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Exploring localized ENZ resonances 
and their role in superscattering, 
wideband invisibility, and tunable 
scattering
Andriy E. Serebryannikov 1* & Ekmel Ozbay 2,3

While the role and manifestations of the localized surface plasmon resonances (LSPRs) in anomalous 
scattering, like superscattering and invisibility, are quite well explored, the existence, appearance, 
and possible contribution of localized epsilon-near-zero (ENZ) resonances still invoke careful 
exploration. In this paper, that is done along with a comparison of the resonances of two types in 
the case of thin-wall cylinders made of lossy and loss-compensated dispersive materials. It is shown 
that the localized ENZ resonances exist and appear very close to the zero-permittivity regime, i.e., at 
near-zero but yet negative permittivity that is similar to the ENZ modes in thin planar films. Near- and 
far-field characteristics of the superscattering modes are investigated. The results indicate that the 
scattering regimes arising due to LSPRs and localized ENZ resonances are distinguishable in terms of 
the basic field features inside and around the scatterer and differ in their contribution to the resulting 
scattering mechanism, e.g., in terms of the occupied frequency and permittivity ranges as well as the 
sensitivity to the wall thickness variations. When the losses are either weak or tend to zero due to the 
doping with gain enabling impurities, the sharp peaks of the scattering cross-section that are yielded 
by the resonances can be said to be embedded into the otherwise wide invisibility range. In the case 
of lossy material, a wide and continuous invisibility range is shown to appear not only due to a small 
total volume of the scatterer in the nonresonant regime, but also because high-Q superscattering 
modes are suppressed by the losses. For numerical demonstration, indium antimonide, a natural 
lossy material, and a hypothetical, properly doped material with the same real part of the permittivity 
but lower or zero losses are considered. In the latter case, variations of permittivity with a control 
parameter can be adjusted in such a way that transitions from one superscattering mode to another 
can be achieved. In turn, transition from the strong-scattering to the invisibility regime is possible 
even for the original lossy material. The basic properties of the studied superscattering modes may be 
replicable in artificial structures comprising natural low-loss materials.

Anomalous scattering has attracted a lot of attention in recent decades. It assumes that the strength of scattering 
can be untypically strong or untypically weak for a given size and material of the scatterer. The latter physical 
situation is often associated with invisibility and cloaking. There are two big classes of the approaches to invis-
ibility. For the first of them, known as Transformation Optics, penetration of the incident electromagnetic wave 
into the region occupied by the scatterer is prevented by rerouting “rays” around it, by using a designed cloak 
which represents a finite-extent gradient  metamaterial1–4. For the second of them, the invisibility of the scatterer 
for a far-zone observer is achieved while the field inside the dielectric scatterer can be rather strong, as happens 
in case of scattering  cancellation5–8. Moreover, thin covers can totally change the overall scattering properties 
and yield invisibility, like in the case of carpet and mantle  cloaks8–11. Next, the invisibility mechanisms based 
on plasmonic  resonance12, single-mode  interferences13, and specific interferences yielded by different modal/
resonant  regimes14 should be mentioned. Superscattering, a counterpart of the invisibility has been studied in 
various core-shell and multilayer  structures15–27. It is often attributed to the effects exerted by (spoof) localized 
surface plasmon resonances (LSPRs)28–31. Invisibility and superscattering can be achieved in different frequency 
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ranges in the same structure. Furthermore, switching between weak and conventional/strong scattering has been 
demonstrated at a fixed frequency, assuming that the scatterer comprises component(s) made of an actively 
tunable  material14,24,32–37. In a wide sense, superscattering can be understood as scattering that is unexpectedly 
strong for the given size and material of the scatterer. From this point of view, Helmholtz-like electromagnetic 
resonance in the cavity-backed  antennas38,39 can yield strong scattering at a small electrical size that formally 
allows for assigning it to the family of superscattering regimes. At the same time, epsilon-near-zero (ENZ) and 
near-zero-index physics and related applications have been extensively  investigated40–48. In particular, materials 
and structures with the near-zero properties may enable a myriad of applications in different parts of electromag-
netic spectrum, like tailoring the phase  patterns49, control of nonlinearity of the particles in the proximity of an 
ENZ spherical  scatterer50, substrates or host slabs to shape radiation of (nano-)antennas placed  atop51 or inside 
 it52 and for the scatterers placed above  them53, and waveguide discontinuities enabling the dramatic changes 
in  transmission54, to name a few. Among the physical effects that are directly related to the present work, the 
ENZ modes arising in ultrathin planar films should be  mentioned55–57. Phase-change  materials58,59, transparent 
conducting  oxides60,61 and polar  dielectrics62–65 are the candidates to be used in ENZ components.

