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Identifying key soil characteristics 
for Francisella tularensis 
classification with optimized 
Machine learning models
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Mateen Abbas 2, Masood Rabbani 3 & Muhammad Zubair Shabbir 2

Francisella tularensis (Ft) poses a significant threat to both animal and human populations, given its 
potential as a bioweapon. Current research on the classification of this pathogen and its relationship 
with soil physical–chemical characteristics often relies on traditional statistical methods. In this study, 
we leverage advanced machine learning models to enhance the prediction of epidemiological models 
for soil-based microbes. Our model employs a two-stage feature ranking process to identify crucial soil 
attributes and hyperparameter optimization for accurate pathogen classification using a unique soil 
attribute dataset. Optimization involves various classification algorithms, including Support Vector 
Machines (SVM), Ensemble Models (EM), and Neural Networks (NN), utilizing Bayesian and Random 
search techniques. Results indicate the significance of soil features such as clay, nitrogen, soluble 
salts, silt, organic matter, and zinc , while identifying the least significant ones as potassium, calcium, 
copper, sodium, iron, and phosphorus. Bayesian optimization yields the best results, achieving an 
accuracy of 86.5% for SVM, 81.8% for EM, and 83.8% for NN. Notably, SVM emerges as the top-
performing classifier, with an accuracy of 86.5% for both Bayesian and Random Search optimizations. 
The insights gained from employing machine learning techniques enhance our understanding of 
the environmental factors influencing Ft’s persistence in soil. This, in turn, reduces the risk of false 
classifications, contributing to better pandemic control and mitigating socio-economic impacts on 
communities.
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MO  Moisture
N  Nitrogen
Na  Sodium
Ni  Nickel
NN  Neural networks
OM  Organic matter
P  Phosphorus
Pb  Lead
RLF  ReliefF
RS  Random search
Si  Silt
SS  Soluble salt
SVM  Support vector machine

Bacteria live within us, on us, and in the environment. While many bacteria coexist harmlessly, certain pathogenic 
strains pose indirect threats to human health through their impact on plants, birds, and animals, as revealed 
by several zoonotic  infections1. These infections can quickly spread from animals to humans with or without 
a mechanical or biological  vector2. Zoonoses represent a significant global challenge, contributing to 61% of 
prevailing and 75% of emerging human infections, along with billions of dollars of economic loss in developed 
countries like the US and  Canada3

Among these zoonotic threats is tularemia, induced by the highly contagious intracellular bacterium Franci‑
sella tularensis (Ft). While mostly prevalent in the northern hemisphere, only ten organisms of the Ft can cause 
the  disease4. Classified as a Category A biological agent by the Centers for Disease Control and Prevention (CDC), 
Ft has the potential for biowarfare due to its ease of propagation and high morbidity and mortality  rates5. The 
bacterium exists in four subspecies, with Ft (Type-A) recognized as particularly hazardous, resulting in mortality 
rates ranging from 30 to 60% among affected individuals. An expert committee convened by the World Health 
Organization (WHO) issued a stark prediction, highlighting the potential devastation of releasing aerosols 
containing 50 kg of Ft over a densely populated metropolis of 5 million inhabitants. The projected outcomes 
were alarming, anticipating 19,000 deaths and 250,000 illnesses as a consequence of such an aerosol  exposure6.

Tularemia is prevalent throughout North America, Europe, Asia, and Australia. In Europe, the illness is widely 
prevailing. In 2019, almost 1500 cases of tularemia were reported in the European Union, with 56% of cases 
in Sweden, followed by Norway, which spread mainly via mosquito  bites7. In Asian regions, including Japan, 
Turkey, Iran, China, Turkmenistan, Azerbaijan, Afghanistan, and Kazakhstan, instances of tularemia have been 
 documented8. In the United States, the disease has established a nearly ubiquitous presence, with an average of 
143 registered patients annually from 2005 to 2014. Subsequently, the numbers surged to 314, 230, 239, 229, 274, 
and 150 in the years 2015 through  20209. Over the last two decades, outbreaks of tularemia have been reported 
not only in Asia but also in Japan, South Korea, the European Union, the United States, and  Canada10.

The pathogen can persist for extended periods in various environments, including soil, moist hay, water, 
straw, and decaying animal  carcasses11. The diverse modes of transmission, from contaminated food and water 
to inhalation of infected air, further complicate control  measures12. This resilience poses a particular threat in 
regions lacking stringent biological waste handling standards, where infected materials can decompose and 
spread through natural elements.

Identifying Ft in soil presents a critical step in controlling disease outbreaks, but traditional identification 
techniques like Mass Spectrometry (MS)13, Polymerase Chain Reaction (PCR)14, and Enzyme-Linked Immu-
nosorbent Assay (ELISA)15 are costly and time-consuming. This study builds on the understanding that soil 
attributes, such as moisture, pH, and mineral contents, can be crucial in screening samples positive for Ft, as 
 studies16–20 indicate the pivotal role of these physicochemical factors in soil pathogen persistence. Moreover, 
recognizing the limited exploration of machine learning models in this domain, we embark on a novel approach 
to predict Ft prevalence in soil.

While existing research primarily relies on statistical methods, our study differentiates by employing machine 
learning models for predicting the epidemiological models for this soil-borne pathogen. Building upon our earlier 
work, which utilized neural networks for Ft classification and achieved a notable accuracy of 82.61%21, subsequent 
enhancements raised this accuracy to 84.35%, utilizing feature ranking and machine learning  classifiers22. The 
present study aims to contribute to this evolving field by introducing a unique approach for feature ranking by 
assessing the rank of an attribute by utilizing the commulative score of all feature ranking methods to overcome 
any bias introducted by different ranking methods. Furthermore, to enhance the accuracy and efficiency of our 
model, we incorporate bayesian and random search optimization techniques, which help in finding the best 
hyperparameters for our machine learning model, ensuring optimal performance and robust prediction.

The outlined objectives include assessing classifier performance, utilizing two-stage feature ranking, and 
applying hyperparameter optimization techniques. Notably, our model achieves a remarkable classification accu-
racy of up to 86.5%, validated through rigorous 10-fold cross-validation technique.

In summary, our study addresses critical gaps in existing literature by employing advanced techniques to 
better understand the environmental factors influencing Ft’s persistence in soil. This, in turn, offers valuable 
insights for controlling disease outbreaks, ultimately contributing to broader socio-economic well-being. The 
contributions of this work are given below: 

1. Introduction and Dataset: Introduce a unique soil feature dataset for Ft +Ve and −Ve sites, consisting of 21 
soil characteristics.
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2. Methodology Innovation: Apply machine learning techniques, specifically Bayesian and Random Ssearch 
optimization, in contrast to traditional approaches, to analyze the behavior of Francisella tularensis (Ft) in 
soil.

