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Effects of AST‑120 on mortality 
in patients with chronic kidney 
disease modeled by artificial 
intelligence or traditional statistical 
analysis
Chia‑Lin Lee 1,2,3,4,5, Wei‑Ju Liu 2 & Shang‑Feng Tsai 4,5,6,7*

Chronic kidney disease (CKD) imposes a substantial burden, and patient prognosis remains grim. 
The impact of AST‑120 (AST‑120) on the survival of CKD patients lacks a consensus. This study aims 
to investigate the effects of AST‑120 usage on the survival of CKD patients and explore the utility 
of artificial intelligence models for decision‑making. We conducted a retrospective analysis of CKD 
patients receiving care in the pre‑end‑stage renal disease (ESRD) program at Taichung Veterans 
General Hospital from 2000 to 2019. We employed Cox regression models to evaluate the relationship 
between AST‑120 use and patient survival, both before and after propensity score matching. 
Subsequently, we employed Deep Neural Network (DNN) and Extreme Gradient Boosting (XGBoost) 
models to assess their performance in predicting AST‑120’s impact on patient survival. Among the 
2584 patients in our cohort, 2199 did not use AST‑120, while 385 patients received AST‑120. AST‑
120 users exhibited significantly lower mortality rates compared to non‑AST‑120 users (13.51% vs. 
37.88%, p < 0.0001) and a reduced prevalence of ESRD (44.16% vs. 53.17%, p = 0.0005). Propensity 
score matching at 1:1 and 1:2 revealed no significant differences, except for dialysis and all‑cause 
mortality, where AST‑120 users exhibited significantly lower all‑cause mortality (p < 0.0001), with a 
hazard ratio (HR) of 0.395 (95% CI = 0.295–0.522). This difference remained statistically significant 
even after propensity matching. In terms of model performance, the XGBoost model demonstrated 
the highest accuracy (0.72), specificity (0.90), and positive predictive value (0.48), while the logistic 
regression model showed the highest sensitivity (0.63) and negative predictive value (0.84). The area 
under the curve (AUC) values for logistic regression, DNN, and XGBoost were 0.73, 0.73, and 0.69, 
respectively, indicating similar predictive capabilities for mortality. In this cohort of CKD patients, 
the use of AST‑120 is significantly associated with reduced mortality. However, the performance of 
artificial intelligence models in predicting the impact of AST‑120 is not superior to statistical analysis 
using the current architecture and algorithm.

The progression from any renal disease unresolved within 3 months ultimately leads to chronic kidney disease 
(CKD). CKD encompasses a diverse array of disorders characterized by both structural and functional impair-
ment of the kidneys. These manifestations vary widely, with outcomes influenced by underlying causes and 
disease  severity1,2. Recent years have seen numerous mechanisms proposed to elucidate the progression of CKD, 
and the global burden of disease report in 2017 revealed CKD as a significant contributor to mortality, causing 
1.2 million deaths and ranking as the 12th leading cause of death  worldwide3. All-age CKD mortality increased 
by 41.5% from 1990 to  20173. A recent analysis estimated the global prevalence of CKD at 9.1% (697.5 million 
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cases) in  20174 , with Taiwan reporting a notably high national prevalence of 11.93%5. The progression of CKD 
carries severe consequences, including a heightened risk of mortality, end-stagerenal disease (ESRD), min-
eral bone disease, accelerated cardiovascular disease (CVD), and  infections6. A cohort study involving 462,293 
 individuals6 revealed that patients with CKD had an 83% higher all-cause mortality (hazard ratio (HR) 1.83, 95% 
CI 1.73–1.93) and a 100% higher risk of CVD (HR 2.00, 95% CI 1.78–2.25). Unfortunately, there is a scarcity of 
medications available for halting CKD progression and reducing all-cause mortality.

Recent studies have reported renal benefits when applying Keto-analogue (Ketosteril) alongside a low or very 
low protein diet (LPD/VLPD)7–9. However, these studies did not find evidence of Ketosteril reducing all-cause 
mortality. In CKD, two major uremic toxins are Indoxyl Sulfate (IS) and p-Cresol (PC)10. IS originates from 
the metabolism of tryptophan, initially digested by intestinal bacteria into indole. This indole is subsequently 
metabolized into IS in the  liver11 eventually excreted in the urine. On the other hand, PC is produced through the 
bacterial fermentation of tyrosine and  phenylalanine12. Both IS and PC levels rise with declining renal function, 
further impairing kidney  function113. There is a strong correlation between estimated glomerular filtration rate 
(eGFR) and serum IS levels. IS is known to cause interstitial fibrosis and  glomerulosclerosis14, contributing to 
CKD progression. Moreover, for CKD patients, there is a robust association between their plasma IS levels and the 
risk of vascular  mortality13. PC also accumulates as renal function declines, and it can be used to predict mortality 
in patients undergoing  hemodialysis15. A U.S. national prospective  cohort16 study found that a higher PC con-
centration was associated with a higher risk of cardiovascular mortality (HR 1.62, 95% CI 1.17–2.25, p = 0.004). 
Therefore, the standard approach in CKD care involves the removal of IS and PC to mitigate CKD progression.

AST-120 (AST-120) is a spherical activated carbon with a diameter ranging from 0.2 to 0.4 mm. Its spherical 
shape enhances fluidity, potentially facilitating smoother passage through the gastrointestinal tract and better 
adsorption of IS and PC. AST-120 has received approval for halting CKD progression in several countries, 
including Japan (since 1991), Korea (since 2004), Taiwan (since 2007), and the Philippines (since 2010). A ret-
rospective pair-matched study involving 560  patients17 found that AST-120 delayed the initiation of dialysis in 
CKD patients but had no effect on overall survival. In a randomized control  trial18 the measured GFR dropped 
more in the control group than in the AST-120 group (-15% per year vs. -12% per year relative to the baseline 
value). Another long-term follow-up  study19 reported a statistically significant improvement in the mean 1/
serum creatinine in the AST-120 treatment group, along with an estimated delay of 21.2 months in the need for 
dialysis. However, the largest randomized placebo-controlled EPPIC trial on patients with moderate to severe 
 CKD20 did not report such benefits with AST-120. Nevertheless, a subgroup  analysis21found that baseline urinary 
protein to urinary creatinine ratio (UPCR) ≥ 1.0 and hematuria were independent risk factors for ESRD and a 
reduced eGFR. In summary, while small-scale studies have shown potential renal benefits of AST-120, the larg-
est randomized controlled trial has not yet reached a consensus. Assuming it is beneficial, there is currently no 
quantitative model available to guide proper decision-making regarding the use of AST-120 in patients. Moreover, 
the cost of AST-120 usage in Taiwan amounts to 500 US dollars per month. Given the complexity of the issue 
and the growing need for advanced modeling approaches in CKD care, the application of artificial intelligence 
(AI) may offer a promising  solution22.