In the present paper, the existence of the localized ENZ resonances is confirmed and their contribution to 
anomalous scattering on thin-wall cylinders made of a Drude dispersive model is explored by using a comparison 
with LSPRs. The frequency range is set within the THz range, and the geometrical parameters of the scatterers 
are chosen so that their electrical sizes are changed from deeply subwavelength to those of the order of free-space 
wavelength. It will be shown that a wide and continuous invisibility range may appear when the high-Q superscat-
tering modes arising due to LSPRs or localized ENZ resonances are suppressed by the losses. In turn, when the 
losses are weak or zero, such resonances may lead to sharp maxima of the scattering cross-section. We assume 
here that the effect of losses can be partially or fully compensated by gain impurities, or can be negligible in case 
of the properly designed metallo-dielectric composites. It will be shown that the superscattering modes of two 
types are distinguishable. In particular, for the first of them which are connected with a LSPR, azimuthal electric 
field inside the cylinder can be dramatically enhanced, as is typical for resonances of this  type28–30. The second 
of them represent the localized ENZ resonances, whose connection to the ENZ modes in planar  structures56 is, 
generally speaking, similar to the connection of LSPRs in cylindrical/wrapped structures to surface plasmons 
in planar structures. In fact, the term localized ENZ resonances highlights the analogy between them and the 
aforementioned ENZ modes, on the one hand, and another pair of phenomena, i.e., LSPRs and Surface Plasmons, 
on the other hand. Indeed, it is demonstrated here that the localized ENZ resonances appear in the near-zero 
negative permittivity regime, showing rather strong radial electric and axial magnetic fields inside the cylinder; 
this makes their connection to ENZ modes evident, for which a transverse electric field inside a thin planar film is 
strongly  enhanced56. Therefore, thin-wall cylinders are needed to obtain the localized ENZ resonances. Moreover, 
we will show that scattering can be on-off switched, or switched between two superscattering modes or between 
strong- and weak-scattering regimes, if the thin-wall cylinder is made of an actively tunable material. Notably, 
results related to thin-wall structures made of metals were reviewed in Ref.66.

Scattering scenarios enabled by localized ENZ and surface plasmon resonances
In this section, we overview the basic scattering features of thin-wall hollow cylinders made of a Drude-dispersive 
lossy material. General geometry is shown in the inset in Fig. 1a. The p-polarized plane wave is incident from 
the side of negative x values, i.e., φ = π corresponds to the incidence direction. We restrict consideration to 
p-polarization, because the effects which we are interesting in are observed only in this case. For the sake of 
definiteness, we first consider InSb, a phase-change material as the cylinder material which has recently been 
used in various  structures33,67–70. In the range of transition from the metallic phase to the insulator phase, its 
permittivity is described by the Drude  model68,71, as follows:

where high-frequency permittivity ε∞ = 15.68 , the damping constant γ = π × 1011 rad s−1 , plasma frequency

(1)εs = ε∞ − ω2
p/(ω

2 − iγω),

Figure 1.  Normalized total scattering cross section, σt , for three thin-wall cylinders at εc = εs for (a) 
b = 11 µm (dash-dotted red line), 12 µm (dashed green line), and 13 µm (solid blue line), a = 14 µm ; (b) 
b = 6.5 µm and a = 7 µm (solid blue line), b = 13 µm and a = 14 µm (dashed red line), b = 26 µm and 
a = 28 µm (dash-dotted green line), and b = 39 µm and a = 42 µm (dotted black line); geometry is shown in 
the inset in plot (a). b/a is shown near the curves.
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ωp =
√

Nqe2/0.015ε0me  , charge and mass of electron are qe = −1.6× 10−19 C and me = 9.11× 10−31 kg, 
respectively, the intrinsic carrier density (in m−3 ) N = 5.76× 1020T3/2 exp (−Eg/2kBT) , the band-gap energy 
Eg = 0.26 eV, Boltzman constant is kB = 8.62× 10−5 eV K−1 , T is temperature, and ε0 = 8.854× 10−12 F/m . 
Further, we take T = 295 K in Eq. (1), so Re εs = 0 at f = 2.45355 THz. The exception is related to section “Tran-
sitions from variations of the control parameter” where T is assumed to be variable.

