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Evidence of second‑order 
transition and critical scaling 
for the dynamical ordering 
transition in current‑driven vortices
S. Maegochi *, K. Ienaga  & S. Okuma *

Dynamical ordering from a disordered plastic flow to an anisotropically ordered smectic flow 
induced by a dc force has been studied in various many‑particle systems, including vortices in type‑II 
superconductors. However, it remains unclear whether the dynamical ordering is a true phase 
transition because of lack of suitable experimental methods. Here, we study the response of vortex 
flow to the transverse force using a cross‑shaped amorphous Mo

x
Ge

1−x
 film. From transverse current‑

voltage (force‑velocity) characteristics under various longitudinal currents, we find a change of the 
transverse response in low voltage (velocity) regions from a nonlinear to linear behavior at a well‑
defined longitudinal current that marks the dynamical ordering transition. We also find the scaling 
collapse of the transverse current‑voltage curves to a universal scaling function, providing evidence of 
the second‑order transition for the dynamical ordering transition.

When a magnetic field is applied perpendicular to the plane of type-II superconductors, magnetic flux quanta 
called vortices are  generated1. By applying a current above the depinning threshold, the vortices pinned by the 
quenched disorder start to flow due to the Lorentz-like force exerted from the current and their motion causes 
energy dissipation. Therefore, understanding the depinning and vortex dynamics is of practical importance. 
Fundamentally, the dynamics of vortices have been intensively studied because they exhibit rich nonequilibrium 
phases and phase  transitions2–14, which are generic to many-particle assemblies driven over random  substrates15. 
When the driving force is increased and the interaction between the vortices and pinning centers is reduced, 
the flow structure of the vortices is considered to show dynamical ordering from a disordered plastic flow to an 
anisotropically ordered smectic  flow16–20.

One of the long-standing questions is whether the current-induced dynamical ordering from the plastic flow 
to the smectic flow actually takes place. However, this question has not been answered experimentally because 
from conventional transport measurements, it is difficult to detect the moving smectic phase with long-range 
order in the direction transverse to the driving  force16–21. Recently, we have overcome this problem by using 
two-step measurements of transient voltage in response to mutually perpendicular driving  currents22. We found 
dynamical ordering from the plastic flow to the anisotropic smectic flow as a function of the current. Convincing 
evidence of the moving smectic phase was obtained from the first transverse mode locking with signals larger 
than those of longitudinal mode locking, indicating the higher transverse order than the longitudinal one. How-
ever, the central issue of whether the current-induced dynamical ordering is a phase transition or a crossover 
still remains elusive. If it turns out to be a true phase transition, it is also of interest to examine whether it shows 
a critical behavior.

In this work, we resolve the issue by studying the critical scaling for the dynamical ordering transition. 
The scaling approach is generally employed to demonstrate second-order phase transitions and critical 
 phenomena23–25. Here, we measure the response of vortex flow to the transverse driving force using a cross-shaped 
amorphous MoxGe1−x film. From transverse current-voltage (i.e., force-velocity) characteristics under various 
longitudinal currents superimposed with the transverse current, we find a change of the transverse response in 
low voltage (velocity) regions from a nonlinear behavior with nonzero transverse depinning current to a linear 
behavior with zero transverse depinning current at a well-defined longitudinal current that marks the dynami-
cal ordering from the plastic to smectic flow. We also find a scaling collapse of the transverse current-voltage 
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curves to a universal scaling function, providing firm evidence of the second-order transition for the dynamical 
ordering transition.

Results and discussion
To study the transverse response of flowing vortices, we used a cross-shaped film of amorphous MoxGe1−x (see 
“Methods”), in which we can apply the driving current in x and y directions simultaneously. The schematic of 
experimental setup is shown in Fig. 1a. The magnetic field of 1.0 T was applied perpendicular to the plane of the 
film at 3.6 K to generate the vortices.

We first apply the current (driving force) in the minus x direction (y direction) with a given current density 
Jx and then examine the response to the transverse driving force applied in the x direction by measuring the 
transverse current-voltage characteristics in the y direction as shown with red color in Fig. 1a. Here, Jx is the 
control parameter that changes the flow structure of vortices, while the transverse Jy − Ey characteristics are 
used to probe the transverse vortex response, where Jy and Ey are the current density and electric field in the y 
direction, respectively. Figure 1b displays Jy − Ey curves in a double logarithmic scale measured under various 
Jx . For smaller Jx , the Jy − Ey curves have a negative curvature and Ey rapidly drops below the voltage resolution 
of 10−8 V upon reducing Jy . At around Jx ≈ 1.38× 107 A/m2 ( ≡ J∗x  ), the Jy − Ey curve exhibits a power-law 
behavior as shown by a dashed straight line. For Jx > J∗x  , the Jy − Ey curves have a positive curvature and cross 
over to a low-current linear behavior upon reducing Jy.