Based on the above description, this study was initiated to investigate the effect of AST-120 on patient survival 
using statistical analyses. Upon establishing the impact of AST-120 on patient survival, we further utilized AI to 
develop improved predictive models for informed decision-making regarding AST-120 usage and its potential 
impact on patient survival.

Material and methods
Study design
Our study was conducted at Taichung Veterans General Hospital (TCVGH) from January 1, 2000, to December 
31, 2019, and focused on patients enrolled in our pre-end-stage renal disease (pre-ESRD) program. Notably, our 
pre-ESRD pay-for-performance (P4P) care program has a strong track record of excellent patient compliance 
with medication and follow-up periods. The primary objectives of our research were to investigate the impact 
of AST-120 on patient survival and to develop a predictive model for determining the optimal use of AST-120.

To achieve these objectives, we employed Cox regression analysis, which included both univariate and multi-
variate analyses, to explore any potential associations between AST-120 usage and patient survival. We also imple-
mented propensity matching to minimize potential confounding factors. The differences in survival between 
AST-120 users and non-users were assessed through Kaplan–Meier survival curves.

In the event that we identify a significant relationship between patient survival and AST-120 usage, our next 
step will involve leveraging AI to construct a predictive model with enhanced predictive capabilities. This model 
aims to assist healthcare professionals in making well-informed decisions regarding the utilization of AST-120 
as a treatment option. If the AI model, designed to predict AST-120 usage associated with improved patient 
survival, outperforms a conventional logistic regression model in terms of predictive power, we will use the Gini 
index to calculate feature importance.

For enhanced transparency and interpretability of the developed models, we intend to employ SHAP values 
(Shapley Additive exPlanations). SHAP values will provide insights into the workings of different machine 
learning models, facilitating a deeper understanding of their predictions and aiding healthcare practitioners in 
making more informed treatment  decisions23.

Definition of target population
In Taiwan, patients with CKD benefit from a comprehensive multidisciplinary care program known as the 
pre-ESRD P4P program, aimed at enhancing the quality of their  healthcare9. A significant majority of our CKD 
patients are actively enrolled in this program. This initiative offers a holistic approach to patient care, with 
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involvement from a diverse group of healthcare  professionals24. Patients under this program receive thorough 
assessments and educational support from this dynamic learning healthcare  system9,25. Notably, our institute 
stands as one of the prominent healthcare facilities in Taiwan with the highest number of pre-ESRD patients 
enrolled. By November 2018, we had successfully enrolled over 10,000 CKD patients in this program.

In this study, we included patients who were participants in the pre-ESRD P4P program, based on our in-
hospital cohort data spanning from January 1, 2000, to December 31, 2019. To be eligible for inclusion, patients 
had to meet specific criteria. They were required to be at least 20 years of age and exhibit the following renal 
function characteristics: Modification of Diet in Renal Disease (MDRD) eGFR less than 45 ml/min/1.73m2, as per 
the classifications outlined by the International Statistical Classification of Diseases and Related Health Problems, 
10th Revision (ICD-10) codes N18.3, N18.4, and N18.5, or the ICD-9 code 585.0. Our patient selection process 
was visually presented in supplementary figure S2. Given the purely analytical nature of this study, the need for 
informed consent from patients and their family members was waived. The study protocol received thorough 
review and approval from the Institutional Review Board at TCVGH, bearing approval number CE20026A. All 
methods employed in this study adhered to the pertinent guidelines and regulations.

It’s worth noting that AST-120 usage in Taiwan comes at a monthly cost of 500 US dollars, and it is not cov-
ered by the national health insurance. Consequently, not all CKD patients choose to invest in this medication, 
despite their CKD status. The prescribed dosage of AST-120 consisted of 2 g per package, and the daily amount 
was determined based on the severity of CKD. At our institute, patients took 2 g once a day if their eGFR ranged 
between 30–60 ml/min/1.73m2. If the eGFR fell within the range of 15–30 ml/min/1.73m2, the prescribed dosage 
was 2 g taken twice a day. For individuals with more severe CKD (eGFR < 15 ml/min/1.73m2), the recommended 
dosage was 2 g taken three times a day. A majority of CKD patients at our institute adhered to these recommen-
dations. Given the high level of compliance observed in our Pre-ESRD P4P program, coupled with consistent 
reminders from our educators for patients who self-fund AST-120, it is reasonable to assume that all AST-120 
users exhibited good compliance with the prescribed regimen.

AST-120, an expensive medication funded by patients themselves, was identified by its Anatomical Therapeu-
tic Chemical (ATC) code (A07BA01), as utilized in our institute. Consequently, patients were classified into four 
groups based on renal death and AST-120 status. The target population consisted of patients who received AST-
120 treatment and maintained renal survival for two years, while the non-target population included all other 
patients. To identify the potential target population, we employed AI algorithms that analyzed detailed medica-
tion records (ATC codes) and medical histories (ICD-9 and ICD-10), as illustrated in supplementary data 2.