3. Feature Ranking Comparison: Evaluate the performance of feature-ranking models against various classifiers 
on nested subsets of the ranked attributes.

4. Classifier Performance Improvement: Enhance the performance of classifiers through the application of 
Bayesian and Random Search optimization techniques.

5. Two-Stage Feature Ranking: Implement a two-stage feature-ranking process. Initially, soil attributes are 
ranked by different feature-ranking approaches. Subsequently, the weighted score of features is calculated 
to determine the final rank, utilizing a combination of techniques.

6. Hyperparameter Optimization: Perform classification using hyperparameter optimization techniques, achiev-
ing a classification accuracy of up to 86.5%.

7. Validation through Cross-Validation: Verify the proposed model’s performance through a rigorous 10-fold 
cross-validation.

Material and methods
The research employs a systematic approach, starting with the ranking of soil features through various techniques 
such as SVM attribute evaluator, ReliefF, Chi-Square, and Gini-Index algorithms. Following feature ranking, a 
nested classification methodology is implemented. This involves iteratively selecting the top-ranked features and 
applying them to optimize classifiers through hyperparameter optimization techniques. The nested classifica-
tion approach allows for a stepwise refinement of the model, ensuring that the classifiers are tailored to the most 
relevant features. This sequential strategy, illustrated in The Fig. 1, aims to enhance the robustness and predictive 
accuracy of the classification model.

Sample acquisition and analysis
The study was conducted in Punjab province, recognized for its predominant agricultural setting and substantial 
human and livestock populations. Employing a three-stage sampling design, we selected districts representing key 
livestock production areas with heightened annual disease incidence. Locations across the provience, including 
livestock barns and agricultural land, identified as Ft positive, underwent soil chemistry analysis. An equivalent 
number of locations where Ft genome was not detected were also selected to explore the relationship between 
soil parameters and bacterial persistence. For soil genome detection, we adhered to a previously optimized and 
validated real-time PCR protocol targeting the tul4  gene23, incorporating necessary controls.

Soil samples were analyzed using optimized protocols for pH, moisture, texture, total soluble salts, and various 
elements. Detailed methodologies for the analyses can be found in the cited  references24–31. These physicochemi-
cal soil features have different range of values, as displayed in Table 1. The implementation of proper personal 
protective equipment (PPEs) were ensured during expirementation to maintain biosafety standards. A concise 
overview of soil sampling, genome extraction, detection, Ft distribution, and soil chemistry analysis is available 
in our prior  research32.

Appropriate dataset for analysis
To propose a trustworthy and efficient machine learning design, one should select those soil characteristics that 
are crucial for the growth and survival of Ft. The study identifies the important features, including Soluble Salt 
(SS), Moisture (MO), pH, Clay (cy), Organic Matter (OM), Silt (Si), Sand, Magnesium (Mg), Phosphorus (P), 
Nitrogen (N) Copper (Cu), Nickel (Ni), Chromium (Cr), Lead (Pb), Cobalt (Co), Manganese (Mn), Cadmium 
(Cd), Iron (Fe), Calcium (Ca), Sodium (Na), and Potassium (K), which were utilized for the analysis.

Figure 1.  Different stages of Francisella tularensis feature-ranking, classification and optimization.
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Attribute selection
Data filtering is important for constructing an accurate and efficient model that can enhance performance. These 
models assist us in selecting the optimal set of features for analysis. If 21 input attributes are selected from the 
soil attribute dataset, the attribute matrix, represented by  Xem=[X1m,  X2m,  X3m,...,  XEm], consists of E column vec-
tors, and  xem is a specific feature value (with e= 1, 2, 3, 4, . . . E and m= 1, 2, 3, 4, . . . M; where E=21 and M=148 
in the dataset).

Attribute selection models
A feature selection algorithm incorporates a search procedure to recommend new feature subsets with evaluation 
criteria that assign different scores to various  features33. The most appropriate model is the one that tries every 
likely subset of features and uncovers the most suitable subset that decreases the error rate. Yet, the exhaustive 
search technique becomes unviable in more comprehensive feature space scenarios. The selection of evaluation 
metrics greatly influences the procedure. Various feature-selection models have been employed, for example, 
Support Vector Machine (SVM) attribute evaluator, ReliefF (RLF), Chi-Square (Chi-Sq) and Gini-Index (GI). 
The feature ranking models are explained as under:

SVM attribute evaluator
This attribute evaluator assesses a feature’s worth by using SVM. The features are ranked by the SVM’s square 
of the weights approach. Feature ranking for multiclass scenarios is managed by ranking each class separately, 
employing a one-vs-all approach, and then dealing from the top of each pile to suggest a final rank.

ReliefF
The ranking model’s main idea is to assess the attributes’ quality by their capability to differentiate among samples 
of different classes in a local neighborhood. So the most relevant attributes are those that contribute more to 
increasing the distance between different class samples while contributing less to increasing the distance between 
the same class  samples34. The equation for weight updation using RLF is shown as under:

Where Wz represents the weight for attribute Z, E is a randomly sampled instance, Ch and Cm represent the 
closest hit and closest miss, respectively, and n is the number of randomly sampled instances. The diff() func-
tion calculates the difference between two instances for a given attribute. For nominal attributes, it is defined 
as 0 if the values are the same and 1 if the values are different. For continuous features, the actual difference is 
normalized to the interval 0,1. Dividing the formula by n ensures the weights are within the interval -1,1. RLF 
is sensitive to attribute interactions and aims to estimate the change in probability for the weight of feature Z as 
defined in equation (2).

(1)Wz = Wz −
diff(Z,E,Ch)

2

n
+

diff(Z,E,Cm)
2

n

Table 1.  Range of different physicochemical soil characteristics.