From Fig. 1b, we extract the depinning current density Jy,d using a 10−8 V criterion and plot it against Jx in 
Fig. 2a. It is found that there are three qualitatively different regimes, which are separated by the ordinary depin-
ning current density Jd and J∗x  , as shown by vertical dotted lines. In the region with Jx < Jd (region I), the vortices 
are initially pinned before applying Jy since Jx is smaller than the depinning current density Jd . With an increase 
in Jy , the depinning occurs when Jy =

√

J2
d
− J2x  , as shown by a quadrant line. This indicates the ordinary depin-

ning in the oblique direction by the combined currents of Jx and Jy . In the region where Jd < Jx < J∗x  (region II), 
the vortices initially flow in the longitudinal (y) direction due to the Lorentz-like force by Jx . Nevertheless, Jy,d 
is nonzero, indicating the occurrence of the nontrivial depinning in the transverse (x) direction, which we call 
a transverse  depinning26,27. For Jx > J∗x  (region III), Jy,d is zero and the vortices can flow freely in the transverse 
(x) direction by infinitesimal Jy.

The disappearance of the transverse depinning at Jx ≥ J∗x  implies the presence of the dynamical transition of 
the longitudinal vortex flows (in the y direction) at J∗x  , where the transverse response changes from a nonlinear 
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Figure 1.  (a) Schematics of the experimental setup of the cross-shaped amorphous MoxGe1−x film on the Si 
substrate. The magnetic field B is applied perpendicular to the film surface. (b) Jy − Ey characteristics measured 
under fixed Jx listed on the right-hand side. The right axis indicates the voltage Vy in the y direction. Solid circles 
represent the points used for the scaling analysis in Fig. 4. A dashed line labeled Jx = J∗x  shows the power-law 
behavior.
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behavior with Jy,d > 0 to a linear behavior with Jy,d = 0 . We have found recently in the same sample that the 
transition or crossover from the plastic flow to the smectic flow takes place at Jx ≈ 1.5× 107 A/m222. Since this 
value is close to the value of J∗x ≈ 1.38× 107 A/m2 obtained here, the change of the flow state at J∗x  is considered 
to correspond to the dynamical ordering transition from the plastic flow in the region II to the smectic flow 
in the region III. This view, together with the second-order nature of the transition, is justified by the scaling 
analysis described below.

As schematically illustrated in Fig. 2b, the plastic flow initially generated by Jx(< J∗x ) is a disordered flow 
dominated by random pinning and shows riverlike features, where a small number of vortices flow around 
regions of pinned vortices shaded by red  color28,29. Once such flow patterns are formed in the y direction, it is 
difficult even for the flowing vortices to flow in the transverse (x) direction when the small driving force (driving 
current Jy ) is applied in the x direction (y direction). This accounts for the nonzero Jy,d in the region II.

In contrast, when Jx larger than J∗x  is applied initially, the effects of pinning are much more suppressed and 
the smectic flow is generated, as schematically shown in Fig. 2c. In the smectic flow, the vortices form one-
dimensional channels along the longitudinal (y) direction with long-range transverse order in the x  direction16–21. 
The areas of pinned vortices (shaded by red color) shrink and instead the pin-free regions (shaded by blue) 
grow, percolating in the transverse (x) direction. As a result, the vortices no longer feel transverse barriers and 
flow freely in the x direction by the infinitesimal driving force ( Jy ), which explains the absence of the transverse 
depinning in the region III.