Figure 1a presents σt vs. ka (k is free-space wavenumber) for a = 14 µm when the permittivity of the cylinder 
material εc is equal to εs given by Eq. (1). Details of the calculation of σt are given in Appendix. As expected, the 
basic features include (i) strong resonant scattering in the deeply subwavelength regime, i.e., at ka < 0.6 and 
(ii) wide range of invisibility in the vicinity of ka = 0.8 (e.g., 0.6 < ka < 1 at b = 13 µm) . The former is con-
nected with an LSPR; the latter occurs in the ka range where | Re εc| is relatively small, and so the existence of 
the weak-scattering regime beyond the resonances looks quite natural. However, as explained below, the latter 
needs additional clarifying. The strong-scattering regime at the first maximum of σt is spectrally downshifted with 
increase of b, so it appears at ka = 0.565 , 0.515, 0.42 ( Re εc = −9.75 , −14.9 , and −30 ), for b/a = 11/14 , 12/14, 
and 13/14, respectively. In turn, the weak scattering regime, say, with σt < 10−2 is achieved at 0.59 < ka < 0.92 
( −7.6 < Re εc < 6.1 ) when b/a = 13/14 , 0.65 < ka < 0.83 , except for the vicinity of ka = 0.716 (the vicinity of 
Re εc = −0.1 ) when b/a = 12/14 , and at 0.671 < ka < 0.708 and 0.725 < ka < 0.8 when b/a = 11/14 . Clearly, 
the weak scattering results here not from scattering  cancellation5–8, because the core is vacuum. Notably, in 
Fig. 1a Re εc = 1 at ka = 0.743 and Re εc = 0 at ka = 0.719 . Similar results obtained for a = 28 µm and 42 µm 
can be found in Supplementary Information, see Fig. S1. Figure 1b presents σt vs. ka for several pairs of (b, a) 
but now a  = const . From the comparison of Fig. 1a,b, we observe that the invisibility regime is conserved for 
a quite arbitrary choice of b and a, and can appear even for an electrically non-small scatterer if Re εc = 1 (e.g., 
at 2ka ≈ 4.5 for b/a = 39/42 ). As expected, the smaller and the thinner the cylinders are, the wider the range 
of weak scattering will be.

To further explore the basic scattering features, we investigate scattering on the cylinders made of an ideal 
lossless material with permittivity εc = Re εs . For the sake of simplicity, we assume that it can be obtained by 
using either the gain impurities to compensate for the losses in a natural material or, alternatively, a metallo-
dielectric composite, depending on the chosen frequency range. The results for σt vs. ka are presented in Fig. 2a 
for the same values of b and a as in Fig. 1a, whereas in Fig. 2b we use the value of a that is same as in one of the 
cases in Fig. 1b. Similar results for another value of a taken from Fig. 1b are presented in Fig. S2 in Supplemen-
tary Information. The main difference of the results in Fig. 2 is that there are sharp peaks of σt at εc = Re εs 
in the same ka-subranges, in which weak scattering occurs at εc = εs . These peaks appear due to the effects 
exerted by superscattering modes. Among them, the modes of the two types should be distinguished. The 
scattering modes denoted as the modes of the type A are observed in Fig. 2a in the ka-range that corresponds 
to −14.2 < Re εc < −2.97 , and the scattering modes denoted as the modes of the type B are observed in the 
ka-range corresponding to −0.4 < Re εc < 0 . They are connected with LSPRs and localized ENZ resonances, 
respectively. This makes it evident that a rather large width and continuity of the invisibility range in Fig. 1 results, 
among others, from (most of) the superscattering modes being dark modes. For Im εc = 0 , we can obtain several 
narrow invisibility ranges that are intermittent with the strong-scattering regimes. It can be said that, in some 
senses, superscattering modes are embedded into the invisibility range. The lowest-f maximum of σt manifests 
itself similarly to the case of εc = εs . The second and third maximums of σt are connected with the modes of 
the type A that appear at ka = 0.6332 and 0.6596 ( Re εc = −4.55 and −2.97 ) when b/a = 11/14 , at ka = 0.598 
and ka = 0.6337 ( Re εc = −7 and −4.5 ) when b/a = 12/14 , and at ka = 0.521 and ka = 0.5707 ( Re εc = −14.2 
and −9.23 ) when b/a = 13/14 . These modes are moderately sensitive to the variations in b and a. In turn, the 
modes of the type B appear only near Re εc = 0 . The corresponding sharp peaks of σt indicate the presence of 
resonances coupled to the far field. The results for a = 42 µm are presented in Fig. 2b. It is seen that the main 
features here are the same as for a = 14 µm , except for that the superscattering modes can increase within the 

Figure 2.  Normalized total scattering cross section, σt , for cylinders made of lossless material, εc = Re εs , 
for (a) b = 11 µm (dash-dotted red line), b = 12 µm (dashed green line), and b = 13 µm (solid blue line), 
at a = 14 µm ; inset shows the fragment for the range 0.5 < ka < 0.75 ; (b) same as (a) but for b = 39 µm , 
40 µm , 41 µm , at a = 42 µm . The ratios of b/a are shown near the curves.



