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Estimation of pore structure 
and permeability in tight carbonate 
reservoir based on machine 
learning (ML) algorithm using SEM 
images of Jaisalmer sub‑basin, 
India
Pydiraju Yalamanchi  & Saurabh Datta Gupta *

Analyzing the pore structure in carbonate reservoirs plays a crucial role in predicting fluid flow 
characteristics within these formations. The goal of the study was to use machine learning techniques 
for pore structure analysis and estimation of permeability in carbonate reservoirs. We implemented 
these algorithms by examining 2D scanning electron microscope (SEM) images of carbonate samples 
from the Jaisalmer sub‑basin captured at various magnifications. In the initial stage of the analysis, 
various binarization algorithms were applied to determine carbonate sample porosity. Among 
these algorithms, the MaxEntropy algorithm gave a porosity value closely aligned with those 
obtained through petrography analysis. We employed the watershed algorithm to find the pore 
network parameters of carbonate samples at various magnifications. We observed that changes in 
magnification affected pore network parameters, resulting in a reduction in pore size distribution, 
throat radius, and grain size. Subsequently, we employed the numerical lattice Boltzmann method 
(LBM) to estimate the permeability of carbonate samples and compared to values derived from well 
logs. We employed machine learning (ML) algorithms, specifically Artificial Neural Network (ANN) and 
Support Vector Machine (SVM), to predict the permeability of carbonate samples. The input features 
for these models were the pore network parameters, while the LBM permeability values served as 
the output. We examine the prediction performance of these methods against the measured LBM 
permeability by conducting the error analysis and the coefficient of determination ( R2 ) calculation. Our 
findings revealed that the ANN models outperformed the SVM models. Specifically, the ANN model 
displayed an impressive  R2 value of 0.892, along with root mean square error (RMSE), mean squared 
error (MSE) and, mean absolute error (MAE) values of 1.927, 3.716 and 1.580, respectively. In contrast, 
the SVM model yielded an  R2 value of 0.849, with RMSE, MSE and, MAE values of 2.324, 5.401 and, 
2.166 respectively, when assessed on testing data of measured permeability. This study found that 
ANN is more dependable, robust, and precise than SVM in forecasting carbonate sample permeability.

Pore structure and permeability are crucial in the study of geoscience and petroleum engineering for oil & 
gas exploration. Pore structure and permeability play a crucial role in simulating fluid flow within the hetero-
geneous geometry of carbonate porous  materials1–5. To investigate the single and multiphase fluid flow, pore 
network modeling and its characterization are  crucial6. Permeability, which describes the flow of fluids through 
porous media, is one of the most important properties. Pore structure parameters, including porosity, tortuos-
ity, connectivity, pore size, as well as pore shape and aspect  ratio7,8 significantly influenced the permeability of 
porous  media7,8. Several direct experimental approaches have developed to analyse the pore structure charac-
ter and permeability of the porous medium. These approaches include mercury injection porosimetry (MIP), 
nuclear magnetic resonance (NMR), core analysis method developed by Gas Research Institute (GRI), and pulse 
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 decay9–16. Despite being frequently employed, these direct experimental measurements have significant limita-
tions in current laboratory operating conditions, such as the involvement of significant time, cost-effectiveness, 
and a few cores  samples17. These limitations motivate us to develop a new efficient algorithm for analyzing the 
pore structure characterization and permeability in a porous medium, which can produce reliable results within 
a short time and be cost effective.

In recent times, researchers widely accept imaging techniques such as X-ray micro-computed tomogra-
phy and scanning electron microscopy (SEM) for imaging porous media. Incorporating numerical modelling 
approaches enhances the robustness of this technique to get proper pore structure, permeability, and fluid flow 
through porous  media1,18–20. In between these methodologies, image processing plays a crucial role in charac-
terizing the pore structure of porous media by extracting valuable quantitative information from microscopic 
images. This enables the precise evaluation of pore size, shape, distribution, and connectivity. This data is vital 
for understanding the physical properties of porous media, including porosity and  permeability5. The most 
well-known direct simulation processes include the finite volume method (FVM)21,22, finite element meth-
ods (FEM)23–26, and the lattice Boltzmann method (LBM)27–32 are commonly employed for modelling porous 
media and simulating fluid transport process. Indirect strategies like Pore Network Modelling (PNM)6,33–35 
and Bundle-of-Tubes36 offer effective means to simulate fluid flow behavior in porous media. These combined 
approaches contribute to a comprehensive understanding of porous media properties and fluid dynamics. The 
lattice Boltzmann method (LBM) has developed into the most capable and widely used numerical modelling 
approach for estimating the permeability and tortuosity of porous  media37. It was started by Frisch et al.38 under 
the name of lattice–gas automata in 1986. The Lattice Boltzmann Method (LBM) is based on the mesoscopic 
physics of the Lattice Gas Cell Automata (LGCA)39. One can also derive the lattice Boltzmann method (LBM) 
directly from the discretized Boltzmann equation. The lattice Boltzmann method can predict an image-based 
throat permeability model with more accuracy. It uses thin sections of 2D SEM images or micro-computed 
tomography images are the input  images29. The LBM simulations are valuable for studying the heterogeneity of 
carbonate reservoirs. It can accurately model fluid flow in complex, porous media with varying rock properties 
and enables the exploration of how small-scale variations in the carbonate rock matrix affect fluid flow, including 
the impact of different pore geometries and connectivity. This information is crucial for optimizing oil and gas 
recovery strategies, understanding reservoir performance, and predicting the behavior of fluids in heterogeneous 
carbonate reservoirs. These numerical approaches always require rigorous preparations for the discretization of 
porous media. To ensure the accuracy of the discretization result, high-quality digital images of porous media 
are always required. However, getting such images more costs are involved, and it is also time-consuming for 
geoscience and engineering applications. As a result, standard numerical simulation methods have significant 
limitations in accurately estimating the pore structure parameters of porous media. Another reason is that car-
bonate reservoirs are inherently diverse, making it challenging to predict the accurate permeability model using 
this numerical simulation and empirical  methods40.

Because of the complexities involved in predicting permeability models for carbonate rocks, including the 
lack of high-quality images and heterogeneous carbonate samples, some researchers have introduced machine 
learning (ML) based algorithms. These algorithms provide accurate and reliable approaches to predicting the 
properties of porous  media41–43. There are various ML algorithms focused on the reconstruction of porous media 
and estimating the pore network parameters, including porosity, permeability, tortuosity, throat radius, pore and 
grain size, etc. of the porous  medium44. These algorithms particularly use X-ray micro-computed tomography 
and 2D SEM images, employing techniques such as Least Square Support Vector Machine (LSSVM), Fuzzy 
logic, K-means clustering, artificial neural network (ANN), genetic algorithm (GA) and conventional neural 
network (CNN)45–48.