The current-voltage ( Jy − Ey ) characteristics in Fig. 1b with a sign change of curvature at J∗x  is reminiscent 
of the isotherms near the critical point for  gases30, Ising  ferromagnets25, and vortex  glasses31–40, and the flow 
curves for yielding and jamming  transitions41–43, where the critical scaling associated with the second-order phase 
transition has been well established. We perform the scaling analysis for the Jy − ρy characteristics shown in 
Fig. 3, which are converted from the Jy − Ey data in Fig. 1b, to test whether the dynamical transition at J∗x  is the 
second-order phase transition, where ρy ≡ Ey/Jy . If the threshold current J∗x  is a critical point for the second-
order transition, the resistivity ρy(Jx , Jy) as functions of Jx and Jy should obey the following scaling  equation25,44:

where β and � are scaling exponents, w ≡ Jy/|1− Jx/J
∗
x |

� is the scaling variable, and f+(w) and f−(w) are the 
two branches of the scaling function for Jx > J∗x  and Jx < J∗x  , respectively. For w → ∞ , the scaling function 
takes an asymptotic form f±(w) ≈ wβ/� . This gives a power law Jy − ρy relation at Jx = J∗x  , which satisfies scale 
invariance,

(1)ρy(Jx , Jy) = |1− Jx/J
∗
x |

β f±
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Figure 2.  (a) Jy,d deduced from the Jy − Ey curves in Fig. 1b using a 10−8 V criterion plotted against Jx . 
The right axis indicates the depinning current Iy,d in the y direction. Vertical dotted lines mark the isotropic 
depinning current density Jd and the threshold current density J∗x  , separating the regions I and II and regions 
II and III, respectively. In region I, all the vortices are pinned initially and then undergo depinning obliquely, 
when (J2y + J2x )

1/2 exceeds Jd . A solid quadrant line represents (J2y,d + J2x )
1/2 = Jd . In region II, the vortices 

initially flowing in the longitudinal (y) direction undergo the transverse depinning for Jy > Jy,d . In region III, 
the transverse depinning does not occur ( Jy,d = 0 ). (b,c) Schematics of initial vortex flow generated by Jx . (b) 
The plastic flow in region II. (c) The smectic flow in region III. The areas shaded by red and blue represent the 
regions with strong and weak effective pinning, respectively.
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For w → 0 , the two branches are expected to be f−(w) = 0 and f+(w) = const. , which gives the power-law 
scaling of a linear resistivity ρy,lin for Jx > J∗x ,

A dashed line in Fig. 3 represents the power law of Eq. (2) with β/� = 2.2± 0.3 . The inset of Fig. 3 displays 
the log-log plot of ρy,lin as a function of the dimensionless distance from the critical point, |1− Jx/J

∗
x | , where 

open squares are ρy,lin for Jy = 1.79× 104 A/m2 extracted from ρy(Jx , Jy) in the main panel. Solid circles are the 
resistivity ρy(Jx , Jy) for small currents, Jy = 1.79× 104, 5.36× 104, 8.93× 104, and 1.25× 105 A/m2 , measured 
with changing Jx continuously. The collapse of all data indicates the linear behavior and ρy,lin is found to be scaled 
in the form of Eq. (3) with β = 2.65± 0.3 , as shown with a solid straight line. From the values of β/� and β 
obtained here, the exponent � is determined to be � = 1.2± 0.2.

In Fig. 4, we replot the data shown with solid circles in Fig. 3 with respect to the scaled variables of Eq. (1), 
ρy(Jx , Jy)/|1− Jx/J

∗
x |

β versus w(= Jy/|1− Jx/J
∗
x |

�) , where J∗x = 1.378× 107 A/m2 , β = 2.65 , and � = 1.2 are 
used. A good scaling collapse to universal branches is found, in agreement with Eq. (1). A dashed straight line 
represents the asymptotic behavior for w → ∞ , ρy/|1− Jx/J

∗
x |

β ∝ wβ/� . The results provide convincing evidence 
that the dynamical ordering transition from the plastic flow to the smectic flow, which occurs at Jx = J∗x  , is indeed 
the second-order phase transition. Recent simulation studying the Kibble-Zurek mechanism for dynamical 
ordering also predicted the continuous phase  transition45, which was indirectly supported by our experiment 
in the vortex  system46, consistent with the present results. In these studies, the dynamical ordering transition is 
considered to be an absorbing phase transition in 1+ 1 dimensional directed percolation universality  class45–47.