4

Vol:.(1234567890)

Scientific Reports |         (2024) 14:1580  | https://doi.org/10.1038/s41598-024-51503-y

www.nature.com/scientificreports/

range of significant scattering, but not necessarily within the invisibility range. Finally, the results for a = 28 µm 
can be found in Supplementary Information; see Fig. S2 therein.

Figure 3 presents the details of σt for the modes of the type B at different values of b and a. In Fig. 3a, we 
present the results obtained at εc = Re εs and a = 14 µm . The peaks of σt are observed, which are yielded by 
the localized ENZ resonances. For comparison, in Fig. 3b, the results are presented for the same values of b and a 
as in Fig. 3a but for εc = εs . As observed, there is no signature of superscattering modes in σt . In Fig. 3c, we take 
a = 28 µm , so instead of 2a/� ≈ 0.23 as in Fig. 3a superscattering modes occur nearly at 2a/� ≈ 0.455 . In spite 
of this difference, the basic features remain the same. Finally, in Fig. 3d, 2a/� ≈ 0.68 for a = 42 µm . In addi-
tion, similarly to Fig. 3a,b, the sharp peaks of σt dramatically disappear at a = 28 µm and 42 µm , if εc = Re εs 
is replaced by εc = εs (not shown). The peaks of the type B are located at negative but close-to-zero values of εc . 
In Fig. 3d, the closest maximum corresponds to εc = −1.4× 10−3 ( ka = 2.1582 ), which is unprecedently close 
to Re εc = 0 . In Fig. 3a,c, such a peak appears at Re εc = −0.1406 ( ka = 0.7162 ) and Re εc = −4.28× 10−2 
( ka = 0.7184 ), respectively. Since the maximums of type B always appear at Re εc < 0 , they can be said to be 
different from the effects studied in Refs.49,50,72 at Re εc ≥ 0 . However, they may be similar in some senses to the 
ENZ modes, which appear in ultrathin planar ENZ slabs at Re εc < 056, but the analysis of the field distribution 
is needed to clarify it.

Figure 4 presents σt vs. ka at different values of Im εc . As observed, the different scattering modes show 
different sensitivity to the same variations of Im εc . Expectedly, the narrower (i.e., higher-Q) maxima of σt are 
stronger sensitive to the variations in Im εc . The lowest-frequency resonance still well manifests itself also when 
Im εc = Im εs , whereas the superscattering modes of the types A and B either are dramatically weakened or 
totally disappear. Therefore, these modes can be either bright or dark, depending on the imaginary part of per-
mittivity; also see Fig. S3 in Supplementary Information. It is noteworthy that the superscattering modes can be 
selectively amplified when Im εc > 0 (not shown), see Fig. S4 in Supplementary Information. Notably, the modes 
of the type B are approximately scalable by varying a, because their spectral locations are predetermined by the 
material properties (i.e., the vicinity of Re εc = 0 is required). In turn, for the modes of the type A, the effect of 
variations in a on their number and spectral locations is more complicated.

Figure 3.  Normalized total scattering cross section, σt , for scattering modes of type B: (a) εc = Re εs when 
b = 11 µm (dash-dotted red line), b = 12 µm (dashed green line), b = 13 µm (solid blue line), at a = 14 µm ; 
(b) same as (a) but for εc = εs ; (c) same as (a) but for b = 25 µm , 26 µm , and 27 µm at a = 28 µm ; (d) same 
as (a) but for b = 39 µm , 40 µm , and 41 µm , at a = 42 µm.

Figure 4.  Normalized total scattering cross section, σt , for (a) lowest-frequency mode and one of the modes of 
type A, and (b) modes of type B, for various values of C in Im εc = C Im εs : C = 0—solid blue line, C = 0.1—
dashed red line, C = 0.2—dash-dotted green line, C = 0.5—dotted black line, C = 0.7—dashed cyan line, C = 1

—solid yellow line; Re εc = Re εs , b = 11 µm and a = 14 µm ; (a) the lowest-frequency mode and one of the 
high-Q modes of the type A, (b) modes of the type B. .
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Far- and near-field properties of superscattering modes
In this section, we investigate a φ-dependent scattering cross-section, σ(φ) , which does not accumulate the effects 
of all observation angles. Figure 5 presents the results on the (ka,φ)-plane. The angular behavior correspond-
ing to the lowest-f maximum (in all plots) indicates the dominant contribution of the dipolar space harmonics 
[ |l| = 1 in the field expansions, see Eqs. (2)–(4)]. As observed, the difference between the cases of εc = εs and 
εc = Re εs for this mode occurs only in that σ(φ) is smaller for the former. The results presented for εc = εs indi-
cate that there are just weak signatures of the superscattering modes of the types A and B, whose effects on σ(φ) 
are seen for εc = εs at ka > 0.62 for b = 11 µm and a = 14 µm , at ka > 0.5 for b = 13 µm and a = 14 µm , 
and at ka > 1.2 for b = 41 µm and a = 42 µm . There are different numbers of the maxima over φ for different 
scattering modes and, therefore, for different dominant |l| . As mentioned above, suppression of most of these 
modes is crucial for the wideness and continuity of the invisibility range when εc = εs . Note that some scattering 
features arising due to the closely spaced and/or narrow resonance peaks can be poorly distinguishable in Fig. 5, 
because of being too narrow as compared to the width of the considered ka-range.