Lu et al.49 developed a precise permeability prediction model tailored to distinct pore structure types of 
Cretaceous carbonate reservoir. The spectral coefficient method effectively discriminates between connected 
and unconnected pores. The alignment of fractal dimensions with pore structure characteristics serves as a 
validation of this pore structure classification. Cheng et al.50 employed a multiparameter equation derived via 
multiple regression analysis, comprehensively assessing the influence of pore-throat parameters at different 
scales on tight sandstone reservoir properties. It accurately predicts permeability and porosity, offering valuable 
insights for studying pore structure and permeability in tight sandstones. Adegbite et al.51 used the multiple linear 
regression analysis and Artificial Neural Network (ANN) to investigate the relationship between porosity, pore 
radius, throat radius, and permeability. They compared these findings to experimental results got at different 
levels of mercury saturation. The results revealed that the multiple linear regression technique exhibited the 
strongest correlation at 35% mercury saturation, whereas the ANN demonstrated a better correlation at 55% 
mercury saturation. These results highlight the superior performance of the ANN over multiple regression in 
permeability prediction. The utilization of the Fuzzy Logic method with wireline well log data from carbonate 
reservoirs in the Middle East yields the most accurate permeability model. These predicted models exhibit an 
exceptional agreement with core permeability. Rostami et al.52 employed various ML algorithms, including radial 
basis function neural network (RBF-ANN), least square support vector machine (LSSVM), multilayer perception 
neural network (MLP-ANN), genetic programming (GP) and committee machine intelligent system (CMIS), 
to achieve a precise estimation of permeability in a heterogenous carbonate reservoir. GP and CMIS models 
provided the most accurate predictions, showing the highest determination coefficient when the researchers 
compared the results with core permeability. Zhang et al.53 proposed the conventional neural network (CNN) 
approach based on the autoencoder (AE) effectively predicts permeability using low-resolution images of porous 
media where an autoencoder (AE) module trained with unlabelled data and CNN trained with a small amount of 
labeled data. The results show that this AE-CNN approach outperforms traditional CNN and lattice Boltzmann 
method (LBM) approaches, with an average  R2 value of 0.896 and low mean-square errors, showing substantial 
improvements in prediction accuracy from low-resolution porous media images. Tran et al.54 used both ANN 
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and multiple regression to investigate the indirect correlation between pore throat radius, permeability, and 
porosity of carbonate samples. Compared to multiple regression, ANN exhibited superior performance with a 
higher correlation factor in predicting permeability. The permeability prediction through numerical viscous flow 
simulation closely aligns with measured values when using 2D SEM images of porous  media4. Gohari et al.55 
successfully extracted pore-network parameters from 2D images of carbonate samples and accurately predicted 
the true permeability by using the ANN technique. Their finding showed promising results. Predicting 2D per-
meability from thin section images taken perpendicular to the plane and establishing statistical correlations with 
the computed 3D permeability of the host volumes resulted in accurate  predictions56. In this study, we quantified 
the pore structure and permeability prediction by utilizing scanning electron microscopy (SEM) images taken 
at various magnifications (× 100, × 150, × 200, and × 300) of carbonate samples from the Kuldhar, Joyan, and 
Badabag members of Jaisalmer formation. The Jaisalmer limestone formation shows promise for hydrocarbon 
exploration. However, a lack of comprehensive data and geological complexities limits the comprehensive analysis 
of this algorithm in the Jaisalmer sub-basin, introducing uncertainties in the study of petrophysical properties 
of  reservoir57. We quantified pore structure by estimating key pore network parameters including, porosity, pore 
size, throat radius, coordination number, and grain size. While the aspect ratio, especially valuable for distin-
guishing between elongated and spherical pores, prominently applies in scenarios where pore shape is a pivotal 
factor, the aforementioned parameters play a fundamental role in influencing fluid transport characteristics and 
permeability in porous  media58.

The primary aim of this study is to predict the permeability of carbonate samples by using machine learning 
(ML) algorithms. Many studies have focused on predicting the permeability of 2D SEM images of carbonate 
samples using machine learning algorithms. Previous investigations have typically compared the predictive 
models against laboratory-based studies. In our study, we employed both numerical simulation and machine 
learning (ML) algorithms to estimate the permeability of carbonate samples permeability based on 2D SEM 
images at various magnifications. We examined the influence of different pore network parameters, such as pore 
network parameters, such as porosity, average pore radius, average throat radius, average grain size, and average 
coordination number, in different magnifications. Unlike previous studies that often-compared ML models to 
laboratory-based studies, we compared ML predictive models with numerical simulation methods. We employed 
Artificial Neural Network (ANN) and Support Vector Machine (SVM) techniques, using pore network param-
eters as inputs and lattice Boltzmann method (LBM) simulation results as targets to predict permeability. Our 
ML models yielded reliable permeability results for carbonate samples. Our study innovated by using the ANN 
technique, which generated precise and dependable permeability models for carbonate samples, regardless of 
the availability of core permeability values. The current research customized these methods to address geological 
and data challenges specific to the oil and gas industry, particularly in Indian carbonate reservoirs, enhancing 
their relevance and applicability in this context. It outlined a comprehensive workflow in the following section 
of the manuscript.

A notable innovation in our study is the utilization of the ANN technique, which provided accurate and reli-
able permeability models for carbonate samples, even where core permeability values were unavailable.

Geology of the study area
The Jaisalmer basin, in the west part of the Aravalli ranges, stands the largest sub basin within the Rajasthan 
basin, covering an approximate area of 50,000 square kilometres. It’s divided into the northwest and the Barmer 
basin in the south by faults from the Bikaner-Nagaur basin. The basin exhibits pericratonic characteristics and 
comprises three depressions known as Shahgarh, Kishangarh and Miajlar  depressions59. Three major uncon-
formities are present in this basin. These unconformities delineate different stratigraphic sequences in this basin, 
such as Proterozoic–Early Cambrian, Paleozoic–Mesozoic, Tertiary, and Quaternary  periods60–62. Many studies 
conducted in the Jaisalmer basin which shows the potentiality of hydrocarbon exploration in this  basin61,63,64. 
The Jaisalmer basin comprises various ranges geological formations identified based on lithostratigraphy, span-
ning from the Eocene to Jurassic. These formations, namely Bandah, Goru, Habur, Pariwar, Baisakhi Jaisalmer, 
Lathi, Sanu and Khuiala are further classified into various  members65. The underlying basement of this basin 
comprises rocks from the Precambrian era, which predominantly comprise igneous and metamorphic rocks.

Permian rocks are present in the Jaisalmer basin, which is a late Paleozoic–Mesozoic basin with an uncon-
formable relationship with the Proterozoic basement. The basement of the basin primarily comprises the Malani 
suite, which is composed of Precambrian rocks, including metamorphic rocks. Jaisalmer basin consists thick 
sequence of sedimentary rocks such as clastic and carbonate formations. The Mesozoic rocks are well exposed 
in this basin, predominantly composed of limestone, shale, sandstone, and siltstone. The basement primarily 
comprises Pre-Cambrian rocks, notably the igneous and metamorphic  rocks62. Several members, namely Hamira, 
Joyan, Fort, Badabag, Kuldhar, and Jajiya, categorize the Jaisalmer formation lithostratigraphically, which is 
well-known for its abundance of fossils. We can observe the outcrops of these members around the Jaisalmer 
 city66,67. Figure 1 shows the different lithostratigraphic members of Jaisalmer formation. In this study, we used 
2D SEM images of various carbonate samples of Jaisalmer formation to extract the pore network parameters 
and permeability prediction. The samples considered for analysis include those from the Hamira, Badabag and 
Kuldhar members. The lithostratigraphy of these members are illustrated in Table 1. Oolitic, cross-bedded lime-
stone and sandstone are featured in the Jajiya formation. The Kuldhar formation comprises limestones, marls, 
and greenish shales. The Badabag formation comprises ferruginous sandstones and sandy limestones dating 
from the Middle to Late Bathonian period. The Joyan and Fort groups are primarily composed of sandstones 
and cross-bedded limestones. These formations contain corals that developed during the Early Bathonian and 
Bajocian periods. Last, the Hamira formation comprises limestones, calcareous sandstones, spanning from the 
Bajocian to the Early  Jurassic67–69.
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Materials and methods
Data preparation
This study is primarily based on carbonate samples of the Jaisalmer sub basin. We collected these samples 
from the Hamira, Badabag, and Kuldhar members of the Jaisalmer formation and conducted scanning elec-
tron microscope (SEM) tests on them. The SEM images were obtained at four different magnification lev-
els: × 100, × 150, × 200, and × 300 using an acceleration voltage of 20 kV and a resolution of 647 × 486 pixels. 40 
2D SEM carbonate samples from Jaisalmer formation were examined. To show the findings of this study, we 
present two representative carbonate samples, namely S-1 from the Kuldhar member and S-4 from the Badabag 
member. The selected samples are visible in different magnifications. Data from two wells, named A and B, were 
used to validate the simulation results. In this study, we used conventional well log data from these wells includ-
ing gamma-ray (GR), resistivity (RT), density (RHOB), and neutron porosity (NPHI), along with estimated 
petrophysical logs such as porosity, permeability, and water saturation.