Definition of variables
In our feature engineering and variable selection process, we considered all available variables and potential 
predictors, encompassing a wide range of factors. These included demographic data such as age and gender, 
concurrent medications, epidemiological variables, laboratory biomarkers, and comorbidity information. Epi-
demiological variables covered age (years old), gender, body weight (kg), and body height (cm). Laboratory 
biomarkers included serum creatinine (mg/dl), eGFR (ml/min/1.73m2), daily proteinuria (g/day), urinary 
albumin creatinine ratio (mg/g), glycated hemoglobin (%), fasting glucose (mg/dl), aspartate aminotransferase 
(U/L), alanine aminotransferase (U/L), total bilirubin (mg/dl), total cholesterol (mg/dl), high-density lipopro-
tein (HDL) cholesterol (mg/dl), low-density lipoprotein (LDL) cholesterol (mg/dl), and triglycerides (mg/dl), 
as well as systolic and diastolic blood pressures (mmHg). Medication history encompassed conditions such as 
diabetes mellitus, hypertension, hyperlipidemia, gout, congestive heart failure, cerebrovascular disease, cirrhosis, 
and malignancy. We also collected data related to habits and physical activity, such as walking exercise, brisk 
walking, running, smoking, and betel nut consumption. Additionally, medication history included the use of 
erythropoietin, vitamin D, uric acid-lowering agents, angiotensin-converting enzyme inhibitors, angiotensin II 
receptor blockers, beta-blockers, calcium channel blockers, statins, fibrates, and insulin.

For the sake of broader applicability in future studies, we designated certain variables as necessary features, 
including age (years old), sex, race, eGFR (ml/min/1.73m2), urinary albumin creatinine ratio (mg/g), systolic 
blood pressure (mmHg), smoking status, diabetes mellitus, and a history of cardiovascular disease (CVD). Other 
variables were categorized as alternative features, with their inclusion in the deep learning model contingent 
upon their performance.

The definition of outcome
The primary outcome of this study focused on patient survival, confirmed by tracking the withdrawal of national 
health insurance cards. We conducted this study using a right-censoring strategy, allowing us to account for 
patients who were still alive at the time of data analysis. In addition to survival data, we collected renal func-
tion indicators, including serum creatinine and eGFR for further analysis. Patients diagnosed with ESRD were 
identified as individuals who had undergone dialysis for a minimum duration of 3 months, as evidenced by the 
acquisition of a certificate of catastrophic illness for dialysis. Furthermore, we analyzed additional surrogate 
outcomes, including the percentage of patients in stage 5 CKD, time to death, time to ESRD, and time to death 
or ESRD, to gain a comprehensive understanding of the study’s outcomes and implications.

Model building processes
Two-thirds of the patients were randomly allocated to the training group, while the remaining one-third were 
assigned to the validation group. In the training group, we developed a predictive algorithm based on deep 
learning. Subsequently, we validated the generated algorithm using the participants in the validation group. 
Finally, we compared the outcomes between the AI learning model and the logistic regression model. The target 
population was identified within the training group. Recognizing the imbalanced sample sizes between the 
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target and non-target populations, we applied different techniques such as up-sampling or the Synthetic Minor-
ity Oversampling Technique (SMOTE) to balance these two population samples. We considered both the Deep 
Neural Network (DNN) and Extreme Gradient Boosting (XGBoost) for the initial deep learning approaches.

To build the deep learning model, we implemented batch normalization to normalize the selected features, 
setting them as the input layer. The model consisted of three hidden layers, and the output layer was designed 
with 46 middle layers→46 middle layers→46 middle layers→ one-dimensional output layer. We employed 
Scaled Exponential Linear Unit (SELU) units in the middle layers and a hard sigmoid unit in the output layer 
as activation functions.

To prevent overfitting, we introduced dropout layers between the hidden layers. These dropout layers were 
applied to the outputs of the preceding layer, with a dropout rate set at 0.3. Detailed protocols for this approach 
were as previously described in the  study26. We conducted hyperparameter optimization in the training group, 
with specific parameters optimized for XGBoost and DNN detailed in supplementary table S4. Following model 
training, we validated the model to assess its performance.

Model evaluation and comparison
Within the training group, we conducted a comparative analysis of various ROC (Receiver Operating Character-
istic) curves, each corresponding to a distinct algorithm. Subsequently, we calculated the AUC (Area Under the 
ROC Curve) for each algorithm. In addition to the machine learning algorithms, specifically DNN and XGBoost, 
we compared their outcomes with those derived from the logistic regression model for a comprehensive evalu-
ation of predictive performance.

Statistical analyses
To assess differences in baseline clinical variables between the target and non-target populations, we employed 
the independent t-test for continuous variables and the Chi-square test for categorical variables. To mitigate 
potential baseline differences between AST-120 users and non-AST-120 users, we applied propensity score 
matching. Furthermore, we compared the AUCs using the Chi-square test.

The classifier model was developed in the training group. In the validation group, we compared renal and 
patient survival curves between the target and non-target populations using the Kaplan–Meier method and the 
Cox-proportional hazard model. We ensured the validity of the Cox’s proportional hazards model by testing the 
assumption with Scaled Schoenfeld residuals, which were plotted against time (as shown for HospiceReferral in 
supplementary figure S1), and no violation of the assumption was observed.

All statistical analyses were conducted using SAS for Windows (version 9.4; SAS, Cary, NC). The deep learn-
ing algorithms and other machine learning procedures were performed using Keras, TensorFlow 1.10.0, and 
Python 3.6.5.

Study approval
This study protocol was reviewed and approved by Institutional Review Board in TCVGH, approval number: 
CE20026A. all methods were performed in accordance with the relevant guidelines and regulations.

Consent to participate
The study has been granted an exemption from requiring written informed consent, which was approved by 
Institutional Review Board in TCVGH (approval number : CE20026A. Chih-Chien Lin, MD, MPH is the Chair, 
Institutional Review Board (I) in TCVGH and he made the above decision.

Results
Revised patient selection for cox model and machine learning analysis
In the initial cohort, a total of 2584 patients were considered. However, we excluded 455 patients due to incom-
plete questionnaires and medication data, 25 patients due to incomplete laboratory data, and 53 patients due 
to missing mortality data. As a result, a final dataset comprising 2051 patients was established for the machine 
learning training dataset (refer to supplementary figure S2). The median follow-up duration was 4.98 years, and 
the mean follow-up duration was 5.50 years.