The magnified fragments of Fig. 5a,c are presented in Fig. 6. You can see that |l| = 2 dominates in the far field 
at ka = 0.633 ( Re εc = −4.5596 ) in Fig. 6a, whereas |l| = 2 and |l| = 1 at ka = 0.7135 ( Re εc = −0.2614 ) and 
ka = 0.7162 ( Re εc = −0.1428 ) do so in Fig. 6b. In Fig. 6c, multipolar components with |l| = 3 and |l| = 4 are 
dominant, respectively, at ka = 1.248 ( Re εc = −31.18 ) and ka = 1.3859 ( Re εc = −22.3 ). In the case shown in 
Fig. 6d, the backward scattering prevails and σ(φ) results mainly from the superposition of space harmonics 
with different values of |l|.

Next, let us consider near-field behavior for the selected spectral regimes, assuming unitary magnitude of the 
incident wave’s magnetic component. Figure 7 presents the field distributions within and around the cylinder for 
the strong-scattering regimes associated with the modes of both type A [plots (a,b)] and type B [plots (c,d)]. The 
values of ka are chosen to correspond to the maxima of σt and σ(φ) obtained for b = 11 µm and a = 14 µm . 
As observed, strong enhancement occurs for the field components either outside the cylinder’s wall or inside it. 
The modes of type A and type B are easily recognizable, because of having principally different field features. In 

Figure 5.  Normalized φ-dependent scattering cross section (a.u.), σ(φ) , for (a) b = 11 µm and a = 14 µm , at 
εc = εs (left plot) and εc = Re εs (right plot); (b) b = 13 µm and a = 14 µm , εc = εs (left plot) and εc = Re εs 
(right plot); (c) b = 41 µm and a = 42 µm ; εc = εs (left plot) and εc = Re εs (right plot); the angle φ (ordinate 
axis) is measured from the x-axis in the counter-clockwise direction (see inset in Fig. 1a) and shown here in 
units of π.

Figure 6.  Details of σ(φ) from Fig. 5a at εc = Re εs , in the vicinity of (a) ka = 0.63 and (b) ka = 0.715 when 
b/a = 11 µm and a = 14 µm , and in the vicinity of (c) ka = 1.3 and (d) ka = 2.155 when b = 41 µm and 
a = 42 µm ; angle φ is measured from the x-axis in the counter-clockwise direction and shown here in units 
of π . (a,c) scattering modes A connected with LSPRs; (b,d) scattering modes B connected with localized ENZ 
resonances.
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particular, the modes in the vicinity of ka = 0.64 and the ones in the vicinity of ka = 0.715 show very different 
field distributions, despite similar manifestations in the far field. In Fig. 7a,b, |Eφ | inside the wall is substantially 
stronger than for the incident wave, whereas in Fig. 7c,d such enhancement occurs rather for |Hz | and |Er | . This 
difference is predetermined by the basic properties of LSPRs and localized ENZ resonances, which should be 
distinguished from each other. Therefore, the differences between the superscattering modes of types A and B 
occur and are not restricted to their spectral location and sensitivity to the variations in a and b. It is noteworthy 
that the strong enhancement of |Er | for the modes of type B, which correspond to localized ENZ resonances, 
is an analog of the strong enhancement of the transverse electric field in case of ENZ modes in ultrathin films, 
e.g., see behavior of |Ey|  in56. Therefore, the aforementioned ultrathin planar films can be said to be a planar ver-
sion of our thin-wall cylindrical structures and vice versa. Note that in the presented examples, the dominant 
contribution of the harmonics with |l| = 2 in Fig. 7a and |l| = 3 in Fig. 7b for the modes of type A. In turn, for 
the modes of type B, we observe the dominant contribution of |l| = 2 in Fig. 7c and |l| = 1 in Fig. 7d, so that the 
two spectrally close maxima of σt correspond to the modes having principally different field distributions. It is 
remarkable that a smaller |l| corresponds to the peaks located closer to the frequency value, at which Re εc = 0 (as 
exemplified by comparison of Fig. 7c,d), so that in the limiting case of Re εc = 0 we might expect obtaining the 
azimuthally uniform phase distribution in the cylinder. It is in the coincidence with the general theory of ENZ 
media, which highlights the zero phase advancement at εc = 0 . Finally, it should be noted that strong electric 
field can be obtained in ENZ shells also at Re εc > 0 , like it occurs in the evanescent-mode regime in Ref.50, 
but it may happen that there would be no coupling to the far field, in contrast to the studied modes of type B.