Soil characteristics  Range of attributes

1. Cadmium (Cd) 0.03–3.84 mg/kg

2. Calcium (Ca) 40.8–259.9 mg/kg

3. Clay (cy) 1.00–92.0 mg/kg

4. Chromium (Cr) 0.002–0.48 mg/kg

5. Copper (Cu) 0.02–2.36 mg/kg

6. Iron (Fe) 0.34–53.9 mg/kg

7. Lead (Pd) 0.22–7.60 mg/kg

8. Magnesium (Mg) 20.37–324.4 mg/kg

9. Manganese (Mn) 0.09–49.26 mg/kg

10. Moisture (MO) 3.30–15.0%

11. Nickel (Ni) 0.0024–14.43 mg/kg

12. Nitrogen (N) 0.04–0.22 mg/kg

13. Organic Matter (OM) 0.73–4.42 mg/kg

14. Phosphorus (P) 0.36–110.0 mg/kg

15. Potassium (K) 6.70–448.6 mg/kg

16. pH 5.9–12.2

17. Sand 7.00–97.0 mg/kg

18. Silt (Si) 0.00–60.0 mg/kg

19. Sodium (Na) 21.1–304.9 mg/kg

20. Soluble Salts (SS) 0.69–5.04 mg/kg

21. Zinc (Zn) 0.16-1.85 mg/kg
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Chi‑square
Chi-Square (Chi-Sq) is employed for categorical attributes in a dataset. We calculate Chi-Sq between each feature 
and the target class and pick the expected number of attributes with the best Chi-Sq scores. A high score reveals 
that the corresponding feature is essential. The technique decides if the sample’s relationship between two cat-
egorical variables would reflect their natural association in the population. The Chi-Sq score is shown as follows :

Where e represents degree of freedom, OF (Observed frequency) is the number of instances of a class, EF 
(Expected frequency) if the number of expected instances of class if there is no association betweeen the targer 
and attribute.

Gini‑index
Gini-Index (GI), called Gini impurity, estimates the probability of a particular attribute being misclassified when 
picked randomly. It can be called pure if all the components are associated with a single class. GI ranges between 
values one and zero, where zero represents the purity of classification, i.e., all the components represent a specific 
class or only one class exists. Moreover, 1 demonstrates the random distribution of components across different 
classes. However, 0.5 displays an equal distribution of components over distinct classes. The GI is calculated by 
subtracting the aggregate of the squared probabilities of a class from 1. The GI can be represented as follows:

Where Pa exemplifies the likelihood of an element that is classified for a distinct class.

Hyperparameter optimization
Model optimization is one of the toughest challenges in implementing machine learning solutions. Finding 
appropriate hyperparameters is crucial for models. However, setting these hyperparameters to achieve good 
results takes time and effort. There are often general rules of thumb or heuristics for configuring hyperparameters. 
A better technique is to search various values for a model’s hyperparameters and choose a subset that achieves the 
best performance on a given dataset. This approach is called hyperparameter tuning or hyperparameter optimiza-
tion. In contrast to model parameters, the ML engineer sets hyperparameters before training. The weights in a NN 
are model parameters learned during training, and the number of trees in a random forest is a hyperparameter. 
They are the configuration settings to be adjusted so that the model can resolve a machine-learning problem 
optimally. Some of the hyperparameter optimization techniques which were used during experimentation are:

Random Search optimization
Random Search (RS) is a family of numerical optimization techniques that do not need the gradient of the 
problem to be optimized. RS can be employed on procedures that are not differentiable or continuous. Such 
optimization approaches are derivative-free, black-box, or direct-search methods. RS belongs to the areas of 
Global Optimization and Stochastic Optimization. It is a direct search approach as it does not need derivatives to 
explore a continuous domain. This approach relates to minor improvement strategies, such as Adaptive Random 
Search and Directed Random Search.

Bayesian optimization
Bayesian optimization (BO) is a well-known technique for hyperparameter optimization of classifiers. A hyperpa-
rameter is an internal parameter of a classification algorithm, like an ensemble classifier’s learning rate or an SVM 
model’s box constraint. These settings can enormously impact a classifier’s performance, but optimizing them 
is generally challenging or time-consuming. Typically, optimizing hyperparameters means trying to minimize 
a classifier’s cross-validation loss. BO locates a point that minimizes the objective function. Suppose we have a 
function f : Y → R that we wish to minimize on some domain Y ⊆ Y . That is, we wish to find

(2)
Wz =P

(

different value of Z

closest example of different class

)

− P

(

different value of Z

closest example of same class

)

(3)
ReliefFZ =P

(

different value of Z

different class

)

− P

(

different value of Z

same class

)

(4)χ2
e =

∑ (OFi − EFi)
2

EFi

(5)Gini Index = 1−

n
∑

a=1

(Pa)
2

(6)y∗ = argmin
y∈Y

f (y)
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This problem is generally known as global optimization. The function can be stochastic or deterministic, meaning 
it can return different results when evaluated at the same point. An revolution in BO is the acquisition procedure, 
which the technique employs to choose the successive points to assess. The acquisition procedure can stabilize 
sampling at positions with low-modeled objective functions and explore areas that still need to be modeled well. 
The Optimization function internally retains a Gaussian process (GP) that uses the objective procedure estima-
tions to train the model. The GP equation is given as under:

Given observations D = (Y, f) we can condition our distribution on D as usual:

How do we pick where to observe the function next for a given set of observations? A strategy in BO is to devise 
an acquisition function a(y). It is a cost-effective estimate calculated at a particular point, based on the anticipated 
benefit of evaluating f at y in the minimization problem. The optimization of the acquisition function is used to 
determine the location of the next observation. In essence, we have substituted the original optimization problem 
with another optimization problem, but one that operates on a much cheaper function a(y).

Machine learning classifiers
In this section, we outline the various machine learning classifiers utilized in our study, including Support Vector 
Machine (SVM), Ensemble model (EM), and Neural Networks (NN) for training the proposed model.

SVM
SVM performs multi-class classification tasks by drawing a hyperplane to maximize the margin among classes. 
The classifier also tries to minimize the  error35, and it provides different advantages like a sufficient generalization 
to the new instances, the absence of local minimums, and a representation that relies on a few  features36. Given 
a training set of input vectors xi ∈ Rd , i = {1, . . . ,Nt} for d dimensional input space and outputs yi ∈ {1,−1} . 
Where equation 9 shows the SVM’s hyperplane:

In the above equation, x describes the input vector, and w is for a constant vector of an SVM hyperplane. While 
the training input vector xi illustrates the attributes and sign() is a signum function with ±1 output. The goal is 
to minimize Equation 10.

Where Cb represents the box constraint and ζi disciplines objective function for samples that cross a specific 
margin that signifies a particular class.

Ensemble model
An ensemble is a predictive method that comprises a weighted combination of numerous classification models. 
In general, fusing numerous classification models improves the performance enormously.