Baseline characteristics data analyzed for association study between using AST‑120 or not
Table 1 provides an overview of the baseline characteristics for the AST-120 and non-AST-120 groups. Among 
the total cohort of 2584 patients, 2199 did not use AST-120, while only 385 took AST-120. There were no statisti-
cally significant differences between AST-120 users and non-users in terms of their age, gender, body weight, and 
body height. However, AST-120 users exhibited a lower baseline eGFR (23.1 ± 14.2 vs. 26 ± 16.9 ml/min/1.73m2, 
p = 0.0006), lower total bilirubin levels (0.44 ± 0.3 vs. 0.5 ± 0.6 mg/dl, p = 0.0328), a higher prevalence of hyper-
lipidemia (29.95 vs. 23.18%, p = 0.0044), a higher incidence of gout (24.74 vs. 18.18%, p = 0.0027), a greater 
proportion with a family history of kidney disease (7.81 vs. 5.15%, p = 0.0359), fewer smokers (30.99 vs. 36.45%, 
p = 0.0398), a higher usage of erythropoietin (EPO) (29.61 vs. 19.83%, p < 0.0001), a higher usage of angiotensin 
II receptor blockers (ARB) (54.55 vs. 44.52%, p = 0.0003), a higher usage of calcium channel blockers (36.36 vs. 
27.83%, p = 0.0092), and a higher usage of statins (36.36 vs. 27.83%, p = 0.0008).

Regarding outcomes, AST-120 users exhibited lower mortality (13.51 vs. 37.88%, p < 0.0001) and a lower 
prevalence of ESRD (44.16 vs. 53.17%, p = 0.0005). Detailed baseline characteristics among the four groups based 
on AST-120 users or non-AST-120 users, and their relationship with mortality, can be found in supplementary 
table S1. Following propensity score matching (1:1 matching in supplementary table S2 and 1:2 matching in 
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Overall AST-120(-) AST-120( +) p value

Case number 2584 2199 385

Age (y/o) 65.7 ± 14.5 65.8 ± 14.6 65.1 ± 14 0.4132

Male gender (n, %) 1559 (60.33) 1326 (60.3) 233 (60.52) 0.9353

Body height  (cm) 161.8 ± 8.9 161.6 ± 8.9 162.3 ± 8.9 0.2120

Body weight (kg) 64.5 ± 13.4 64.7 ± 13.7 63.7 ± 12.3 0.153

Laboratory data

Serum creatinine (mg/dl) 3.7 ± 2.5 3.7 ± 2.5 3.7 ± 2.4 0.6652

Estimated glomerular filtration rate (eGFR) (ml/min/1.73m2) 25.5 ± 16.5 26 ± 16.9 23.1 ± 14.2 0.0006

Daily proteinuria (g/day) 2.5 ± 3 2.6 ± 3 2.3 ± 3 0.3748

Urinary albumin creatinine ratio (mg/g) 1281 ± 1428.8 1196.9 ± 1419.3 1566.1 ± 1430.9 0.0181

Log Urinary albumin creatinine ratio (mg/g) 6.1 ± 1.9 5.9 ± 2 6.6 ± 1.6 0.0002

Glycated hemoglobin (HbA1c) (%) 6.8 ± 1.6 6.9 ± 1.6 6.7 ± 1.3 0.1287

Fasting glucose (mg/dl) 120.9 ± 51.7 121.8 ± 53.2 116.6 ± 43.2 0.0633

Aspartate aminotransferase (U/L) 26.6 ± 23.5 26.9 ± 23.8 25.3 ± 21.8 0.3362

Alanine aminotransferase (U/L) 23.4 ± 21.8 23.4 ± 21.6 23.2 ± 23 0.8486

Total bilirubin (mg/dl) 0.5 ± 0.4 0.5 ± 0.4 0.4 ± 0.3 0.0999

Total cholesterol (mg/dl) 184.3 ± 56.2 183.6 ± 54.8 187 ± 61.3 0.3579

High-density lipoprotein (HDL) cholesterol (mg/dl) 49 ± 16.8 49.4 ± 16.9 47.1 ± 16.4 0.1407

Low-density lipoprotein (LDL) cholesterol (mg/dl) 109.9 ± 47.7 109.9 ± 47.1 109.8 ± 50.2 0.9787