Method
Our study focuses on predicting the permeability of carbonate samples using machine learning (ML) algorithms. 
Unlike previous studies that primarily compared ML models with laboratory experiments, we introduce a novel 
approach by comparing ML models with numerical simulation methods, particularly tailored for Indian car-
bonate reservoirs. Our method involves several key steps as illustrated in Fig. 2 which outlines the sequential 
steps and process involved. First, we quantitatively estimate the pore network parameters of carbonate samples 
at various magnifications. These parameters, including porosity, average pore radius, average throat radius, aver-
age grain size, and average coordination number, are determined using image processing techniques. Next, we 

Figure 1.  Geological map of the Jaisalmer sub-basin illustrating the various members of the Jaisalmer 
formation (modified  after66).

Table 1.  Lithostratigraphy of the Jurassic strata of the Jaisalmer formation (modified after Sharma and 
 Pandey67).

Formation Member Lithology Age

Baisakhi

Lanela Silty fine-grained sandstones

Tithonian–OxfordianRupsi Bioturbated silty clay, fine grained sandstones

Basal Carbonaceous, silty clay

Jaisalmer

Jajiya Oolitic, cross-bedded limestone, sandstone Early to late Oxfordian

Kuldhar Limestones, marls, greenish shales Callovian

Badabag Ferruginous sandstones, sandy limestones Middle–Late Bathonian

Fort Fossiliferous limestones, medium grained sandstones Early to Middle Bathonian

Joyan Shales, limestones with corals, sandstones
Early Bathonian–Bajocian

Hamira Limestones, calcareous sandstones

Lathi
Thaiat

Sandstones with interbeds of shales, claystone Bajocian–Early Jurassic
Odania
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estimate permeability through lattice Boltzmann method (LBM) simulations and validate these results against 
permeability values derived from well logs. Subsequently, we employed machine learning (ML) algorithms, 
specifically Artificial Neural Network (ANN) and Support Vector Machine (SVM) techniques, to predict the 
permeability of carbonate samples. The pore network parameters serve as inputs for these ML models, while 
the LBM simulation results serve as the target output. To ensure robust model performance, we employed the 
grid search algorithm and K-fold cross-validation while executing machine learning algorithms. We began by 
identifying the hyperparameters relevant to the ML models employed in our study. To systematically explore the 
hyperparameters we used a grid search approach. We defined a set of values for each hyperparameter that we 
wanted to optimize. During the modeling stage, we adopted the K-fold cross-validation technique to evaluate 
the performance of different hyperparameter combinations. We employed a K-value of 10 to ensure robustness 
in our results. We determined the optimal hyperparameters by evaluating the best performance achieved across 
all folds and selected them as the hyperparameters for our last model. Then we performed feature importance 
analysis for both ANN and SVM models. While these models do not inherently offer feature importance like 
decision tree algorithms, we employed distinct methods to access their feature relevance. For ANN, we used 
permutation importance and, for SVM, feature importance was determined by the magnitude of the feature 
coefficients. Finally, we identify the most effective ML model by evaluating the coefficient of determination 
and error matrices. Notably, our study innovatively uses the ANN technique, providing accurate and reliable 
permeability predictions.

Image processing
Image processing is necessary to analyze the characterization of the pore structure of 2D SEM images. It involves 
digital adjustments, conversion, and operations to extract valuable information, enhance visibility, and identify 
objects and patterns. Image processing techniques include image enhancement, noise reduction, and segmen-
tation. Threshold segmentation plays a crucial role in image processing, as the quality of the image directly 
affects segmentation results. Hence, it is important to perform image enhancement and denoising prior to 
 segmentation5.

We accomplish image enhancement by adjusting the grayscale histogram of the image and expanding the 
dynamic range of grayscale values. The grayscale histogram represents the distribution of grayscale values, with 
the horizontal axis showing different gray levels and the vertical axis displaying the number of pixels at each 
gray level. Adjusting the histogram increases the dynamic range of grayscale values and enhances the contrast 
in the image. In an 8-bit grayscale image, which has 256 intensities, the histogram comprises 256 values rep-
resenting the pixel distribution. Image denoising is another important process that aims to remove unwanted 
noise from an image. One effective method is the application of a median filter. The median filter is effective in 
reducing impulse noise and eliminating salt-and-pepper noise, while preserving the edges of an image. It works 
by sorting all pixel values within a neighbourhood and replacing the pixel value with the median (middle) 

Figure 2.  Schematic diagram of graphical work flow, which outlines the step-by-step workflow detailing the 
techniques employed in predicting the permeability of carbonate samples using machine learning (ML) models.
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value, rather than the average of the surrounding pixel values. Figure 3a illustrates the calculation of the median 
value of pixel neighbourhood for sample S-3. Image segmentation is a technique that partitions a digital image 
into distinct subgroups based on specific characteristics, simplifying image complexity, and facilitating further 
analysis by isolating the desired target. In this study, we focused on segmenting the pores in carbonate samples 
using a threshold-based segmentation  algorithm5. The algorithm converts images into a binary format by repre-
senting object pixels with a single gray level and background pixels at different levels. Specifically, object pixels 
are assigned as “black”, while the background is represented as “white”. To perform threshold segmentation, it 
is essential to determine the threshold value using the following formula, which maps gray-level values to the 
binary set {0,1}.  Equation (1) depicts the segmentation threshold  value5.

S (x, y) represents the value of the generated binary image, f (x, y) denotes the gray level of the original image, 
and T (x, y) indicates the threshold value of the segmented image at the coordinates (x, y). Figure 3b illustrates 
the image processing steps we performed on sample S-3.

Threshold‑based segmentation algorithms
The threshold-based segmentation algorithms play a pivotal role in image segmentation, serving as a fundamen-
tal technique in the field. However, existing algorithms have limitations in effectively handling noisy grayscale 
 images5. Researchers have devoted considerable attention to addressing these challenges over the past four dec-
ades. Two classifications of threshold segmentation are local thresholding and global thresholding, which involve 
dividing an image based on specific thresholds. Local thresholding divides the image into smaller sections and 
determines the threshold value for each section. Global thresholding involves determining a single threshold 
for the entire image. These algorithms employ various techniques, including histograms, clustering, entropy, 
and fuzzy logic-based methods to achieve their segmentation goals. In this study, we employed several global 
threshold algorithms, namely  MaxEntropy70,  Otsu71,  Huang72, and  Yen73 for image segmentation. This allowed 
for a comprehensive evaluation of their effectiveness and performance in our specific context.

The MaxEntropy approach is rooted in the maximization of measured information between the object and 
background within an image, with entropy serving as the metric for information measurement. However, the 

(1)
S
(

x, y
)

=0, if f
(

x, y
)

< T
(

x, y
)

=1, if f
(

x, y
)

≥ T
(

x, y
)

.

Figure 3.  (a) Calculating the median value of pixel neighbourhood values for sample S-3. (b) The general 
workflow for image processing. The two figures above depict the original image and its enhancement, while the 
figure below illustrates the grayscale value distribution and binary image.
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computational complexity associated with the MaxEntropy algorithm prompted the introduction of the maxi-
mum correlation criterion (MCC) by  Yen73. This criterion, known as the Yen algorithm, facilitates the calcula-
tion of an optimal image threshold. The Huang algorithm proposed by Huang and  Wang72, aims to reduce the 
fuzziness measures of an input image in order to determine the optimal threshold value. The concept of fuzzi-
ness in this context typically refers to the degree of fuzziness exhibited by a fuzzy set. Fuzziness is quantified 
using entropy based on the Shannon function from information theory. The Otsu algorithm uses the maximum 
inter-class variance between background and target images. By maximizing the separability of resulting classes 
at different gray levels, the Otsu algorithm enables effective threshold  determination71.