Neural networks
A NN comprises a feed-forward and backpropagation network, which includes three types of layers: an input 
layer, an output layer, and a hidden layer. Each layer in the network has a specific role to play. The input layer 
accepts the input data, while the output layer carries out key functions such as prediction and classification. The 
hidden layers are the true workhorse of the model, executing the majority of the computation between the input 
and output layers. The backpropagation technique optimizes the weights of these layers. These models are used 
for classification, recognition, approximation, and prediction tasks and are effective for solving non-linearly 
separable problems. The computations taking place at each neuron in the hidden and output layer are as under:

Let W(1), W(2) represent the weights and B(1), B(2) be the biases of the previous and next layer. The output of 
the previous layer, z, is multiplied with the weights of the current layer, W(1), to form the inner vector product. 
Then, a bias vector B(1) is added, and the result is fed into the activation function r1() . The activation functions 
r1, r2 are used to introduce non-linearity into the model. The various activation functions are {r1, r2} . The mostly 
applied activation functions are sigmoid and tanh , where sigmoid is shown as sigmoid(d) = 1/

(

1+ e−d
)

 and 
tanh is tanh(d) =

(

ed − e−d
)

/
(

ed + e−d
)

.

(7)p(f ) = G P (f ;µ,K)

(8)p(f | D ) = G P
(

f ;µf |D ,Kf |D

)

(9)yi = sign(w · xyTi + b)

(10)

min
w,b,ζ

1

2
||w||2 + Cb

∑

ζi

(subject to) yi(w
Txi + b) ≥ 1− ζi (∀i)

ζi ≥ 0 (∀i)

(11)O(z) =r2(A(2)+W(2)h(z))

(12)h(z) =�(z) = r1(B(1)+W(1)z)
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Experiments
Data description
All the feature-ranking and hyperparameter optimization experimentations on machine learning models are 
performed on the F. tularensis soil attribute dataset, comprising 148 samples. Each sample consists of 21 soil 
features. A supervised dataset is required to prepare a predictive model for classification. So, we assigned label 
“A” to positive samples, and “B” to negative soil samples in the dataset.

Software tool and performance measures
We use MATLAB for experimentation on the Ft soil attribute dataset for hyperparameter optimization of classifi-
cation models and feature ranking. Initially, we load the dataset to the workspace, and then a 10-folds validation 
scheme is applied, which measure’s a model’s accuracy. Once the app has loaded the data, we can choose from 
several feature selection algorithms available in MATLAB for feature ranking. Next, we choose models that can 
be optimized for accuracy calculation by picking the top-ranked features from the dataset sequentially using the 
nested subset method. These models adjust their parameters automatically by testing various hyperparameter 
combinations through an optimization process. The objective of this process is to minimize classification errors 
or costs. The accuracy of the model can be viewed in the history panel, and its classification errors can be seen 
by clicking on the confusion matrix icon in the plot section.

Hyper-parameters for classifiers
In this section, we outline the key hyperparameters employed for the classifiers, including Support Vector 
Machines (SVM), Ensemble models, and Neural Networks, during the experimental phase.

SVM implementation
The MATLAB implementation of the SVM model underwent comprehensive parameter optimization to 
enhance overall performance. The key parameters considered included the box-constraint level, kernel scale, 
data standardization, multiclass function, and kernel type. The box-constraint level, influencing the balance 
between smooth decision boundaries and accurate classification of training points, was fine-tuned to 780 in 
the optimized SVM model. A Gaussian kernel was specifically chosen to shape the decision boundary, with the 
kernel scale meticulously set to 16.3794 for optimal performance. Various kernel functions, including Gauss-
ian, Linear, Quadratic, and Cubic, were explored. Data standardization was implemented to ensure consistency 
in input feature scaling. The multiclass function, offering the choice between One-vs-All or One-vs-One, was 
tailored to a one-vs-one configuration for multi-class scenarios. These optimizations aimed to strike a balance 
in decision boundary smoothness and accurate classification, with the chosen configurations contributing to 
the robustness of the SVM model.

Ensemble model implementation
The implementation of the Ensemble model in MATLAB underwent a thorough optimization process for key 
parameters, each playing a crucial role in shaping the model’s overall performance. The number of learners, pivotal 
for balancing complexity and computational efficiency, was optimized within the range of 10–500, ultimately 
set to 22. The maximum number of splits, ranging from 1 to 147, was meticulously tuned to 4, enhancing the 
model’s capacity to capture intricate dataset relationships. Similarly, the number of predictors to sample underwent 
optimization within the range of 1–14, with the final value set to 14, striking a balance between diversity and 
efficiency during the learning process. The learning rate, critical for optimization convergence, was fine-tuned 
within the range of 0.001–1, with the optimized value set to 0.95019. Various ensemble types, including Ada-
Boost, RUSBoost, LogitBoost, GentleBoost, and Bag, were explored, with AdaBoost yielding the most effective 
results. This comprehensive parameter configuration ensures the robustness and optimal predictive capabilities 
of the Ensemble model.

Neural network implementation
The implementation of the neural network in MATLAB involved the optimization of several key hyperparam-
eters, each exerting a significant impact on the overall performance of the model. The number of fully connected 
layers, ranging from 1 to 3, was explored, with the optimal configuration determined as two layers. The size of 
each layer, including the first, second, and third layers, varied between 1 and 300. For optimal results, the num-
ber of neurons in the first layer is set to one, and in the second layer is set to two. The regularization strength 
(Lambda) played a crucial role, with a range from 6.7568 e−08 to 675.6757, and the optimized value was set to 
0.01174. Data standardization, configurable as either true or false, was implemented to ensure consistency in 
the scale of input features, contributing to the robustness of the neural network model. Activation functions, 
including ReLU, Tanh, and Sigmoid, were explored, with the Tanh function identified as the most effective. 
These meticulous configurations collectively aimed to achieve optimal performance and reliability in the neural 
network model.

Results
This section presents the outcomes of attribute-ranking methods and their comparison to classifiers optimized 
through hyperparameter optimization techniques. Bayesian and random optimizations, along with cross-vali-
dation, are applied to SVM, Ensemble, and Neural Networks to enhance performance and mitigate overfitting.