Triglyceride (mg/dl) 155.9 ± 106.9 155.6 ± 107.8 156.9 ± 103.5 0.8546

Systolic blood pressure (mmHg) 138.4 ± 22.1 138.6 ± 22.3 137.1 ± 20.8 0.3008

Diastolic blood pressure (mmHg) 76.4 ± 14.3 76.7 ± 14.4 74.9 ± 13.4 0.0624

Medical history

Diabetes mellitus (n, %) 1066 (42.61) 918 (43.34) 148 (38.54) 0.08

Hypertension (n, %) 1797 (71.82) 1517 (71.62) 280 (72.92) 0.6045

Hyperlipidemia (n, %) 606 (24.22) 491 (23.18) 115 (29.95) 0.0044

Gout (n, %) 480 (19.18) 385 (18.18) 95 (24.74) 0.0027

Congestive heart failure (n, %) 73 (2.92) 57 (2.69) 16 (4.17) 0.1140

Ischemic heart disease (n, %) 93 (3.72) 80 (3.78) 13 (3.39) 0.7089

Cerebrovascular disease (n, %) 94 (3.76) 81 (3.82) 13 (3.39) 0.6773

Liver cirrhosis (n, %) 133 (5.32) 112 (5.29) 21 (5.47) 0.8845

Malignancy (n, %) 179 (7.15) 157 (7.41) 22 (5.73) 0.2389

Family medical history

Diabetes mellitus (n, %) 734 (29.34) 605 (28.56) 129 (33.59) 0.0464

Hypertension (n, %) 824 (32.93) 681 (32.15) 143 (37.24) 0.0510

Heart disease (n, %) 135 (5.4) 112 (5.29) 23 (5.99) 0.5756

Cerebrovascular disease (n, %) 166 (6.63) 138 (6.52) 28 (7.29) 0.5740

Hyperlipidemia (n, %) 34 (1.36) 29 (1.37) 5 (1.3) 0.9167

Kidney disease (n, %) 139 (5.56) 109 (5.15) 30 (7.81) 0.0359

Malignancy (n, %) 130 (5.37) 108 (5.31) 22 (5.73) 0.7366

Hereditary disease (n, %) 7 (0.28) 5 (0.24) 2 (0.52) 0.3310

Polycystic kidney disease (n, %) 15 (0.6) 13 (0.61) 2 (0.52) 0.8281

Gout  (n, %) 96 (3.84) 80 (3.78) 16 (4.17) 0.7147

Habit and physical activity

Exercise: walking (n, %) 853 (34.09) 712 (33.62) 141 (36.72) 0.2380

Exercise: brisk walking (n, %) 34 (1.36) 26 (1.23) 8 (2.08) 0.1827

Exercise: running (n, %) 35 (1.4) 30 (1.42) 5 (1.3) 0.8607

Smoking (n, %) 891 (35.61) 772 (36.45) 119 (30.99) 0.0398

Alcohol drinking (n, %) 632 (25.26) 533 (25.17) 99 (25.78) 0.7983

Betel nut usage 256 (10.23) 222 (10.48) 34 (8.85) 0.333

Medication history

Erythropoiesis-stimulating agents (n, %) 550 (21.28) 436 (19.83) 114 (29.61)  < 0.0001

Vitamin D analogue (n, %) 164 (6.35) 133 (6.05) 31 (8.05) 0.1493

Uric acid-lowering agents (n, %) 573 (22.17) 481 (21.87) 92 (23.9) 0.3817

Diuretics (n, %) 1221 (47.25) 1039 (47.25) 182 (47.27) 0.9931

Angiotensin converting enzyme inhibitor (n, %) 220 (8.51) 187 (8.5) 33 (8.57) 0.9651

Continued
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supplementary table S3), no significant differences were observed in all variables between AST-120 users and 
non-AST-120 users, except for all-cause mortality and the need for dialysis.

The results of univariate and multivariate analyses for all-cause mortality are summarized in Table 2. In the 
univariate analysis, AST-120 usage was associated with a significantly lower all-cause mortality (HR 0.395, 95% CI 
0.295–0.522). In the multivariate analysis, AST-120 usage remained significantly associated with lower all-cause 
mortality (HR 0.41, 95% CI 0.188–0.896). Additionally, age was associated with a higher all-cause mortality (HR 
1.055, 95% CI 1.028–1.083). Even after propensity matching, the HRs remained consistently low: 0.444 after 1:1 
matching (supplementary table S2), 0.435 after 1:2 matching (supplementary table S3), 0.436 after 1:3 matching, 
and 0.451 after 1:4 matching.

Table 1.  Baseline characteristics according to the usage of AST-120 or not for statistical analysis. Significant 
values are in bold.

Overall AST-120(-) AST-120( +) p value

Angiotensin II receptor blocker (n, %) 1189 (46.01) 979 (44.52) 210 (54.55) 0.0003

Beta blocker (n, %) 855 (33.09) 711 (32.33) 144 (37.4) 0.0531

Calcium channel blocker (n, %) 1339 (51.82) 1116 (50.75) 223 (57.92) 0.0092

Statin (n, %) 752 (29.1) 612 (27.83) 140 (36.36) 0.0008

Fibrate (n, %) 123 (4.76) 105 (4.77) 18 (4.68) 0.9324

Insulin: premix insulin (n, %) 275 (10.64) 239 (10.87) 36 (9.35) 0.3655

Insulin: rapid insulin (n, %) 371 (14.36) 324 (14.73) 47 (12.21) 0.1841

Insulin: basal insulin (n, %) 125 (4.84) 103 (4.68) 22 (5.71) 0.3952

Outcome

Stage 5-CKD (2 years later)  (n, %) 712 (32.26) 579 (31.59) 133 (35.56) 0.1341

Mortality (n, %) 885 (34.25) 833 (37.88) 52 (13.51)  < 0.0001

End-stage renal disease (ESRD)  (n, %) 1351 (52.28) 1181 (53.71) 170 (44.16) 0.0005

Table 2.  Univariate, multivariate analysis, and post-propensity matching analysis for all-cause mortality. 
Significant values are in bold.

p value Ratio 95% confidence interval

Univariate analysis

AST-120 +  < 0.0001 0.395 0.298–0.522

Multivariate analysis

AST-120 + 0.0254 0.41 0.188–0.896

Age  < 0.0001 1.055 1.028–1.083

Male gender 0.9197 0.966 0.491–1.9

Chronic kidney disease stage 2 0.9822 0 0

Chronic kidney disease stage 3 0.7718 0.632 0.028–14.05

Chronic kidney disease stage 4 0.9114 1.207 0.044–33.32

Chronic kidney disease stage 5 0.9484 0.887 0.024–33.12

Urinary albumin creatinine ratio 0.0169 1 1–1

Total bilirubin 0.8704 0.953 0.536–1.694

Estimated glomerular filtration rate 0.6892 1.007 0.972–1.044

Gout 0.4215 1.32 0.671–2.598

Hyperlipidemia 0.4286 1.277 0.697–2.337

Diabetes mellitus 0.9317 1.025 0.587–1.787

Family history of kidney disease 0.0936 0.181 0.024–1.335

Smoking 0.8759 1.058 0.52–2.155

Erythropoiesis-stimulating agents 0.7128 1.154 0.538–2.474

Angiotensin II receptor blocker or angiotensin converting enzyme inhibitor 0.5466 1.203 0.659–2.196

Calcium channel blocker 0.1707 0.617 0.309–1.231

Statin 0.1764 0.663 0.365–1.203

After propensity matching

1:1 Matching: AST-1201 +  < 0.0001 0.444 0.309–0.636

1:2Matching: AST-1201 +  < 0.0001 0.435 0.310–0.609

1:3 Matching: AST-1201 +  < 0.0001 0.436 0.312–0.609

1:4 Matching: AST-1201 +  < 0.0001 0.451 0.303–0.672
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The survival curves for all-cause mortality in the AST-120 and non-AST-120 groups are presented in Fig. 1. 
Over a 10-year follow-up period, AST-120 users demonstrated significantly lower all-cause mortality compared 
to non-users (p < 0.0001), with a HR of 0.395 (95% CI = 0.295–0.522).