Now, let us take a larger value of a, i.e., a = 42 µm , like in Figs. 2b and 3d, in order to obtain the regime 
with 2a ∝ � at Re εs ≈ 0 . A bit smaller value of b than in Fig. 5c, b = 40 µm , is taken for the better visibility 
of the basic features. Four examples are presented in Fig. 8. In Fig. 8a, the field distributions are shown for the 
second-lowest (LSPR related) maximum arising at ka ≈ 1.31 . Contribution of the space harmonics with small but 
different |l| leads here to some asymmetry between forward and backward scattering. In Fig. 8b,c, the field dis-
tributions are presented for the modes of the type A that appear in the vicinity of ka = 1.5 and ka = 1.64 , where 
the space harmonics |l| = 3 and |l| = 4 are dominant, respectively. Finally, the results in Fig. 8d are presented 
for one of the modes of the type B, which appears in the vicinity of ka = 2.15 . In this case, the space harmonics 

Figure 7.  |Hz | (left), |Eφ | (middle), and |Er | (right) for b = 11 µm , a = 14 µm and εc = Re εs at (a) 
ka = 0.6332 , (b) ka = 0.6596 , (c) ka = 0.7135 , and (d) ka = 0.7162 . (a) and (b) correspond to the scattering 
modes of the type A, (c) and (d) correspond to the scattering modes of the type B. Cylinder walls are shown by 
two concentric dashed white lines.

Figure 8.  |Hz | (left), |Eφ | (middle), and |Er | (right) for b = 40 µm and a = 42 µm and εc = Re εs at (a) 
ka = 1.3104 , (b) ka = 1.5065 , (c) ka = 1.6402 , and (d) ka = 2.1501 . (a) corresponds to the second-lowest (i.e., 
still not narrow) scattering maximum, (b) and (c) do so for the high-Q modes of the type A, and (d) for the 
modes of the type B. Cylinder walls are shown by two concentric, closely spaced, dashed white lines.
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with |l| = 4 are the main contributors, although the effect of other harmonics cannot be said to be negligible. The 
values of |l| retrieved from the results in Figs. 5 and 6 are in agreement with the results in Fig. 7. In some senses, 
the near-field features are imaged in the far field. In other words, for the near-fields of LSPRs and localized ENZ 
resonances, each maximum within/near the cylinder unambiguously corresponds to one of the maxima of σ(φ) . 
In particular, this follows from the comparison of Fig. 6a with Fig. 7a, Fig. 6b with Fig. 7c,d, and other similar (but 
not shown) results. Since the modes of the type A are connected with LSPRs, it is not surprising that the features 
observed in Figs. 7a,b and 8a–c can be similar to those observed in various cylindrical structures supporting 
 LSPRs28–31. Some similarities with Whispering-Gallery  Modes73–78 should also be highlighted.

Transitions from variations of the control parameter
In this section, we study the behavior of σt vs. ka under continuous variations of T that affect the carrier density, 
see Eq. (1). We assume that the materials with εc = Re εs may keep the similar sensitivity to the variations in 
T, as their undoped lossy counterparts have εc = εs . However, even if the sensitivity of the resulting impurity-
containing material to the T variations will differ from that of the original lossy material, it is expected to be 
capable of diverse transitions from one scattering mode to another. Figure 9 presents the simulation results for 
σt plotted on the (ka,T)-plane, for both cases of εc = εs and εc = Re εs . Note that some details may be not dis-
tinguishable, because the entire ka range hosting the studied modes is much wider than the ka range hosting, for 
example, the modes of the type B. At εc = εs , max σt which correspond to the lowest-f LSPR mode is conserved 
and spectrally upshifted while increasing T. Obtaining �ka = 0.4 for its spectral location needs an increase of T 
about 55 K . It leads to the spectral shift of invisibility range(s). The observed behavior is predetermined by the 
manner in which εs depends on T, according to Eq. (1). By varying T, the transition from invisibility to strong 
scattering and then back to weak scattering can be easily achieved even at εc = εs . For instance, in Fig. 9a, one 
such transition is indicated by 1a. In fact, there is a lot of leeway in the choice of a ka value, whereas variation 
�T from 15 K to 30 K can be sufficient for each step in this two-step transition. The increase of a leads to there 
possibly being more modes, which can be involved to the transition scenarios, compare Fig. 9b with Fig. 9a. 
However, the fact that a rather strong scattering occurs in Fig. 9b within a wider ka range needs a careful adjust-
ment of the values of ka and T to obtain such a transition.