Initially, four attribute-ranking techniques are employed for the Ft dataset. Table 2 outlines rankings for 
various attribute-ranking models: ReliefF (RLF), SVM, Chi-Sq, and GI. The “Attribute Index” column assigns a 
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unique value to each soil feature, with pH indexed as 1, sand (Sd) as 2, silt (Si) as 3, and so forth. The first row in 
columns rk(ReliefF), rk(SVM), rk(Chi-Square), and rk(Gini-Index) designates the top-ranked attribute, which 
is 4 (Cy). The second row lists the subsequent best-ranked features, namely 8 (N), 18 (Pb), 3 (Si), and 8 (N), 
respectively. Similarly, the final row displays the least of the best-ranked features: 21 (K), 15 (Fe), 12 (Cu), 21 
(K). Furthermore, when we examine the top 10 attributes from all the attribute-ranking models in Table 2, we 
can draw the following conclusions: 

1. Five attributes-Zinc (Zn), Clay (Cy), Soluble Salts (SS), Nitrogen (N), and Silt (Si)-appear consistently across 
all feature-ranking models.

2. Six attributes-Zinc (Zn), Clay (Cy), Soluble Salts (SS), Nitrogen (N), Silt (Si), and Lead (Pb)-are present in 
the rankings of SVM, Chi-Square (Chi-Sq), and Gini-Index (GI).

3. Seven attributes-Nickel (Ni), Zinc (Zn), Clay (Cy), Soluble Salts (SS), Nitrogen (N), Silt (Si), and Moisture 
(Ms)-are shared between ReliefF (RLF) and SVM.

4. Another set of seven attributes-Magnesium (Mg), Zinc (Zn), Clay (Cy), Soluble Salts (SS), Nitrogen (N), Silt 
(Si), and Organic Matter (OM)-are common among ReliefF (RLF), Chi-Square (Chi-Sq), and Gini-Index 
(GI).

5. Finally, nine attributes-Magnesium (Mg), Manganese (Mn), Zinc (Zn), Clay (Cy), Soluble Salts (SS), Nitrogen 
(N), Silt (Si), Lead (Pb), and Organic Matter (OM)-are shared between Chi-Square (Chi-Sq) and Gini-Index 
(GI).

Similarly, as shown in Table 2, when examining the 11 attributes contributing the least, five of them -Potassium 
(K), Calcium (Ca), Chromium (Cr), Copper (Cu), and pH- persist across all feature-ranking models.

The Fig 2 illustrates the outcomes of three distinct feature ranking algorithms: Chi-Square, ReliefF, and 
Gini-Index. In the Chi-Square algorithm, Clay emerges as the most influential feature with a substantial weight 
of 16.81. Silt and Nitrogen follow closely with weights of 8.30 and 8.16, emphasizing their significant contribu-
tions to the classification. Conversely, Copper and Potassium are identified as the least significant features, each 
receiving minimal weights of 0.18 and 0.20. The ReliefF algorithm corroborates the significance of Clay, ranking 
it as the most important soil feature with a weight of 0.217. Following Clay, Soluble Salts and Phosphorus exhibit 
weights of 0.161 and 0.106, respectively. Notably, Potassium and pH emerge as the least significant features with 
weights of −0.090 and −0.073 . Similarly, the Gini-Index algorithm underscores Clay as the most crucial feature, 
assigned a weight of 0.35798. Nitrogen and Organic Matter follow closely with weights of 0.41617 and 0.42391, 
respectively. On the other hand, Potassium and Copper are identified as the least significant features, each with 
weights of 0.48966 and 0.48734. These weights offer a quantitative measure of each feature’s impact, facilitating 
the identification of key contributors and less influential variables in the context of pathogen prevalence in soil.

Next, we perform a two-stage attribute ranking to assess each feature’s impact on the prevalence of Ft in soil-
related environments. Initially, various feature-ranking approaches are employed to rank soil features, followed by 

Table 2.  Attribute-ranking for Ft in soil using various attribute selection methods.

Featureindex Soilfeatures  rk(ReliefF) rk(SVM) rk(Chi-Square) rk(Gini-Index)

1 pH 4 4 4 4

2 Sand (Sd) 8 18 3 8

3 Silt (Si) 5 5 8 7

4 Clay (Cy) 7 8 14 14

5 Soluble Salts (SS) 20 2 5 3

6 Moisture (Ms) 17 20 18 18

7 Organic Matter (OM) 6 3 7 5

8 Nitrogen (N) 19 10 17 20

9 Phosphorus (P) 3 9 15 17

10 Nickel (Ni) 10 6 20 11

11 Cadmium (Cd) 1 14 1 6

12 Copper (Cu) 12 11 13 10

13 Chromium (Cr) 14 7 11 15

14 Manganese (Mn) 11 21 10 13

15 Iron (Fe) 2 13 9 9

16 Calcium (Ca) 13 1 16 2

17 Magnesium (Mg) 18 17 6 1

18 Lead (Pb) 16 12 2 19

19 Sodium (Na) 15 19 19 16

20 Zinc (Zn) 9 16 21 12

21 Potassium (K) 21 15 12 21
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Figure 2.  Feature weight for different ranking alogrithmns.

Table 3.  Index of best-ranked features for Francisella in soil.

Top ranked attributes  rk(ReliefF) rk(SVM) rk(Chi-Square) rk(Gini-Index) Ranking Score of each Attribute

Clay (Cy) 1 1 1 1 4

Nirogen (N) 2 4 3 2 11

Soluble salts (SS) 3 3 5 7 18

Silt (Si) 9 7 2 5 23

Organic matter (OM) 4 13 7 3 27

Zinc (Zn) 5 6 10 8 29

Lead (Pb) 17 2 6 6 31

Manganese (Mn) 13 11 4 4 32

Magnesium (Mg) 6 17 8 9 40

Nickel (Ni) 10 8 14 12 44

Table 4.  Index list of least-ranked features for Francisella in soil.

Least ranked attributes  rk(ReliefF) rk(SVM) rk(Chi-Square) rk(Gini-Index) Ranking score of each attribute

Potassium (K) 21 14 20 21 76

Calcium (Ca) 18 20 16 19 73

Copper (Cu) 12 18 21 20 71

Sodium (Na) 8 19 19 18 64

Iron (Fe) 19 21 9 13 62

Phosphorus (P) 20 9 15 15 59

Chromium (Cr) 16 15 12 14 57

pH 11 16 11 17 55

Sand (Sd) 15 5 18 16 54

Cadmium (Cd) 14 12 13 10 49

Moisture (Ms) 7 10 17 11 45
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the calculation of weighted scores to determine the final rank using a combination of techniques. Tables 3 and 4 
showcase the top-ranked and least-ranked soil features, respectively. These tables present the scores assigned by 
each attribute-ranking model and the cumulative score for each feature in the Ft soil feature dataset. The final 
score represents the sum of scores from all feature-ranking models. A lower score indicates a higher rank, while 
a higher score implies a lower rank for the soil attribute.