Baseline characteristics data analyzed with AI
The algorithm for patient selection into the training and validation groups is outlined in Fig. 2. We included a 
total of 2051 CKD patients who were part of our pre-ESR P4P care program. As detailed in Table 3, 1435 patients 
were allocated to the training group, while 616 patients were designated for the validation group. There were 
no significant differences between the two groups in terms of age, gender, body weight, body height, laboratory 
data, medical histories (except for a higher proportion of subjects with hyperlipidemia in the validation group, 
p = 0.0009), family medical histories, medication history, habits and physical activity, and outcomes.

The mean age of participants with moderate CKD (mean eGFR of 24.8 ± 15.4  ml/min/1.73m2) was 
65.6 ± 14.5 years. Over 40% of patients had diabetes mellitus (42.95%), and more than 70% had hypertension 
(71.2%). A majority of patients were on renin–angiotensin system inhibitors (61.87%), including 8.82% using 
angiotensin-converting enzyme inhibitors and 53.05% using angiotensin II receptor blockers. In this cohort, only 
17.7% of patients were taking AST-120. During the follow-up period, nearly 30% (29.45%) of patients passed 
away, and 32.18% of patients progressed to ESRD. The average time to death was 4.9 ± 3.5 years, and the time to 
ESRD was 4.2 ± 4 years.

Predictive power of models for the decision of AST‑120 or not by DNN, XGBoost and logistic 
regression test
Figure 3 displays the ROC curves for DNN, XGBoost, and logistic regression tests. In the training group, statisti-
cal significance (p < 0.05) was observed when comparing the AUCs in DNN, logistic regression, and XGBoost. 
However, in the test group, there were no significant differences in AUCs among DNN, logistic regression, and 
XGBoost.

Regarding accuracy, specificity, and positive predictive value, the best-performing model was XGBoost (with 
values of 0.72, 0.90, and 0.48, respectively). In terms of sensitivity and negative predictive value, logistic regres-
sion had the highest values (at 0.63 and 0.84, respectively). The AUC values were 0.73 for logistic regression, 
0.73 for DNN, and 0.69 for XGBoost, indicating similar predictive powers for the decision of whether to use 
AST-120 or not.

Discussion
AST-120 usage was associated with a reduced incidence of ESRD (44.16% vs. 53.71%, p = 0.0005) and lower mor-
tality (13.51% vs. 37.88%, p < 0.0001). The use of AST-120 was independently linked to a significant reduction 
in all-cause mortality, with a 59% risk reduction. This effect remained consistent even after adjusting for factors 
such as age, gender, CKD stage, urinary albumin creatinine ratio, eGFR, gout, hyperlipidemia, diabetes mellitus, 
smoking, erythropoietin, ARB or ACEi use, calcium channel blocker, and statin use.

These findings suggest that the impact of AST-120 on a patient’s survival operates through mechanisms 
beyond atherosclerosis or metabolic syndrome. Previous studies have reported the association between serum 

Figure 1.  Patient mortality based on using AST-120 or not. Hazard ratio for all-cause mortality = 0.395 (95% 
CI = 0.298–0.522).
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IS levels and patient mortality. In a smaller-scale study involving 150 participants, the highest IS tertile was 
associated with significantly higher all-cause and cardiovascular mortality (p = 0.001 and 0.012, respectively)13. 
The predictive power of IS for all-cause mortality was independent of age, gender, diabetes mellitus, albumin, 
hemoglobin, phosphate, and aortic  calcification13. In another study with 147 subjects, IS levels were associated 
with major adverse cardiovascular events, with an AUC of 0.708. These findings suggest that IS may play a criti-
cal role in predicting cardiovascular disease in CKD  patients27. A meta-analysis involving 1572 CKD patients, 
which included 10 prospective and one cross-sectional  study28 found that PC concentration was significantly 
associated with all-cause mortality (pooled odds ratio 1.16, 95% confidence interval 1.03 to 1.30, p = 0.013). 
Elevated IS levels were also significantly associated with a higher risk of all-cause mortality (pooled odds ratio 
1.10, 95% confidence interval 1.03 to 1.17, p = 0.003). Elevated PC levels were significantly associated with a 
higher risk of cardiovascular disease (pooled odds ratio 1.28, 95% confidence interval 1.10 to 1.50, p = 0.002)28. 
In summary, serum IS and PC levels have been linked to poorer survival in CKD patients. Notably, the previous 
observational studies and the meta-analysis had limited case numbers, such as the meta-analysis with only 1572 
patients. Moreover, they did not observe a direct association between the intervention involving IS and PC (the 
use of AST-120) and mortality, unlike the relationship between serum IS/PC levels and mortality. Our present 
study, with a larger number of cases (1584 CKD patients), has established a direct association between AST-120 
usage and patient mortality.

The lack of consensus regarding the association between AST-120 and all-cause mortality can be attributed 
to inadequate dosing and poor medication compliance. AST-120 has been shown to reduce serum IS levels in 
a dose-dependent manner, and the effect on patient survival is also linked to the dosage of AST-12029. A post-
hoc subgroup analysis of randomized controlled trials conducted in the  USA30 revealed a significant difference 
between treatment groups in achieving the primary endpoint (HR 0.74; 95%CI 0.56–0.97) in the population 
with a medication compliance rate of ≥ 67%. However, drug adherence to AST-120 is generally as low as 70% in 
 Japan31. Efforts have been made to enhance AST-120’s compliance, such as changing its formulation into fine 
granules that quickly disintegrate with a small amount of water without spreading inside the mouth. This new 
formulation of AST-120 is expected to improve the ease of taking the medication and promote better adherence 
to treatment. Comparatively, AST-120 tablets have demonstrated good palatability and can increase medication 
adherence when compared to AST-120 fine granules, with 70% of patients preferring the switch to  tablets32.