The results for the case of εc = Re εs are presented in Fig. 9c,d. Tunable spectral locations of max σt for the 
modes of the types A and B (i.e., for both LSPRs and localized ENZ resonances) are possible, even though their 
effects in the cases shown in Fig. 9a,b tend to vanish. These modes can also contribute to various transition 
scenarios, provided that the effect of losses is compensated. The general feature connected with the increase of 
T is that the maxima of σt become more blurred. Examples of various transitions are shown in Fig. 9c,d. One 
of transitions similar to 1a in Fig. 9a is denoted in Fig. 9c by 1b. Transitions from one mode of type A to the 
modes of type B are denoted in Fig. 9c,d by 2a, 2b, and 2c; the one from one of the modes of type A to another 
is denoted by 3 therein. Furthermore, there may be transitions from one mode of type B to another (not visible 
in Fig. 9), which need just very small changes of T. Interestingly, the slope of the lowest-f maximum and those 
of the modes of type A, on the one hand, and the slope of the modes of type B, on the other hand, can be close 
or not close, depending on b/a. Roughly speaking, the smaller b/a is, the larger the slope for type A will be. This 
observation is also confirmed by the results presented in Supplementary Information, Fig. S5 for the case of 
b = 13 µm and a = 14 µm , as well as by the our other (not shown) results. At the same time, the slope is nearly 
constant for the modes of the type B.

To further clarify which modal transitions may be possible, we first assume that ka = const . The selected 
slices taken from Fig. 9c are presented in Fig. 10a. For example, for ka = 0.633 , the first sharp maximum of σt 
is achieved at T = 284.4 K (mode B). Then, the second maximum of σt is observed when the temperature is 
increased up to T = 295 K (mode A), while σt ≈ 0 between these two maxima. Finally, the wide maximum asso-
ciated with the lowest-f LSPR is observed at T = 305 K. Similar behavior is observed here for two other values 
of ka. Next, Fig. 10b presents the slices from Fig. 9c that are taken at T = const . As mentioned above, the shift 
of all scattering peaks toward larger ka takes place while increasing T. It occurs because smaller T is needed to 
achieve a desired value of Re εs at smaller ka.

Figure 9.  Normalized total scattering cross section, σt , in (ka,T)-plane for (a) b = 11 µm and a = 14 µm , (b) 
b = 41 µm and a = 42 µm , when εc = εs ; (c) b = 11 µm and a = 14 µm , (d) b = 41 µm and a = 42 µm , 
when εc = Re εs . 1a, 1b, 2a, 2b, 2c, 3 indicate different transitions from one scattering mode to another.
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Conclusion
To summarize, we investigated the weak and strong scattering of electromagnetic waves on thin-wall cylinders 
to find and explore the role of the localized ENZ resonators, in terms of both far- and near-field characteristics. 
As demonstrated numerically, both the localized ENZ resonances and LSPRs can yield strong scattering. They 
differ not only in the cylinder permittivity range where they appear but also in the specifics of the field distribu-
tions around and inside the cylinder. The localized ENZ resonances appear in the frequency range where Re ε 
is a bit smaller than zero. It has been shown that the suppression of high-Q superscattering modes connected 
with LSPRs and localized ENZ resonances plays a key role in the appearance of the wideband invisibility range. 
Just as one of the possible options, InSb has been considered as the cylinder material, while the gain impurities 
may be needed in this case to enable the strong-scattering regimes. Notably, transition from the metallic to the 
insulator material phase, which can be shown by InSb at a gradual temperature variation, necessarily leads to an 
ENZ regime at a particular frequency. As follows from the obtained results, cylinders with thin walls are needed 
for obtaining of a wide invisibility range and localized ENZ resonances, whereas the dispersion of the cylinder’s 
material permittivity may be crucial for obtaining diverse superscattering modes. Moreover, a higher contrast 
between the regimes of weak and strong scattering is obtained, because LSPRs and localized ENZ resonances 
may also appear at small such ka that the square of the scatterer’s cross section is still small enough to avoid sig-
nificant scattering beyond the resonances. For the undoped material (in the considered case—InSb), the effects 
of the lowest-frequency LSPR are only seen in the scattering cross-section. This regime can appear at 2a ∝ �/10 , 
i.e., being deeply subwavelength. If the losses can be reduced toward lower or even near-zero levels by means 
of doping, regimes of invisibility and superscattering could also be observed at the frequencies, which are very 
close to each other, i.e., the sharp peaks of σt that appear owing to high-Q resonances are embedded into the 
invisibility range. The connection of near- and far-field characteristics has been analyzed in the obtained results. 
Each spatial maximum of the field near/inside the cylinder corresponds to a far-field maximum at nearly the 
same angular position, so that in some senses the former can be said to be imaged. Assuming that sensitivity to 
the control parameter variations may remain nearly the same after doping, transitions between the strong scat-
tering regimes yielded by LSPRs and those by the localized ENZ resonances, or vice versa, should be possible. 
The same is true regarding transitions between two different LSPRs or between two different localized ENZ 
resonances. The transitions between the regimes of strong scattering and invisibility are also possible for the 
undoped material that may need only a 15 K variation in temperature, being close to the natural environmental 
conditions. Various core’s material properties and effects of proximity are planned to be considered at the next 
steps of this research program. The emulation of the basic properties of superscattering modes connected with 
the localized ENZ resonances by using metallo-dielectric composites that comprise natural impurity-free low-
loss materials is in progress.