The 1st row of the Table 3 shows that Clay (Cy) holds the 1st rank in RLF, SVM, Chi-Sq, and GI, with a 
cumulative score of 4 (1+1+1+1=4). The 2nd row shows Nitrogen (N) with ranks 2, 4, 3, and 2 by RLF, SVM, 
Chi-Sq, and GI, respectively, resulting in a cumulative score of 11. Similarly, the last row indicates Nickel (Ni) 
ranked 10, 8, 14, and 12 by RLF, SVM, Chi-Sq, and GI, respectively, with a cumulative score of 44. Clay (Cy) 
emerges as the top-ranked feature with a cumulative score of 4, while Nitrogen (N) secures the 2nd position with 
a cumulative score of 11. Similarly, the last row indicates that Nickel (Ni) holds the 10th rank, accumulating a 
cumulative score of 44. Likewise, examining the details in Table 4 reveals that Potassium (K) holds the lowest 
rank, having a cumulative score of 76. This score is obtained by summing the scores from all feature-ranking 
models ( 21+ 14+ 20+ 21 = 76 ). Following closely behind are Calcium (Ca), Copper (Cu), and Sodium (Na), 
with cumulative scores of 73 ( 18+ 20+ 16+ 19 ), 71 ( 12+ 18+ 21+ 20 ), and 64 ( 8+ 19+ 19+ 18 ), respec-
tively, and so forth.

The bar charts in Figs. 3 and 4 offer a clear overview of attribute rankings, presenting the cumulative score 
for each feature in distinct colors. Different shades of blue represent the ranking scores (rk) for ReliefF (RLF), 
Support Vector Machine (SVM), Chi-Square (Chi-Sq), and Gini-Index (GI), while the dark blue “Ranking 
Score” indicates the cumulative score across all feature-ranking methods. The best-ranked attribute, Clay (Cy), 
secures the top position with a cumulative score of 4. Various shades of light blue represent the ranking scores 
from different methods, all of which are 1 for each algorithm. The final cumulative score, depicted in dark blue, 
is achieved by combining the rankings across all feature-ranking methods ( 1+ 1+ 1+ 1 = 4 ), and so on. 
Similarly, for the least-ranked attribute, Potassium (K), claims the lowest position with a cumulative score of 76. 
Distinct light blue shades represent scores from different methods-21 for RLF, 14 for SVM, 20 for Chi-Sq, and 
21 for GI. The final cumulative score, represented in dark blue, is obtained by summing the rankings across all 
feature-ranking methods (21+14+20+21=76), and so on.

Next, we evaluated the performance of various attribute-ranking models against different classifiers, opti-
mizing them using Bayesian and random search techniques for improved results. The experimental outcomes 
are presented in Table 5. For ReliefF (RLF), the “rank” row indicates the sequence of ranked features. The table 
then showcases the results of Bayesian and random search optimization for various machine learning classifiers 

Figure 3.  Best-ranked features for Francisella in soil.
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(SVM, EM, and NN) based on the RLF ranking. Classification accuracy ranges from 86.5 (SVM) to 73.6% (NN) 
with different ranking models, classifiers, and optimization techniques.

The attribute with the most impact for RLF is Cy. Using this attribute, SVM, EM, and NN achieve accuracies 
of 77%, 75%, and 75%, respectively, and 73.6%, 77%, and 73% for Bayesian optimization (BO) and Random 
Search optimization (RS). The results in Table 5 reveal several key findings: 

1. The two optimization techniques yield different results for various classification models.
2. For both optimization techniques, SVM achieves an accuracy of 86.5% for 15 soil features.
3. The performance of different classification models is inherently arbitrary: 

(a) (BO+SVM, 86.5%)

Figure 4.  Least-ranked features for Francisella in soil.

Table 5.  A Comparative analysis of for different optimization techniques against different Machine learning 
classifiers using ReliefF attribute selection method.

Subset

Ranker Classifier 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

ReliefF Rank 4 8 5 7 20 17 6 19 3 10 1 12 14 11 2 13 18 16 15 9 21

SVM 77 75.5 82.4 81.1 81.1 81.1 79.7 80.4 79.1 79.1 79.1 79.7 82.4 82.4 86.5 83.1 83.8 85.1 79.9 82.4 83.1

Bayesian Ensemble 75 77.7 79.9 76.4 80.4 78.4 77.7 78.4 80.4 77.7 81.1 80.4 81.1 81.1 79.7 79.1 81.8 81.1 81.8 78.4 79.9

Optimiza-
tion

Neural 
network 75 76.4 81.1 83.8 77.7 81.1 80.4 81.1 79.1 79.7 77 79.1 81.8 79.1 77.7 83.8 78.4 80.4 81.1 79.7 81.1

SVM 73.6 77.7 81.1 79.7 79.7 81.1 81.1 81.8 79.1 79.1 77.7 77 81.8 82.4 86.5 83.1 83.8 84.5 80.4 82.4 82.4

Random Ensemble 77 77.7 79.9 81.1 80.4 79.1 79.1 77.7 79.7 74.4 74.3 77 81.1 81.1 81.1 80.4 79.7 76.4 77.7 79.7 81.1

Search 
optimiza-
tion

Neural 
network 73 77 77.7 79.9 78.4 79.7 77.7 75.7 79.7 79.1 79.1 80.4 79.9 79.9 83.1 79.1 77.7 81.8 82.4 78.4 79.7
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(b) (RS+SVM, 86.5%)
(c) (BO+EM, 81.8%)
(d) (RS+EM, 81.1%)
(e) (BO+NN, 83.8%)
(f) (RS+NN, 83.1%).

4. The results suggest that the BO optimization technique yields more favorable outcomes for classifiers like 
SVM, EM, and NN compared to RS.

5. SVM outperforms other classifiers for both BO and RS.
6. BO+SVM produces the best classification results for the 15 soil features: Cy, N, SS, Si, OM, Zn, Pb, Mn, Mg, 

Ni, Ms, Cd, Si, pH, Cr.
7. Other models, such as BO+NN and RS+NN, also generate noteworthy results of 83.8% and 83.1%, utilizing 

16 and 15 soil features, respectively.