Figure 2.  Algorithm for patient’s selection for AI analysis.
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Overall Train Validation p-value

Case number 2051 1435 616

Age (y/o) 65.6 ± 14.5 65.9 ± 14.4 65 ± 14.6 0.199

Male gender (n, %) 1236 (60.26) 868 (60.49) 368 (59.74) 0.7511

Body height (cm) 161.8 ± 8.9 161.9 ± 8.9 161.7 ± 9 0.7240

Body weight (kg) 64.7 ± 13.5 64.7 ± 13.5 64.7 ± 13.5 0.9839

Laboratory data

Serum creatinine (mg/dl) 3.6 ± 2.5 3.6 ± 2.5 3.7 ± 2.6 0.3610

Estimated glomerular filtration rate (eGFR) (ml/min/1.73m2) 24.8 ± 15.4 24.9 ± 15.2 24.8 ± 15.9 0.9456

Daily proteinuria (g/day) 2.6 ± 3.1 2.6 ± 3.2 2.6 ± 3 0.9660

Urinary albumin creatinine ratio (mg/g) 1286.4 ± 1440.2 1319 ± 1447.7 1194.7 ± 1420.6 0.4154

Log Urinary albumin creatinine ratio (mg/g) 6.1 ± 1.9 6.1 ± 1.9 6 ± 1.9 0.6285

Glycated hemoglobin (HbA1c) (%) 6.8 ± 1.6 6.8 ± 1.6 6.8 ± 1.5 0.3779

Fasting glucose (mg/dl) 120.8 ± 52.3 122.2 ± 56.1 117.7 ± 41.9 0.0667

Aspartate aminotransferase (U/L) 26.9 ± 24.2 27.2 ± 26.4 26.1 ± 17.7 0.4085

Alanine aminotransferase (U/L) 23.6 ± 22.4 23.4 ± 22.6 24.1 ± 21.9 0.5549

Total bilirubin (mg/dl) 0.4 ± 0.4 0.5 ± 0.4 0.4 ± 0.3 0.2340

Total cholesterol (mg/dl) 183.9 ± 56.8 184.3 ± 57.6 183.1 ± 55 0.712

High-density lipoprotein (HDL) cholesterol (mg/dl) 48.8 ± 16.7 49 ± 16.9 48.4 ± 16.3 0.6861

Low-density lipoprotein (LDL) cholesterol (mg/dl) 109.4 ± 47.5 108.2 ± 48.2 112.1 ± 46.1 0.1757

Triglyceride (mg/dl) 155.7 ± 107 154.4 ± 104.1 158.5 ± 113.3 0.5177

Systolic blood pressure (mmHg) 138.3 ± 22.2 138.5 ± 22.5 137.8 ± 21.4 0.5501

Diastolic blood pressure (mmHg) 76.4 ± 14.3 76.6 ± 14.3 75.9 ± 14.2 0.3648

Medical history

Diabetes mellitus (n, %) 881 (42.95) 628 (43.76) 253 (41.07) 0.259

Hypertension (n, %) 1491 (72.7) 1045 (72.82) 446 (72.4) 0.8449

Gout (n, %) 412 (20.09) 293 (20.42) 119 (19.32) 0.5687

Congestive heart failure (n, %) 62 (3.02) 36 (2.51) 26 (4.22) 0.0379

Ischemic heart disease (n, %) 83 (4.05) 61 (4.25) 22 (3.57) 0.4741

Cerebrovascular disease (n, %) 78 (3.8) 48 (3.34) 30 (4.87) 0.0978

Liver cirrhosis (n, %) 121 (5.9) 88 (6.13) 33 (5.36) 0.4946

Malignancy (n, %) 153 (7.46) 114 (7.94) 39 (6.33) 0.2025

Hyperlipidemia (n, %) 526 (25.65) 338 (23.55) 188 (30.52) 0.0009

Family medical history

Diabetes mellitus (n, %) 643 (31.35) 441 (30.73) 202 (32.79) 0.3565

Hypertension (n, %) 728 (35.49) 517 (36.03) 211 (34.25) 0.4413

Heart disease (n, %) 120 (5.85) 88 (6.13) 32 (5.19) 0.4069

Cerebrovascular disease (n, %) 136 (6.63) 94 (6.55) 42 (6.82) 0.8233

Hyperlipidemia (n, %) 30 (1.46) 25 (1.74) 5 (0.81) 0.1076

Kidney disease (n, %) 122 (5.95) 76 (5.3) 46 (7.47) 0.0567

Malignancy (n, %) 112 (5.46) 73 (5.09) 39 (6.33) 0.2557

Hereditary disease (n, %) 5 (0.24) 3 (0.21) 2 (0.32) 0.6265

Polycystic kidney disease (n, %) 12 (0.59) 7 (0.49) 5 (0.81) 0.378

Gout (n, %) 79 (3.85) 59 (4.11) 20 (3.25) 0.3509

Habit and physical activity

Exercise: walking (n, %) 710 (34.62) 484 (33.73) 226 (36.69) 0.1965

Exercise: brisk walking (n, %) 31 (1.51) 22 (1.53) 9 (1.46) 0.9024

Exercise: running (n, %) 29 (1.41) 18 (1.25) 11 (1.79) 0.3501

Smoking (n, %) 740 (36.08) 527 (36.72) 213 (34.58) 0.3534

Alcohol drinking (n, %) 530 (25.84) 384 (26.76) 146 (23.7) 0.147

Betel nut usage 234 (11.41) 158 (11.01) 76 (12.34) 0.3861

Medication history

Erythropoiesis-stimulating agents (n, %) 499 (24.33) 344 (23.97) 155 (25.16) 0.5647

Vitamin D analogue (n, %) 149 (7.26) 98 (6.83) 51 (8.28) 0.2462

Uric acid-lowering agents (n, %) 511 (24.91) 364 (25.37) 147 (23.86) 0.4709

Diuretics (n, %) 1104 (53.83) 776 (54.08) 328 (53.25) 0.7296

Angiotensin converting enzyme inhibitor (n, %) 181 (8.82) 117 (8.15) 64 (10.39) 0.1017

Continued
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Overall Train Validation p-value

Angiotensin II receptor blocker (n, %) 1088 (53.05) 746 (51.99) 342 (55.52) 0.1416