(2)ρy(Jx = J∗x ) ∝ Jβ/�y .
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Figure 3.  Log-log plots of the Jy − ρy data converted from the Jy − Ey data in Fig. 1b. A dashed line labeled 
Jx = J∗x (≈ 1.38× 107 A/m2 ) indicates the power law of Eq. (2), ρy ∝ J

β/�
y  with β/� = 2.2± 0.3 . Inset: Log-

log plots of the linear resistivity ρy,lin as a function of |1− Jx/J
∗
x | . Solid circles represent the data from ρy(Jx , Jy) 

measured by using small currents, Jy = 1.79× 104, 5.36× 104, 8.93× 104, and 1.25× 105 A/m2 , with changing 
Jx continuously. Open squares are the data collected from ρy(Jx , Jy) at Jy = 1.79× 104 A/m2 in the main panel. 
A solid straight line indicates the fit to Eq. (3), ρy,lin ∝ |1− Jx/J

∗
x |

β with β = 2.65± 0.3.
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In the scaling analysis, the probe current Jy up to about 50% of the drive current Jx is used. Unless Jy is suf-
ficiently smaller than Jx , the probe Jy may affect the flow state formed by the drive Jx . We have confirmed that 
the possible interference effect of the probe current does not seriously affect our discussion (See Supplementary 
Material for discussion of the possible interference effect of the probe current on the drive current).

We have shown that with an increase in Jx , the transverse response of vortex flow changes from the nonlinear 
behavior associated with the transverse depinning ( Jx < J∗x  ) to the linear one without the transverse depin-
ning ( Jx > J∗x  ). The result together with the scaling collapse indicates that the dynamical ordering transition 
from the plastic flow to the smectic flow is of second order. The disappearance of the transverse depinning for 
Jx > J∗x  results from the reduced effective pinning due to increased Jx . As mentioned above, the present finding 
is analogous to the vortex-glass  transition31–40, where the vortex phase below the transition temperature is the 
vortex-glass phase dominated by pinning, while the high-temperature phase is the vortex-liquid phase, where 
the pinning is ineffective due to thermal fluctuations. The role of the current Jx in the dynamical ordering tran-
sition corresponds to that of the temperature in the vortex-glass transition, both of which play a similar role in 
weakening the pinning effects.

The scaling exponents β = 2.65± 0.3 and � = 1.2± 0.2 obtained in this work are slightly smaller than those 
of the vortex-glass transition, β = 4 –8 and � = 2–431,33. This discrepancy is not surprising because the two 
transitions are rather different: The dynamical ordering is the nonequilibrium phase transition and the effect of 
the current is anisotropic while the vortex-glass transition is the equilibrium phase transition and the effect of 
the temperature is isotropic.

Methods
Sample preparation
The 280-nm-thick cross-shaped amorphous MoxGe1−x ( x ≈ 0.78 ) film with weak random pinning was deposited 
using rf sputtering onto a Si substrate held at room  temperature22. Current ( Ix , Iy ) and voltage ( Vy ) electrodes are 
arranged as schematically shown in Fig. 1a. Vx is measured using voltage electrodes arranged in the x direction. 
The size of the central intersection of the sample is 2× 2 mm2 and the distance between voltage electrodes is 
1.95 mm. The critical temperature Tc = 6.2 K is independent of the directions, indicating the uniformity of the 
film. The sample was directly immersed in liquid 4 He to reduce possible heating.

Transport measurements
We conducted standard four-probe measurements at 3.6 K and 1.0 T, corresponding to the Bragg-glass phase at 
 equilibrium48. We confirmed that the depinning current densities Jd = 0.86× 107 A/m2 in the x and y directions 
are identical to each other. For the Jy − Ey measurements, we measured Ey(Jx , Jy) and Ey(Jx , Jy = 0) for each Jy . 
As a result, we safely subtracted the background signal, including the small component of Ex coming from the 
possible misalignment of voltage electrodes, and obtained reliable values of the transverse voltage Ey . Compared 
with the conventional strip-shaped film, some current may leak in a wider central zone in our cross-shaped film. 
We believe that this may lead to a slight overestimation of the absolute value of currents but does not influence 

Figure 4.  The scaling plot of the transverse Jy − ρy data shown with solid circles in Fig. 3 using Eq. (1): 
ρy(Jx , Jy)/|1− Jx/J

∗
x |

β versus w(= Jy/|1− Jx/J
∗
x |

�) . A good collapse of the data to the universal branches is 
obtained with J∗x = 1.378× 107 A/m2 , β = 2.65 , and � = 1.2 . A dashed straight line represents the asymptotic 
behavior for w → ∞ , ρy/|1− Jx/J

∗
x |

β ∝ wβ/� . Inset: Schematics of the plastic flow ( Jx < J∗x  ) and the smectic 
flow ( Jx > J∗x).
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the discussion, in particular, the scaling analysis. Further measurements, such as using samples with the voltage 
contacts placed closer to the cross center, would prove it clearly.

Data availability
The data that support the findings of this study are available from the corresponding author upon reasonable 
request.

Received: 10 December 2023; Accepted: 6 January 2024
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