Determination of pore network parameters
To comprehend the flow characteristics of porous media, including important factors such as permeability, 
relative permeability, and fluid flow phenomena, it is crucial to understand the pore structure parameters that 
occur when the porous material is subjected to pressure differentials. Disparities in pore structure, such as spatial 
distribution, connectivity types, and pore and throat shapes and sizes, can lead to distinct fluid flow behaviours 
even when two materials have the same porosity. Therefore, accurate characterization of pore structure is essen-
tial, particularly in domains like petroleum and reservoir engineering, where pore network configuration and 
fluid flow dynamics significantly impact hydrocarbon storage capacity. In this study, we estimated various pore 
network parameters at different magnifications and thoroughly examined their influence on permeability predic-
tion. In order to determine the 2D pore network parameters of carbonate samples, we employed the watershed 
 algorithm74, initially introduced by Baldwin et al.75. Implementing this method used MATLAB’s educational 
image processing tool and the open-source ImageJ  software76–79. In the watershed algorithm initially binarize 
the image as solids and voids, then obtain a distance map by calculating the minimum distance from the void 
to the nearest solid. Using this distance map, we segmented pores based on the concept of water flooding. In the 
calculated distance map, we considered the brightest colour indicating the lowest points. When simulating water 
flooding, water accumulates first at the lowest points within each water pool and gradually rises. When water 
from the different pools meets, the meeting point becomes the boundary between these pools. In this analysis, 
as all regions are filled with water, a series of meeting points forms a boundary line between the pools. This line 
is considered as the meeting line between the two pores, and as it coincides with the construction between two 
pores, it serves as the throat. This distinction allows us to analyze the pore-throat network effectively using 2D 
 images80. Figure 4 illustrates the various stages of the watershed segmentation process.

The pore size distribution (PSD) and throat radius are influential parameters in the flow dynamics of porous 
media. To determine pore-throat sizes in 2D or 3D digital images, a promising approach uses the city-block 
distance function and watershed  segmentation80,81. The method applies the morphological majority transform 
function to a binary image, reducing the roughness and noise for accurate PSD determination. The computed 
city-block distance produces sharp contour lines that delineate pore boundaries, with the brightest lines repre-
senting the lowest points. Watershed segmentation then connects marked points to generate ridgelines, enabling 

Figure 4.  Schematic diagram of image segmentation with the watershed algorithm (Source Rabbani et al.80). (a) 
Original binary image with overlapping objects. (b) Grayscale distance transform of binary image, (c) watershed 
transform with segmented pores. (d) Catchment basins with watershed ridgeline. In the initial stage computes 
gradients within the image to identify potential markers, then markers are generated based on the gradient 
information to define regions of interest, in the next stage the watershed transform is applied to the marker 
image to segment the image into distinct regions using marker-based information. In final stage displays the 
resulting segmentation, highlighting different regions of the image based on watershed transformation.
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identification of the pore area above a specific radius. The contour line where two pores meet shows the throat, 
representing the constricted region between them.

In a pore network model, the 2D coordination number represents the average number of throats connected 
to each pore or the number of pore bodies associated with a single  pore3. This parameter plays a crucial role in 
characterizing the pore network and has a substantial influence on the hydraulic conductivity of porous rocks. 
The average 2D coordination number is determined by calculating the mean number of throats connected to 
a specific pore. We employ the watershed segmentation algorithm to identify the throats associated with each 
pore, enabling the computation of this important network property.

To determining the grain size distribution (GSD) from digital images involves the detection of overlapping 
grains and individual size calculation. In this study, we used a watershed algorithm applied to 2D binary images 
to determine the GSD. The process involved several steps. The first step was to calculate the Euclidean distance 
between each pixel and its nearest pore pixels. The H-minima transform prevents over-segmentation by the 
watershed algorithm. This transform helped identify the ridge line between each pair of local minima in the 
distance image. Finally, GSD was determined along the principal axes of the images. For the 2D images, the GSD 
was measured along the vertical  axes82.

Permeability estimation based on LBM simulation
The goal of this work is to develop a machine learning (ML) based permeability prediction models for 2D SEM 
images of carbonate samples. However, when core permeability data is unavailable for training the ML models, 
traditional numerical methods are still necessary. lattice Boltzmann method (LBM) is the most reliable tool for 
permeability calculation among other traditional numerical  methods83. It offers an alternative approach for simu-
lating incompressible fluid flow. In our study, we assume a throat with a random cross-section and a consistent 
shape along its length to represent single-phase steady-state flow in porous media. Therefore, the permeability of 
the throat can be determined without simulating the entire length. Equation (2) expresses the lattice Boltzmann 
equation, which is connected to the Boltzmann  equation84.

Here, the particle distribution function is fi , the particle velocity is ci in the ith direction, and the collision 
operator is δi.

In this study, it was expected that the particle distribution would interact with fluid bounce-back boundary 
conditions. For each time step ( t +�t ) and spatial location x , the evolution of the discretized particle distribu-
tion function fi in accordance with the particle distribution velocities ci was determined using the Bhatnagar, 
Gross, and Krook (BGK) collision  model85. Equation (3) illustrates this model.

In this context, τ represents the dimensionless relaxation time, �t denotes the time step, and the right-hand 
side term corresponds to the SRT-Bhatnagar, Gross, and Krook (BGK) collision  model85. The equilibrium dis-
tribution function is f eqi (x, t). Equation (4) shows the formulation of the distribution function at equilibrium as 
a function of velocity (ϑ) in all directions.

The macroscopic quantities of density ρ and velocity ρ(ϑ) are calculated using the particle distribution func-
tion fi as shown in Eqs. (5) and (6).

and si(ϑ) is defined in Eq. (7).

where ϑ represents the velocity vector, ωi denotes the weight associated with velocity ci, and c represents the 
sound speed.

In this study, we used open-source LBM MATLAB programming to estimate the throat permeability of the 
porous medium, following the method proposed by Haslam et al.86. The study employs a D2Q9 model comprising 
nine discrete velocity vectors, representing potential fluid flow paths, as shown in Fig. 5. This approach applies 
to 2D digital images got from scanning electron microscopy (SEM) to determine the throat permeability.

The D2Q9 model has the nine velocity vectors ci

(2)fi(x + ci�t, t +�t)− fi(x, t) = δi .

(3)fi(x + ci�t, t +�t)− fi(x, t) = −
1

τ

[

fi(x, t)− f
eq
i (x, t)

]

.

(4)f
eq
i (x, t) = ωiρ + ρsi(ϑ(x, t)).

(5)ρ =
∑

i
fi ,

(6)ρ(ϑ) =
∑

i
cifi ,

(7)si(ϑ) = ωi

[

3
ci .ϑ

c
+

9

2

(ci .ϑ)
2

c2
−

3

2

ϑ .ϑ

c2

]

,

ci =

{

(0, 0) i = 0

(1, 0), (0, 1), (−1, 0), (0,−1) i = 1, 2, 3, 4

(1, 1), (−1, 1), (−1,−1), (1,−1) i = 5, 6, 7, 8

.
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For  s t at ionar y,  ne ares t  and  next -ne ares t  ve c tors ,  t he  we ig ht  co e f f i c i ents  are 
ω0 =

4
9
,ω1 = −−−− = ω4 =

1
9
,ω5 = −−−− = ω8 =

1
36

 respectively.
In this flow simulation, the lattice BGK model applies to solve the steady-state planar Poiseuille equation, 

which describes the pressure drop in an incompressible fluid flowing through a cylindrical pipe with a constant 
cross-section under laminar flow conditions. Flow simulation is started by imposing a uniform distribution of 
vectors at the inlet channels of the geometry. The LBM simulation considers periodic boundary conditions in 
the flow directions, with the velocity distribution in the outlet channels, set equal to that in the inlet channels. 
We calculate the LBM permeability of throats in the porous medium as 

(

k = r2

8

)

 for laminar flow, where r rep-
resents the throat radius. This formula is independent of tube length and is applicable due to the reasonable 
assumption of periodic boundary conditions for the considered geometry. The simulation continues until dis-
tribution vectors at each channel reach equilibrium, equilibrium showing permeability  convergence87.

At each iteration, we computed the permeability of throat tubes of the porous medium using Darcy’s law, 
rearranged as shown in Eq. (8).

where U is the mean velocity vector in the entire flow domain (toward pressure drop), k is the throat permeability, 
dp
dx is the pressure gradient, and µ is the fluid viscosity, Eq. (9) illustrates this calculation.

Here ω is a relaxation frequency that is used in the LBM simulation, set to 1 to ensure convergence and mini-
mize errors. In this study, throughout the simulation, the permeability data are recorded as numerical values 
representing the permeability of the throat tube after multiple iterations. This approach enables the computation 
of permeability and offers insights into the flow behavior within the porous  medium88.