Methods
The applied approach is based on the Fourier-Bessel series. The incident wave is assumed to be p-polarized, and 
so the axial magnetic field is presented in the form of Fourier-Bessel series as follows:

and

(2)Hz(r,φ) =
∞
∑

n=−∞
(−i)n[Jn(k1r)+ cnH

(2)
n (k1r)]einφ , r ≥ a,

(3)Hz(r,φ) =
∞
∑

n=−∞
(−i)nbnJn(k2r)e

inφ , r ≤ b,

Figure 10.  (a) σt as a function of T for εc = Re εs , when ka = 0.51 (dash-dotted green line), ka = 0.633 (solid 
blue line), and ka = 0.7155 (dash-dotted red line); (b) σt as a function of ka when T = 279.9 K (solid blue line), 
T = 302.4 K (dash-dotted red line), and T = 323.7 K (dotted green line); geometrical parameters are the same 
as in Fig. 9a,c. A and B indicate the maxima yielded by high-Q modes of the corresponding types. 
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where Jn(x) and Yn(x) stand for Bessel and Neumann nth-order cylindrical functions, respectively; H(2)
n  is 

a 2nd-kind Hankel function of the order n; an , bn , cn , and dn are unknown coefficients; k1 = k3 = ω/c and 
k2 = ω/c

√
ε2µ2 ; φ is measured from the x-axis in the counter-clockwise direction; i2 = −1 . Two remaining field 

components are given by Er = (−i/ωεε0r)∂H/∂φ and Eφ = (i/ωεε0)∂H/∂r . Imposing the continuity condition 
for the tangential field components, Hz and Eφ , at r = a and r = b , then taking into account the orthogonality 
of the exponential functions,

and finally rearranging the terms, we obtain

where Mn(k2b, k3b) = w2J
′
n(k2b)Jn(k3b)− w3Jn(k2b)J

′
n(k3b) , Ln(k1a, k3a) = w1J

′
n(k1a)Jn(k3a)− w3Jn(k1a)

J ′n(k3a) ,  L̃n(k3a, k1a) = w1Jn(k3a)H
(2)
n

′(k1a)− w3J
′
n(k3a)H

(2)
n (k1a) ,  Un(k3b) = −Xn(k3b) = 2/(πk3b) , 

Sn(k2b, k3b) = w2J
′
n(k2b)Yn(k3b)− w3Jn(k2b)Y

′
n(k3b) , Fn(k1a, k3a) = w1J

′
n(k1a)Yn(k3a)− w3Jn(k1a)Y

′
n(k3a) , 

Gn(k1a, k3a) = w1Yn(k3a)H
(2)
n

′(k1a)− w3Yn
′(k3a)H

(2)
n (k1a) , Tn(k3a) = −Wn(k3a) = 2/(πk3a) . It was assumed 

here that for the impedances normalized by the free-space impedance, we have w1 = w3 = 1 and w2 =
√
µ2/ε2 . 

For this study, we take µ2 = 1 and ε2 = εc.
After some algebra, we obtain analytical expressions for the coefficients

Expressions for the coefficients an and dn (not shown) have the same complexity as bn and cn . Once all coefficients 
are found, the field components Hz , Eφ , and Er can be calculated. To quantify scattering in far zone, the normal-
ized total scattering cross section

is calculated, where the asterisk means a complex conjugate. It is normalized by that of the perfectly conducting 
cylinder of the radius a. Moreover, the knowledge of the coefficients cn is sufficient to calculate a φ-dependent 
scattering cross section.

Data availability
All of the data generated or analyzed during this study are included in this article and its supplementary infor-
mation files.
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