Beta blocker (n, %) 783 (38.18) 540 (37.63) 243 (39.45) 0.4374

Calcium channel blocker (n, %) 1208 (58.9) 843 (58.75) 365 (59.25) 0.8304

Statin (n, %) 696 (33.93) 482 (33.59) 214 (34.74) 0.6137

Fibrate (n, %) 104 (5.07) 79 (5.51) 25 (4.06) 0.171

Insulin: premix insulin (n, %) 252 (12.29) 182 (12.68) 70 (11.36) 0.4041

Insulin: rapid insulin (n, %) 351 (17.11) 249 (17.35) 102 (16.56) 0.6618

Insulin: basal insulin (n, %) 122 (5.95) 83 (5.78) 39 (6.33) 0.631

AST-120 (n, %) 363 (17.7) 262 (18.26) 101 (16.40) 0.3112

Outcome

ESRD (n, %) 660 (32.18) 460 (32.06) 200 (32.47) 0.8548

Mortality (n, %) 604 (29.45) 423 (29.48) 181 (29.38) 0.9658

Mortality or ESRD 1044 (50.9) 728 (50.73) 316 (51.3) 0.8139

Time to death 4.9 ± 3.5 4.8 ± 3.5 5 ± 3.4 0.3559

Time to ESRD 4.2 ± 4 4.2 ± 4 4.2 ± 3.9 0.3559

Time to death or ESRD 3.4 ± 3.7 3.4 ± 3.7 3.4 ± 3.7 0.6255

Table 3.  Baseline characteristics for AI analysis according to train and validation group. Significant values are 
in bold.

Figure 3.  ROC curve for DNN, XGBoost and logistic regression test.
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CVD plays a significant role in the overall mortality of CKD patients, and CKD is often considered as being 
equivalent to coronary heart  disease33. As a result, the impact of AST-120 on all-cause mortality primarily stems 
from its ability to reduce CVD. However, the exact mechanism by which AST-120, through the reduction of IS 
and PC, affects a patient’s mortality remains not fully understood. IS is known to enhance the hypermethylation 
of Klotho, which can contribute to vascular calcification in  CKD34. In hypertensive rat models, IS has been shown 
to promote aortic calcification by inducing the expression of osteoblast-specific  proteins35. It also promotes cell 
senescence along with aortic calcification and the expression of senescence-related  proteins36. Exposure to IS 
and PC has been found to activate inflammation and coagulation signaling pathways in the aorta, which are 
causally implicated in toxin-induced arterial  calcification37. Moreover, a retrospective analysis involving 199 
CKD patients revealed that the aortic calcification index was significantly lower in patients who took AST-120 
[12.2% (2.5–30.3%) vs. 25.7% (13.4–45.3%), p < 0.001]38.

Deep learning, a machine learning approach inspired by the functioning of the human brain, is character-
ized by the combination of layered artificial  neurons39. It has shown great promise in various clinical scenarios, 
especially when there is an abundance of data but limited expertise in the specific domain. However, in our study, 
we encountered challenges in developing a more effective model to predict the impact of AST-120 on mortality 
in CKD patients (with an AUC of 0.73 in DNN and logistic regression, and 0.69 in XGBoost). Several factors 
could explain these outcomes. First, deep learning algorithms require extensive training datasets, and their 
advantage lies in the volume of data  available40. When provided with sufficient data, deep learning models tend 
to outperform shallow neural networks, traditional machine learning methods, and basic statistical analyses. In 
our study, the number of AST-120 users was limited to 385, while non-AST-120 users numbered 2199. These 
data volumes fell below the threshold necessary to showcase the superiority of DNN. Second, the dataset used 
for deep learning should ideally be comprehensive, unbiased, and of high quality. Moreover, a longer follow-up 
period is needed to generate new data that could enhance model performance. Third, it is possible that our AI 
models lacked some key features. Important variables may have been missing from the study, such as information 
about protein diet (including the ratio of animal protein intake and adherence to low or very low protein diets), 
the specific dosage of AST-120, patients’ compliance with AST-120, and details about the causes of CKD and 
other acute kidney injuries. The inclusion of additional variables or critical features could lead to more accurate 
predictions, but to leverage the full potential of deep learning, larger datasets would be required. Deep learn-
ing models with larger architectures are especially data-intensive and tend to perform better with an expanded 
feature set. Our study may have suffered from a shortage of relevant variables for analysis, which could have 
limited the model’s performance.

Our study is subject to several limitations. Firstly, we did not document the specific dosage of AST-120 
administered to patients, although the majority of CKD patients at our institution typically follow recommenda-
tions of 2 g/day in stage 3 CKD, 4 g/day in stage 4 CKD, and 6 g/day in stage 5 CKD. Secondly, we lacked data on 
the adherence of patients to AST-120. However, it’s worth noting that patients in pre-ESRD P4P care programs 
generally display good compliance, and they receive consistent reminders from our educators, particularly those 
who self-pay for AST-120. Additionally, we did not have data on serum IS and PC levels to confirm the impact 
of AST-120 on these specific biomarkers. Thirdly, our study did not include detailed information on the specific 
causes of mortality. Fourthly, due to our study design, we cannot establish a causal relationship between AST-
120 and all-cause mortality. In future studies, we plan to collect data from a larger sample of patients, including 
information on the specific dosage, compliance, and duration of AST-120 usage. Fifthly, there is the presence of 
selection bias, as more affluent individuals are more likely to afford and access AST-120 treatment. Moreover, 
physicians who prescribe AST-120 for their patients may be more experienced or have a more proactive approach 
to therapy. These factors cannot be addressed through propensity score matching. Lastly, it’s important to note 
that our study is retrospective and non-randomized, which implies that there may still be unknown confounding 
factors that influence our results.

Conclusion
In this cohort study involving CKD patients, AST-120 usage was associated with a decrease in patient mortal-
ity. Nevertheless, our artificial intelligence model, as implemented with the existing architecture and algorithm 
using our dataset, did not demonstrate superior performance when compared to traditional statistical analysis 
in predicting the decision to prescribe AST-120 or not.

Data availability
All relevant data are within the paper and its Supporting Information files.
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