Permeability determination from well log data
Several empirical methods have been proposed to determine permeability from well logs, which rely on establish-
ing correlations between porosity, permeability, and irreducible water  saturation89–91. In this study, we employed 
the  Timur90 relationship to estimate permeability. In this study, we used data from two wells that were equipped 
with conventional logs, each providing measurements with a resolution of 0.125 m from top to bottom. The 
logs included Gamma Ray (GR), Resistivity (RT), Density RHOB), and Neutron Porosity (NPHI) logs. These 
logs were essential in our analysis. Specifically, we leveraged the porosity logs (Density and neutron porosity) 
to compute the porosity values. These porosity values played a crucial role in determining the irreducible water 
saturation. To achieve this, we applied a formula introduced by  Buckles92 and later changed by Holmes et al.93. 
This changed formula suggested that the product of porosity and irreducible water saturation in a formation 

(8)k = −
µU
(

dp
dx

) ,

(9)µ =

1
ω
− 0.5

3
.

Figure 5.  Schematic diagram of the D2Q9 configuration, which is utilized for the space discretization in the 
Lattice Boltzmann Method (LBM).
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remains constant. The following equations were used to illustrate the calculation of permeability based on the 
 Timur90 relationship. Equation (10) illustrates the irreducible water saturation calculation.

where ∅ represents the porosity, expressed as fractions. Q is the porosity exponent, a dimensionless value that 
can range from 0.8 to 1.3, according to Holmes. In many reservoirs Q = 1 , which corresponds to the original 
Buckles formula. Swirr denotes the irreducible water saturation, also expressed as a fraction. C represents the 
Buckles constant, a dimensionless value (sandstones = 0.02–0.10, Inter-granular carbonates = 0.01–0.06, Vuggy 
carbonates = 0.005–0.06). The permeability was estimated using Eq. (11).

where K  represents the permeability of formation, expressed as milli Darcy (md),  Swirr represents irreducible 
water saturation and ∅ represents the porosity.

Machine learning algorithms
Artificial Neural Network (ANN)
Artificial Neural Networks (ANNs) are a class of machine learning models that draw inspiration from the struc-
ture and functioning of the human brain. They aim to replicate the processing and interpretation of information 
observed in biological neurons. Various fields have successfully applied ANNs, including image and speech 
recognition, natural language processing, and decision-making systems. ANNs gained significant popularity due 
to their ability to draw inspiration from the structure and functioning of the human  brain94. An ANN comprises 
interconnected artificial neurons, referred to as nodes or units. These nodes are organized into layers, typically 
comprising an input layer, one or more hidden layers, and an output layer (see Fig. 6). Each node receives input 
signals, performs a computation, and generates an output signal that is then transmitted to nodes in the subse-
quent layer. The connections between nodes are represented by weights, which determine the significance of input 
signals in the overall computation. During the training phase, ANN learns to adjust these weights by iteratively 
processing the training data and comparing the predicted outputs with the desired outputs. This process, known 
as backpropagation, uses optimization algorithms to minimize the discrepancy between predicted and actual 
outputs, improving the network’s  performance95. Determining the number of hidden layers is a key challenge in 
the application of neural network methods, and various approaches have been proposed to address this issue. 
Ham and  Kostanic96 suggested employing a trial-and-error method to determine the optimal number of hidden 
layers. Several studies have shown that one or two hidden layers can effectively handle complex  problems97,98.

In this study, we used the average pore network parameters as input variables to train an artificial neural net-
work (ANN) model, which comprises a single hidden layer. This configuration enables the prediction of perme-
ability based on the provided parameters. The input parameters comprise porosity, average pore size distribution, 
average throat size, average grain size, and average 2D coordination number. A stepwise approach was used to 
determine the optimal number of neurons in the hidden layer. Using a stepwise approach, we determined the 
optimal number of neurons in the hidden layer by measuring the error at each step while varying the number of 
neurons from 1 to 20. The ANN is trained using the Levenberg–Marquardt method with the MATLAB neural 
fitting tool. The trainer conducts the training process iteratively to achieve the best possible results.

(10)∅
Q × Swirr = C,

(11)K = 0.136
∅

4.4

S2wirr
(Timur, 1968),

Figure 6.  Schematic representation of the Artificial Neural Network (ANN). In this diagram, x1 , x2…xn 
represent the input parameters, while Wij and Wjk denote weighted parameters applied to the input, connecting 
the input layer to hidden layer and the hidden layer to the output layer. The resulting output parameter is 
denoted as y.
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Support vector machine (SVM)
Support vector machine (SVM) algorithm, introduced by  Vapnik99 in 1995, is a widely used machine learning 
technique for both classification and regression tasks. The name given to the application of SVM for regression 
is Support Vector Regression (SVR). SVR follows the same principle as support vector classification, aiming to 
find a mapping function that relates the input features to the target variable. SVM has been successfully applied 
in various prediction problems across different  domains100. However, unlike traditional regression models, SVR 
can capture nonlinear relationships between the features and the target variable by utilizing a Kernel function. 
The kernel function plays a crucial role in SVR by transforming the input features into a higher-dimensional 
space. By transforming the problem from nonlinear to linear, the optimal solution can be  found101. The choice 
of kernel depends on the dataset and the complexity of the underlying relationship.

Let’s consider a training dataset denoted as T =
{(

x1, y1
)

. . .
(

xn, yn
)}

 , where xi is the input vector and yi 
is the output vector. The SVM regression problem can be mathematically represented as shown in Eq. (12)101.

where ∝i and ∝∗
i  are the Lagrange multipliers associated with the corresponding input parameters, k(xi , x) rep-

resents the kernel function, ∅(xi) and ∅(x) represent the transformed feature vectors in the higher dimensional 
space, and b is the bias term. A typical architecture of SVM regression is depicted in the Fig. 7.

In this study, SVM regression analysis was conducted using various kernels, including linear, cubic, quadratic, 
fine Gaussian, medium Gaussian, and coarse Gaussian. The root mean square error (RMSE) and mean absolute 
error (MAE) values were determined for each SVM model with different kernels, and the kernel yielding the 
lowest RMSE and MAE values were selected as the most appropriate choice. We obtained RMSE and MAE values 
for each SVM model with different kernels and presented them in Table 2. After careful evaluation, we identified 
the linear kernel function for permeability prediction in this study. To optimize the SVM model for determining 
permeability, we employed a grid search approach to determine the most effective tuning parameters. Specifically, 

(12)

f (x) =

n
∑

i=1

(

∝i − ∝∗
i

)

· φ(xi) · φ(x) + b

=

n
∑

i=1

(

∝i − ∝∗
i

)

· k(xi , x)+ b,

Figure 7.  Schematic of the Support Vector Machine (SVM) method. The coefficients of w and b are the 
adjustable model parameters.

Table 2.  Comparison of RMSE and MAE error values of different kernel functions of SVM method. The 
Kernal function, which was used in this investigation, had the lowest RMSE and MAE value.

Kernal function RMSE MAE

Linear 2.86 2.151

Quadratic 3.34 3.103

Cubic 4.22 3.061

Fine Gaussian 5.60 4.526

Medium Gaussian 3.64 3.008

Coarse Gaussian 3.57 2.816
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we selected the regularization parameter (c) of 10 and kernel-specific parameter gamma (γ) of 0.1 while utilizing 
the linear kernel function.

Relative influences of the input variables on LBM permeability
Spearman’s rank correlation was used to analyse pore network parameter sensitivity to permeability estimation. 
Using Eq. (13)102, we calculated the Spearman’s correlation coefficient (ρ) within the range of − 1 to + 1 to deter-
mine the strength and direction of monotonic relationships between input and output variables in our model.

Figure 8 illustrates the impact of input variables on the output variable. Notably, grain size distribution (GSD) 
exhibited the most influence on LBM permeability, signifying its paramount importance. Conversely, pore size 
distribution (PSD) demonstrated the least influence, porosity and throat radius (TR) also displayed a significant 
impact on permeability, underscoring their relevance in the analysis.

