering (c ~  − 0.9) in the DS model. In fact, the 
orientation angles appear to be distributed in two clusters, suggesting that SLG structured in larger grains with 
complex shapes and bimodal angles (0° orientation colored blue and 30° orientation colored yellow in Fig. 4c), 
where each of the two modes are subdivided into smaller grains with relative orientation angle variations of up 
to 5°, where the GB distance for the smaller grains will be closer to the distance between defects derived from 

Figure 5.  STM topography image filtered in frequency domain of SLG on n-doped Si showing a GB. The two 
SLG grains meet at a misorientation angle ∼29 ± 9°, seen in the two sets of diffraction peaks in the inset, and 
highlighted by the arrows showing the two distinct orientations.

Figure 6.  Histogram of GB distances sampled along 1000 randomly positioned test lines passing through the 
grain structure in Fig. 4b,c.
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Raman and the mean free path derived from THz-TDS. From the combination of Raman, SED, and THz-TDS it 
appears that even small angle orientation variations within SLG grains are detrimental for the electrical proper-
ties. While the SLG studied here is not immediately comparable to CVD SLG grown on conventional substrates 
(Cu, Ni and other transition metals), or prepared by exfoliation from bulk graphite, due to the spurious surface 
reconstructions, both experimental and theoretical studies find that that the GB resistance is strongly dependent 
on angle, with small misorientation angle GBs exhibiting the smallest GB  resistance83,84. Ref.85 calculated GB 
resistance as a function of angle, finding it to be significantly smaller for small-angle misalignment, while Ref.86 
suggested that non-straight GBs have substantially less misorientation angle dependence of the GB resistance 
at higher angles, while still decreasing rapidly ≤ 8°. The type of SLG studied here has an unusual bimodal GB 
distribution, Fig. 4c, which allows us to study the relative importance of small compared to large misorientation 
angles on electrical transport. In conjunction with the information on the grain structure provided by TEM 
and Raman spectroscopy, the THz-TDS measurements reveal that the microstructure of our CVD SLG leads to 
significant confinement-like effects, despite the < 5° misorientation angle observed with TEM. This needs to be 
considered to achieve consistent, reproducible, and cost-effective large scale SLG devices.

The correlation between carrier density (i.e. extracted locally by Raman spectroscopy or averaged over mm-
sized regions by THz-TDS) and GB scattering is not considered here, but the latter is expected to depend strongly 
on the  former84. It would be interesting to study whether the dominance of small misorientation angle GB scat-
tering persists at lower or higher carrier densities, e.g. with a global, THz-transparent back  gate32.

Conclusions
The electrical continuity of polycrystalline graphene can be studied by THz-TDS by fitting the conductivity 
with the Drude–Smith model. In this work, we mapped the Drude–Smith backscattering parameter across a 
graphene-coated Si wafer. Comparison to Raman and SED measurements indicates that carrier scattering in 
SLG may be strongly influenced by small angle orientation variations < 5° within graphene grains, leading to 
non-isotropic scattering with characteristic length scales below the average distance between large-angle grain 
boundaries. THz-TDS allowed us to evaluate the carrier mean free paths in the nanoscale range, as well as the 
nanoscale structure of SLG, validated by two independent confirmations of the characteristic length scale in 
the nanoscale range, consistent with the non-zero backscattering parameter c in the Drude–Smith like THz-
response. These results (1) link characteristic transport lengths in small-grain graphene obtained with THz-TDS 
with two other methods (Raman and TEM); (2) correlate carrier mobility with the backscattering parameter; (3) 
show that even small-angle misalignment of graphene grains can lead to strong carrier confinement. Our work 
highlights that grain boundary control is important to optimize performance in graphene devices, circuits, and 
related technologies.

Data availability
The datasets generated and used during the current study are available from the corresponding author on rea-
sonable request.
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