Finally, we present our proposed SVM classifier, which was optimized using bayesian optimization technique 
to generate F-1 Score of 86.5% and accuracy of 86.5%. The details of training results, models details, optimized 
hyperparameters, and optimizer options are shown in the Table 6.

The Fig. 5 depicts the confusion matrix, assessing the performance of the optimized SVM classifier in distin-
guishing between Class A (Positive) and Class B (Negative). The matrix involves a total of 148 instances, evenly 
distributed between the positive and negative classes, each comprising 74 instances. Among the 74 positive 
instances, 64 are correctly classified (True Positives—TP) as Class A, while 10 instances are misclassified (False 
Negatives—FN) as Class B. Similarly, out of the 74 negative samples, 64 instances are correctly classified (True 
Negatives—TN) as Class B, with 10 instances being misclassified (False Positives—FP) as Class A. A good clas-
sifier has a dominantly diagonal confusion matrix since most of the predictor variables matched the actual labels 
with only a few off-diagonal numbers that indicate confusion between classes, as is visible in the case of our 
presented optimized SVM model. The Fig. 6 error plot for the SVM model provides a visual representation of 

Table 6.  Details of Results, Optimized hyperparameters, and optimizer for proposed SVM model.

Training results

F-1 Score (Validation) 86.50%

Accuracy (Validation) 86.50%

Validation cost 20

Speed of prediction ∼2500 obs/sec

Time to train 56.148 s

Model type
Preset: OptimizableSVM Kernel type: Gaussian

Box-constraint level: 780 Multiclass function: One-vs-One

Optimized Hyperparameters Kernel scale:16.3794 Data standardization: true

Optimization Types
Optimization: Bayesian Acquisition method:

Expected improvement per second plus

No of iterations:50 Time limitation for training: false

A B
Predicted Class

A

B

T
ru

e 
C

la
ss

Optimizable SVM Model

10

1064

64

Figure 5.  Confusion matrix for proposed SVM model for Ft classification.
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the classification error analysis. In the plot, the estimated minimum classification error is depicted by light blue 
circler points, while the observed minimum classification error is represented in dark blue points. The orange 
box highlights the hyperparameters associated with the best-performing point, indicating the configuration that 
yielded optimal results during the training process. Additionally, the yellow circle signifies the hyperparameters 
corresponding to the minimum observed error, pinpointing the configuration where the SVM model achieved 
its highest accuracy. his graphical representation aids in identifying the effectiveness of different hyperparameter 
settings, allowing for a nuanced understanding of the model’s performance and guiding the selection of optimal 
configurations for future experiments.

The Figs. 7 and 8 exhibit the change in the classification performance of algorithms as the number of attrib-
utes is altered while using different hyperparameter optimization techniques. Figure 7 displays the performance 
of classifiers using RLF and BO strategies. For the same feature set, NN generates more promising results than 
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Figure 6.  Bayesian optimization error plot for proposed model.
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Figure 7.  Performance of different classifiers using Bayesian Optimization.
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other classification models for the initial set of features. However, these models show similar results for mid-
level features. SVM surpasses other models for the last few attributes. The outcomes illustrate that overall SVM 
yields the best results by generating an accuracy of 86.5%. So, the overall performance of SVM is far better than 
other machine learning classifiers

The Fig. 8 shows the accuracy of machine learning models for RLF using RS technique. For the initial set of 
features all the machine classifiers seem to generate similar resutls better results. However, SVM surpasses all the 
classification models for mid and final-level features by generating a classification accuracy of 86.5%.

In summary, the results propose that: 

1. While assessing the top 10 features, the 5 most contributing features common among all are {Cy, N, SS, Si, Zn}.
2. The 5 least significant features for Ft are { K, Ca, Cr, Cu, pH}.
3. Hyperparameter optimization using BO produces better outcomes than other optimization techniques.
4. SVM is the best performer among classification models.
5. SVM achieves the best classification accuracy of 86.5% for the first 15 soil features {Cy, N, SS, Si, OM, Zn, 

Pb, Mn, Mg, Ni, Ms, Cd, Si, pH, Cr} using BO and RS.
6. For multi-dimensional data, optimizing the parameters of machine learning models can significantly improve 

performance by using hyperparameter optimization techniques. Therefore, the selection of correct hyper-
parameters is essential for yielding good classification results.

Comparative analysis with prior machine learning techniques
Few recent works applied machine learning for classifying various soil-borne pathogenic bacteria like F. tular‑
ensis and C. burnetiia; and the conditions that support their sustenance in soil, as exhibited in Table  7. But, our 
presented design uses hyperparameter tuning with two-stage attribute-ranking on a new F. tularensis dataset, 
contrary to previous research.
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Figure 8.  Performance of different classifiers using random search optimization.

Table 7.  A comparative analysis with prior machine learning techniques.

Technique  Soil-based Hyper-parameter Classification & Two-phase Most related  Least related Accuracy

Pathogen Optimization  Feature-ranking Feature-ranking Features Features

Proposed model F. tularensis � � �
Clay, nitrogen, soluble salts, silt, 
organic matter, and zinc

Potassium, calcium, copper, 
sodium, iron, and phosphorus 86.5%

Ahmad et al.37 C. burnetiia × � �

organic matter, nitrogen, potas-
sium, cadmium, magnesium, and 
chromium

Clay, phosphorous, manganese, 
copper, and moisture 82.98%

Ahmad et al.22 F. tularensis × � ×
Organic matter, nitrogen, clay, 
soluble salts, silt, nickel, and zinc

Iron, phosphorous, potassium, 
calcium, chromium, sand, and 
copper

84.35%

shahbaz et al.21 F. tularensis × × × × × 82.61%
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Discussions
Machine learning models are applied as a benchmark in various fields, like, disease  diagnosis38–41 bio-informat-
ics42, medical  science43,  agriculture44, and soil  classification45. Our work reveals that these models, rather than 
current statistical techniques demonstrate outstanding results for the classification of F. tularensis and learning 
its behavior in soil settings.

The results highlight the significance of specific soil characteristics for the survival of F. tularensis, as illus-
trated in Table 3. Previous analyses have consistently pointed to abiotic factors, such as organic matter, clay, 
and various micro-nutrients, as primary drivers of bacterial communities in  soil46–49. Moreover, these factors 
positively correlate with the prevalence of soil-borne pathogenic  bacteria50–52. Clay and silt, known for their 
increased surface area, are suggested to contain a significant amount of organic matter, potentially fostering 
the existence of  bacteria53. Recent  studies16,17,37,54 also emphasize the importance of soil’s physical and chemical 
properties, including clay, nitrogen, soluble salts, silt, organic matter, zinc, lead, and nickel, for the persistence 
of F. tularensis, C. burnetii, and B. anthracis.