Model evaluation metrics
Model evaluation metrics in machine learning are used to assess the performance and quality of the trained 
model. This metrics provide quantitative measurements that help in understanding how well the model is per-
forming and how accurately it is estimating predictions to meet the desired objectives. In this study, the most 
common evaluation metrics are used, include the coefficient of determination ( R2 ), Root Mean Square Error 
(RMSE), Mean Square Error (MSE), and Mean Absolute Error (MAE). Equations (14)–(17) are used to calculate 
using these parameters.

where Xi and Yi are the predicted and measured values respectively, Y  is represents the mean of the actual values 
and n is the number of samples. According to previous studies, high coefficient of determination and minimal 
error values are showing high efficiency models.

(13)ρ =

∑n
i=1

(

Ti − T
)

(Qi − Q)
√

∑n
i=1 (Ti − T)

2 ∑n
i=1 (Qi − Q)

2
.

(14)R2 = 1−

∑n
i=1 (Xi − Yi)

2

∑n
i=1

(

Y − Yi

)2
,

(15)MSE =
1

n

n
∑

i=1

(Xi − Yi)
2
,

(16)RMSE =

√

√

√

√

1

n

n
∑

i=1

(Xi − Yi)
2,

(17)MAE =
1

n

n
∑

i=1

|Xi − Yi|,

Figure 8.  LBM permeability relationships with input variables assessed based on Spearman’s correlation 
coefficient values calculated for all datapoints of the input variables.
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Results and discussion
Segmentation of carbonate samples
The original 2D scanning electron microscopy (SEM) images of carbonate samples, referred to as S-1 from the 
Kuldhar member, S-3 from the Hamira member, and S-4 from the Badabag member are shown in Fig. 9 at various 
magnifications. Increasing the magnification reveals macroscopic cracks within the samples that have a notable 
impact on carbonate sample permeability. Conversely, lower magnification provides a wider field of view, showing 
a broader range of pore visibility. To examine the pore characteristics of the carbonate samples, we used all four 
available threshold algorithms for the grayscale to binary image conversion process to determine the most suit-
able algorithm. We conducted a gray scale-to-binary image conversion using four threshold algorithms (Huang, 
Otsu, MaxEntropy, and Yen) to determine the most suitable algorithm. Figure 10 shows the results of binary 
images, where black and white areas represent pores and the matrix of the carbonate samples, respectively. The 
MaxEntropy threshold algorithm shows relatively low pore occupancy compared to other threshold algorithms 
with pores occupying only a small percentage of the images.

Computing the porosity involved analyzing the binary images, counting the pore pixels, and dividing them by 
the total number of pixels. Figure 11 shows the porosity histograms of carbonate samples S-1 and S-4 at various 
magnifications (× 100, × 150, × 200, and × 300) got by calculating the grayscale threshold value by four different 
segmentation algorithms. We observed significant variations in the porosity values among these algorithms. 
The Otsu and Yen algorithms yielded porosity values ranging from 0.10 to 0.18 for S-1 and 0.14 to 0.19 for S-4. 
These values exceed the 10% porosity threshold, thus showing the inefficiency of these algorithms compared to 
petrographic studies. The Huang algorithm exhibited inconsistent behaviour in porosity calculation, resulting in 
varying outcomes across different samples and magnifications. At × 150 magnification, S-4 showed a maximum 
porosity of over 0.24, while S-1 had a minimum porosity of 0.12 at × 100 magnification. The Huang algorithm’s 
limited robustness can be the reason for these disparities.

In contrast, the MaxEntropy algorithm consistently produced porosity values below 0.12 for all samples and 
magnifications. Specifically, the values are ranging from 0.02 to 0.08 for S-1 and 0.07 to 0.12 for S-4. To validate 
the accuracy of the threshold segmentation algorithm, we compared the obtained porosity results with measured 
porosities from petrographic  investigations63 (see Table 3), which reported porosity ranges of 0.10 to 0.12 for S-1 
and 0.08 to 0.10 for S-4. Overall, the threshold segmentation based on the MaxEntropy algorithm is more reason-
able, as it generates porosities for carbonate samples that are closer to the findings of petrographic studies. We 
identified the MaxEntropy algorithm-generated binary images for further analysis in this study. Figure 12 depicts 
the binary images generated by the MaxEntropy algorithm, which correspond to the original SEM images of S-1 
and S-4 shown in Fig. 9. These binary images were utilized to determine the various pore network parameters, 

Figure 9.  Original 2D SEM images of carbonate samples at different magnification: × 100, × 150, × 200, 
and × 300. (a–d) S-1, (e–h) S-3 and (i–l) S-4 (from left to right).
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Figure 10.  Comparison of the binary images obtained by different threshold segmentation algorithms. From 
left to right Huang, Otsu, MaxEntropy, and Yen algorithms. (a–d) S-1 and (e–h) S-4. The white and black 
portions represent the carbonate matrix and pores respectively.

Figure 11.  Comparison of porosity histograms of carbonate samples obtained by different threshold 
segmentation algorithms at various magnifications. (a) S-1 and (b) S-4.

Table 3.  Comparison of porosity calculated by MaxEntropy algorithm with petrographic studies.

Sample Porosity(fraction)

Label Magnification MaxEntropy Petrographic studies

S1

 × 100 0.021

0.108
 × 150 0.052

 × 200 0.08

 × 300 0.064

S4

 × 100 0.079

0.125
 × 150 0.09

 × 200 0.107

 × 300 0.127
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including pore size distribution (PSD), throat radius, grain size distribution (GSD) and 2D coordination number 
and estimate LBM based permeability for computation of machine learning (ML) algorithms.

Determination of pore network parameters
We effectively examined pore characteristics at the micrometer level by applying the watershed algorithm men-
tioned in this section = to determine pore network parameters. Figure 13a,b display the pore size distribution vari-
ations in carbonate samples S-1 and S-4, observed at magnifications of × 100, × 150, × 200, and × 300, respectively. 
These plots depict normal distribution curves representing the frequencies of different pore sizes. It is observed 
that smaller pores are more significantly affected by magnification compared to larger ones. In this study, the 
smallest detectable pores for S-1 and S-4 have a pore radius of less than 0.48 µm, regardless of magnification. 
Across all carbonate samples, there is a higher proportion of small-sized pores and a lower proportion of larger 
pores. The percentage of pores decreases as pore size increases, with larger pores representing only a small frac-
tion of the total. Overall, over 98% of the observed pores in all carbonate samples fall within the range of 0.44 to 
20 µm. It is important to note that lower magnification provides a broader range of pore sizes, but some smaller 
pores may remain undetected. While higher magnification reveals only a portion of the smaller micro-pores, 
emphasizing the significance of magnification in image analysis. These observations hold value for studying 
pore structure  characterization4.

The distribution of throat radius plays a crucial role in determining permeability and controlling fluid flow 
in carbonate reservoirs. Figure 13c,d illustrate the variation in throat radius for carbonate samples S-1 and S-4 at 
different magnifications. The peak throat radius shows a relatively narrow distribution, falling within the range of 
0.9 to 2.04 µm, and it noticeably diminishes as magnification levels rise. There is an inverse relationship between 
throat radius and magnification, with an increase in magnification leading to a decrease in the number of throats. 
Sample S-4 exhibits a greater number of throats with a smaller radius compared to sample S-1. When the throat 
radius is less than 2 µm, the number of throats increases as magnification decreases, while the number of throats 
decreases with an increase in the throat radius. Only 2 to 4% of the total number of throats have a radius greater 
than 18 µm. The study reveals that it predominantly distributed the throat radius in carbonate samples within a 
range of less than 18 µm. The influence of magnification is more prominent for smaller throat radius but dimin-
ishes as the throat radius increases. For a larger throat radius, the curves overlap regardless of magnification.

We analyzed the grain size distribution of carbonate samples S-1 and S-4 by using 2D SEM images at various 
magnifications. Figure 14a,b depict the variation of grain size distribution at different magnification. The study 
revealed a limited range of grain sizes, predominantly between 0.8 and 10 µm. Initially, the number of grains 
increased with grain radius up to 2 µm, after which it decreased. The results showed that the peak radius of 
sample S-1 was greater than 2 µm at lower magnification but decreased as magnification increased. The impact 
of magnification was more noticeable for smaller grain sizes and became less significant as the grain radius 
increased. We observed that lower magnification did not reveal a higher number of grains compared to higher 
magnifications for the carbonate samples.

Figure 14c,d depict the frequency distribution of carbonate samples S-1 and S-4 at different magnifications, 
along with their corresponding computed 2D coordination numbers. As magnification increases, pore con-
nectivity within both samples improves significantly. Higher magnification allows for the detection of even 
the smallest micro throats in the porous media, some less than 0.09 µm in size. As a result, the coordination 
number at different magnifications reflects varying levels of pore connectivity in the carbonate samples. Lower 

Figure 12.  Binary segmented images of carbonate samples (S-1 and S-4) segmented by the MaxEntropy 
algorithm at various magnifications (Left to Right × 100, × 150, × 200 and × 300).
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Figure 13.  Pore radius and throat radius distribution of carbonate sample with frequency at various 
magnifications. Pore radius distribution: (a) Sample S-1, (b) Sample S-4. Throat radius distribution: (c) Sample 
S-1, (d) Sample S-4.

Figure 14.  Grain size and coordination number distribution of carbonate samples with relative frequency 
at various magnifications. Grain size distribution: (a) Sample S-1, (b) Sample S-4. Coordination number 
distribution: (c) Sample S-1, (d) Sample S-4.



17

Vol.:(0123456789)

Scientific Reports |          (2024) 14:930  | https://doi.org/10.1038/s41598-024-51479-9

www.nature.com/scientificreports/

magnifications reveal larger throats, showing lower pore connectivity, while higher magnification enhances pore 
connectivity across all samples. The highest pore connectivity occurs within the coordination number range 
of 1 to 4, and pore connectivity decreases as the coordination number increases. Finally, we observed that the 
magnification relationship profoundly affects the behaviour of the carbonate reservoir by influencing the pore 
network parameters. These parameters impact the permeability of porous media. Higher magnification reveals 
the true intricacies of pore structure, influencing pore size, shape, and connectivity. A well-connected network 
of larger pores system shows results in the higher permeability.

Permeability calculation using LBM
We estimated the throat permeability of carbonate samples using the lattice Boltzmann method (LBM) simula-
tion. The lattice Boltzmann method (LBM) simulation used a pressure differential assumption across the pore 
network and determined the pressure through the center of the pores. The fluid flow continuity equation is 
applied to each pore body to describe the steady-state process. This study only considered a single-phase, incom-
pressible fluid. By applying a linear system of equations, we calculated the pressure of the pore bodies whereas 
the total flow rate was then computed using the determined pressure. Finally, Darcy’s law was used to calculate 
the total permeability of the pore network in each carbonate sample.

The permeability of carbonate samples was determined through Lattice Boltzmann Method (LBM) simula-
tions, which achieved iterations convergence. Figures 15 and 16 show convergence curves at different magnifi-
cations for samples S-1 and S-4, respectively based on results of LBM simulation. Once the simulation reached 
equilibrium, the samples’ permeability remained constant even after conducting further iterations. We observed 
that the LBM permeability of both S-1 and S-4 increased with the number of iterations until a specific value 
was reached, beyond which it remained constant regardless of magnification. The calculated LBM permeability 
increased with magnification for most samples. The total permeability values of carbonate samples at various 
magnifications ranged from 0.92 to 21.42 millidarcies (md), as shown in Table 4. It was observed that the impact 
of magnification on permeability varies among different samples. In some samples, permeability increases with 
magnification, while in others, it decreases. This variability can be attributed to rock matrix and presence of 
smaller pores at higher magnifications. We have computed the relative error values for the numerical simula-
tion of permeability results as illustrated in Fig. 17. These results consistently exhibit low relative errors across 
all carbonate samples, signifies a close alignment between numerical simulation LBM permeabilities and the 
measured permeabilities from well logs in the same geographical area. The average permeability values got from 
well-A and well-B are 10.041md, and 15.561md, respectively. Meanwhile, the average permeabilities simulated 
through LBM are: 5.418md at × 100 magnification, 7.55md at × 150 magnification, 10.13md at × 200 magnifica-
tion, and 13.588md at × 300 magnification. These simulation results closely align with the empirically calculated 

Figure 15.  The measured permeability of sample S-1 at various magnifications with number of iterations was 
obtained by LBM simulation approach.
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permeabilities, particularly at higher magnification levels. Figure 18 illustrates the empirical permeability calcula-
tion got from well logs, which serves to validate the accuracy of the LBM permeability estimations.

Permeability prediction using machine learning (ML)
This study aimed to explore the predictive capabilities of machine learning (ML) models, specifically Support 
Vector Machines (SVM) and Artificial Neural Networks (ANN), for estimating the permeability of carbonate 
samples. Five pore network parameters, including porosity, average pore radius, average throat radius, average 
grain size, and average coordination number, were selected as input features, while the calculated LBM perme-
ability values served as the target output. To ensure reliable ML model performance, high-quality data were 
essential. Therefore, the dataset was divided into three subsets with 70% allocated for training, 15% for testing, 
and the remaining 15% for validation purposes. The dataset contained a total of 200 data points, we utilized 
140 data points for training, 30 data points for testing, and 30 data points for validation for our ANN and SVM 

Figure 16.  The measured permeability of sample S-4 at various magnifications with number of iterations was 
obtained by LBM simulation approach.

Table 4.  The measured permeabilities of carbonate samples at various magnifications obtained by LBM 
simulation technique. *Lattice Boltzmann method.

Sample

Measured LBM* permeability 
(md)

 × 100  × 150  × 200  × 300

S1 9.35 11.71 8.73 14.33

S2 4.71 7.021 9.06 12.62

S3 8.70 9.15 14.65 16.88

S4 11.80 14.59 19.41 21.42

S5 8.19 11.25 17.46 20.41

S6 5.13 6.35 8.73 9.18

S7 1.95 6.13 10.14 15.72

S8 0.92 1.68 1.97 4.31

S9 2.25 4.93 7.32 14.8

S10 1.18 2.72 2.66 6.18
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models. Table 5 shows the statistical analysis of the data. To determine the most accurate ML model for perme-
ability prediction, we trained and evaluated the models and used model evaluation metrics.

The analysis of estimating the permeability yielded a neural network architecture with 10 neurons for the 
ANN model. We implemented the input and hidden layers with a linear-type activation function, while the hid-
den and output layers used a TAN-sigmoidal type activation function. Figure 19 illustrates the visual representa-
tion of the several steps taken by the ANN model to estimate the permeability. Figure 20 displays the outcomes 

Figure 17.  Illustrates a histogram depicting the distribution of relative error values for numerical simulation 
results of permeability across all samples at various magnifications.

Figure 18.  Calculated permeability and water saturation beside of conventional well logs for Well-A and 
Well-B. The marked regions represented by the study area.

Table 5.  A statistical description of input data used for machine learning prediction.

Input parameter Min. Max. Mean Range SD Kurtosis Skewness

Avg. throat radius 1.894 30.24 8.179 28.346 6.116 2.749 1.575

Avg. pore radius 2.223 24.246 9.811 22.023 5.071 0.282 0.667

Avg. grain size 2.143 16.248 7.726 14.105 2.851 0.809 0.706

Avg. coordination number 1.302 4.743 2.635 3.441 0.957  − 0.928 0.363

Porosity 0.008 0.229 0.099 0.221 0.065  − 0.871 0.438

Permeability (LBM) 0.92 21.42 8.992 20.5 5.675  − 0.704 0.485
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of the permeability prediction using the ANN model compared to the measured permeability values for different 
datasets, including training, testing, validation, and all data. The coefficient of determination ( R2 ) was employed 
to assess the performance of the ANN model in predicting the permeability. The R2 values obtained for the train-
ing, testing validation, and all data were 0.955, 0.892, 0.908, and 0.921 respectively. These results show a strong 
correlation between the predicted and measured permeability values. Similarly, the SVM method was utilized 

Figure 19.  Schematic representation of ANN for permeability prediction with one input layer (5 input nodes), 
one hidden layer (10 nodes) and one output layer (one node).