Our investigation underscores clay as the most influential attribute for the presence of F. tularensis in soil, 
aligning with previous  works16,32,52. Subsequent crucial attributes contributing to the sustenance of the bacterial 
pathogen include nitrogen, soluble salts, silt, organic matter, and zinc. Organic matter is established as beneficial 
for bacterial survival in soil  settings16,51,52, while nitrogen is crucial for the persistence of pathogens within their 
 hosts55. Zinc, soluble salts, organic matter, and nitrogen are identified as related to the survival of F. tularensis 
in the  soil16,32,56. Zinc, in particular, plays a role in various cellular operations, including metabolism, gene 
expression, pH regulation, glycolysis, DNA replication, and amino acid  synthesis57, with excess zinc potentially 
inducing  toxicity58. Recent  works32,54 suggest a positive association between soluble salts and the prevalence of 
F. tularensis and C. burnetii. Additionally,  studies56,59 indicate that organic matter and nitrogen are associated 
with the prevalence of A. brasilense and C. burnetii.

The remaining contributing features from Table 3 include lead, manganese, magnesium, and nickel. Our 
results align with  studies16,22,32 that establish positive correlations between attributes such as manganese, magne-
sium, lead, and nickel and F. tularensis in soil. Organic matter, manganese, and magnesium are associated with 
B. anthracis, and magnesium is linked to the prevalence of C. burnetii in  soil17. Magnesium also contributes to 
bacterial survival during starvation and cold  shocks60.

Our study also reveals that cadmium, moisture, sand, and pH play intermediary roles. Earlier  works47–49 stress 
the importance of pH, soil texture, and soil nutrients for microbial communities. Recent  analysis22 supports a 
positive association between F. tularensis and cadmium, pH, and moisture in soil environments. Another  work61 
suggests F. tularensis is associated with low temperature and moisture, emphasizing the pathogen’s affinity for 
these conditions. Univariate  analysis54 shows significant differences among C. burnetii positive and negative soils 
for pH, nitrogen, magnesium, soluble salts, and organic matter.

Our results indicate that the least contributing soil attributes, as shown in Table 4, include potassium, calcium, 
copper, sodium, iron, phosphorus, and chromium. This aligns with recent  findings22 displaying no substantial 
differences between F. tularensis negative and positive sites concerning copper, sand, iron, calcium, phospho-
rous, chromium, and sodium in the soil. Conversely, B. anthracis and C. burnetii exhibit positive affinities to 
copper, chromium, cobalt, cadmium, sodium, iron, calcium, and  potassium17. Additionally,  research19 suggests 
sodium and potassium facilitate F. tularensis growth in water and soil. Recent  research54 shows no substantial 
differences among Coxiella positive and negative sites related to copper, chromium, iron, and phosphorus in the 
soil.  Analysis16 and similar  work32 indicate that soil features like copper, chromium, phosphorus, iron, sodium, 
potassium, and calcium do not exhibit any affiliation with F. tularensis. Nonetheless, other  studies62 acknowledge 
that the aerobic heterotrophic community is sensitive to various nutrients, including zinc, cadmium, chromium, 
mercury, manganese, nickel, and copper.

Comparing our current findings with our previous publication on F. tularensis using machine learning, we 
observe a slight variation in the sequence of the most significant factors. In the current work, the order of signifi-
cance is clay, nitrogen, soluble salts, silt, organic matter, and zinc. However, in our previous work, the sequence 
was clay, nitrogen, organic matter, soluble salts, zinc, and silt. Similarly, when examining the sequence of least 
significant factors in the current research, we find potassium, calcium, copper, sodium, iron, and phosphorus 
to have the least impact. In contrast, our earlier work identified potassium, phosphorus, iron, calcium, copper, 
chromium, and sand as the least influential. The observed shift in sequence can be attributed to the adoption of 
a more effective ranking methodology in which features are evaluated based on the accumulative weighted score 
of all methods. This refined approach allowed us to discern a more nuanced order of significance among the 
key factors influencing the survival of F. tularensis in soil. Furthermore, the implementation of hyperparameter 
optimization played a pivotal role in enhancing accuracy, leading to an improvement of over 2% compared to 
our previous work. The meticulous fine-tuning of hyperparameters contributed to a more robust and accurate 
machine learning model, thereby reinforcing the reliability of our current findings.

Conclusion and future works
In summary, our study delves into the outcomes of various attribute-ranking methods, comparing their rankings 
across different classifiers optimized with hyperparameter optimization techniques using Ft positive and negative 
soil datasets. Beyond the specific case study, our findings underscore the significance of key soil features, with 
clay emerging as the top-ranked attribute, followed by nitrogen, soluble salts, silt, organic matter, and zinc. The 
application of Bayesian optimization (BO) demonstrates exceptional results in hyperparameter optimization 
techniques, contributing to the robustness of our models. Specifically, Support Vector Machine (SVM) stands 
out as the most effective classifier, achieving an impressive accuracy of 86.5% when considering the first 15 soil 
features {Cy, N, SS, Si, OM, Zn, Pb, Mn, Mg, Ni, Ms, Cd, Si, pH, Cr} with BO and random search (RS). Expanding 
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beyond SVM, our study explores alternative models such as {BO+NN} and {RS+NN}, showcasing noteworthy 
classification accuracies of 83.8% and 83.1%, respectively. These models, utilizing 16 and 15 soil attributes, offer 
valuable insights into understanding the contribution of specific soil features to the prevalence of bacterial 
pathogens in soil-related environments.

While our investigation provides crucial insights into the interplay between soil characteristics and pathogen 
prevalence, it is essential to acknowledge that the size of our dataset is limited. In subsequent studies, we aim to 
enhance the robustness of our findings by expanding the geographical scope of our dataset. Specifically, we plan 
to explore additional districts within Punjab and extend our investigation to encompass other provinces in the 
country. By doing so, we aspire to gather a more extensive dataset that encapsulates the diversity of soil charac-
teristics across different regions. This geographical expansion will not only contribute to a more comprehensive 
understanding of the interplay between soil attributes and pathogen prevalence but also facilitate the development 
of machine learning models that are more adaptable and representative of diverse environmental conditions.

Data availability
The corresponding author can be contacted at fareed.ahmad@uvas.edu.pk for data relating to this study.
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