Figure 20.  Comparison of R2 cross plots between measured and predicted permeability using Artificial Neural 
Network (ANN) at different datasets.
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with linear kernel function for permeability prediction, and the R2 values for training, testing, validation and all 
data subsets were determined as 0.859, 0.849, 0.869, and 0.849 respectively. Figure 21 shows the cross plots of 
predicted versus measured permeabilities using the SVM method with corresponding R2 values. The obtained 
R2 values indicate a satisfactory level of accuracy and consistency in the prediction of permeability using both 
ANN and SVM models. The feature importance (Fig. 22) showed that the grain size distribution (GSD) is the 
most influential feature, and followed by porosity in both models, underlining their significance in determining 
model predictions. On the other hand, coordination number (CN) exhibits the least influence on the ANN model, 
while throat radius (TR) has the least impact on the SVM model. Pore size distribution consistently influences 
both models, contributing to their predictive capabilities.

In order to identify the accuracy of the model is high when the R2 value approaches 1, showing a strong 
correlation between predicted and measured values. When the error values are close to zero, it shows that the 
model prediction is very close to the true values. In this study, using the result obtained for the coefficient of 

Figure 21.  Comparison of R2 cross plots between measured and predicted permeability using Support Vector 
Machine (SVM) at different datasets.

Figure 22.  Variable importance of features included in machine learning algorithms for permeability 
prediction.
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determination ( R2) and RMSE, MSE, and MAE values (Table 6). We investigated the efficiency of the ANN and 
SVM models and selected the appropriate model for permeability prediction. Table 6 shows predictive models 
for training, testing, validation, and all data have derived the performance indices. Figure 23 shows the error 
values and R2 for the permeability, calculated between the measured and predicted values. Table 7 presents 
some detailed statics for the predictive models generated (all data) using ANN and SVM, as well as statistics for 
the empirical models generated with LBM and well log data. These statistics show is closely related to the error 
analysis. According to the findings in Tables 6 and 7, the ANN predictive models outperformed the SVM models 
in terms of permeability prediction, because of their ability to adapt to complex and non-linear relationships 
within the data. This is important in carbonate rocks because they formed through a chemical diagenesis process 
which has more heterogeneity. The predictive ANN models exhibited smaller error values, with an MAE value 
of 2.166 for testing, and a standard error of 1.874 for testing. Additionally, we computed the error percentage 
for the predicted permeability values generated by both the ANN and SVM models. The results highlight that 
the ANN model exhibits a lower error percentage compared to the SVM model. The predicted permeability 
values generated by our ANN model have been effectively validated against well-log derived permeability values, 
specifically from well B in one of the study zones. Figure 24a provides a visual representation of this validation, 
depicting a cross plot between the ML based permeability and well log derived permeability. Remarkably, this 

Table 6.  Comparison of the R2 values and error metrics of the SVM and ANN models to identify the better 
accuracy and reliability in predicting permeability. *Support vector machine. **Artificial neural network.

Method Dataset R
2 RMSE MAE MSE

SVM*

Training 0.859 2.281 1.842 5.204

Testing 0.849 2.324 2.166 5.401

Validation 0.860 2.226 1.567 4.955

All data 0.849 2.229 1.736 4.972

ANN**

Training 0.955 1.272 0.98 1.619

Testing 0.892 1.927 1.580 3.716

Validation 0.908 1.650 1.405 2.722

All data 0.921 1.533 1.228 2.352

Figure 23.  Comparison of different error metrics and R2 values of predictive models of both Artificial Neural 
Network (ANN) and Support Vector Machine (SVM).
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comparison reveals highly promising results, with a coefficient of determination exceeding 0.86. This strong 
correlation underscores the reliability and accuracy of our ANN model’s permeability predictions. The analysis 
was performed through resampling of the data points of estimated permeability based on well data. Prior to this, 
the range of minimum and maximum values of well based estimated permeability was restricted in reference 
to the range of ML based estimated permeability. Figure 24b visually represents this error comparison between 
the ANN and SVM. However, it is important to note that the choice of model should be based on the specific 
situation and the required level of accuracy.

Table 7.  Statistics on permeability results obtained by machine learning algorithms and empirical methods.

Dataset Method Arithmetic mean Geometric mean Median Standard deviation Standard error
Correlation 
coefficient

Well-A

Timur

15.56 1.10E−06 1.63E−06 125.968 4.521

Well-B 10.04 0.016 0.0013 106.78 2.214

Well-A & Well-B 11.67 0.00013 0.0006 113.11 2.053

SEM LBM 9.417 7.146 8.88 5.878 0.921

Training ANN 9.965 8.359 9.919 5.09 0.916 0.977

Training SVM 9.315 7.639 8.51 7.175 0.998 0.926

Testing ANN 10.112 7.972 6.967 3.456 1.447 0.944

Testing SVM 8.924 7.630 8.16 4.591 1.874 0.921

Validation ANN 6.138 4.278 6.742 4.340 1.772 0.953

Validation SVM 8.108 7.603 11.68 5.238 2.138 0.927

Figure 24.  (a) Comparison between the permeability values predicted by our ANN model and the well-log 
derived permeability values specifically from Well-B within one of our study zones. This comparison serves as a 
crucial step in conforming the accuracy and reliability of our ANN results. (b) Illustrates a comparison of error 
results between ANN and SVM models for predicted permeability.
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Conclusions
This study aimed to analyze 2D scanning electron microscope (SEM) images of carbonate samples, characterizing 
their pore structure. We developed a machine learning (ML) algorithm using pore network parameters as input 
data to predict the permeability. These predictions were compared with LBM simulation results, with the goal 
of establishing a reliable method for permeability prediction based on 2D SEM image analysis. The following 
conclusions are made based on the results of this study:

1. Initially, we investigated the impact of various threshold algorithms on gray scale images to effectively char-
acterize the pore structure. We calculated porosity based on these algorithms, and MaxEntropy algorithm 
yielded results (0.02 to 0.12) that were closely aligned with petrographic studies (0.10 to 0.12).

2. We used a watershed algorithm at different magnifications to extract pore network parameters from the 
2D SEM images of carbonate samples. At lower radii, we observed a higher number of pores and throats, 
whereas the number of pores and throats decreased as the radius increased. We also observed this pattern 
in the grain size distribution.

3. Magnification significantly influenced the pore network parameters. With increased magnification, the pore 
radius, throat radius, and grain size decreased. Conversely, the coordination number exhibited the opposite 
behavior, increasing with higher magnification.

4. We used Lattice Boltzmann Method (LBM) to estimate the permeability of carbonate samples. The Lattice 
Boltzmann Method (LBM) confirmed its validity and reliability in determining the permeability of carbonate 
samples by providing an acceptable value when compared with log-derived permeabilities.

5. Machine learning (ML) algorithms such as ANN and SVM methods offers a reliable and accurate approaches 
for permeability prediction models when using image extracted pore network parameters as input features 
and LBM permeability values as the output model. The evaluation of permeability prediction using the ANN 
method yielded notable results. The testing data’s coefficient of determination ( R2) for the ANN approach 
was 0.892, with associated error values of 3.716 for MSE, 1.927 for RMSE and 1.580 for MAE. In contrast, 
when using the SVM method the R2 for testing data was 0.849, the corresponding error values were 5.401 
for MSE, 2.324 for RMSE and 2.166 for MAE. These results indicate that the ANN approach outperforms 
the SVM method, demonstrating a higher level of accuracy in predicting permeability.

This research provides valuable insights with practical applications in the oil and gas industry, particularly 
in carbonate reservoirs. This study enhances our comprehension of these reservoirs by accurately predicting the 
permeability using ML algorithms. These insights can directly improve hydrocarbon exploration and production, 
optimize reservoir management, especially in carbonate reservoirs. The reliability of LBM simulations for per-
meability estimation reinforces its applicability, especially when dealing with heterogeneous carbonate samples.
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