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A disulfidptosis‑related lncRNAs 
signature in hepatocellular 
carcinoma: prognostic prediction, 
tumor immune microenvironment 
and drug susceptibility
Yanqiong Liu 1,2, Jiyu Meng 1,2, Xuelian Ruan 1, Fangyi Wei 1, Fuyong Zhang 1 & Xue Qin 1*

Disulfidptosis, a novel type of programmed cell death, has attracted researchers’ attention worldwide. 
However, the role of disulfidptosis-related lncRNAs (DRLs) in liver hepatocellular carcinoma (LIHC) 
not yet been studied. We aimed to establish and validate a prognostic signature of DRLs and analyze 
tumor microenvironment (TME) and drug susceptibility in LIHC patients. RNA sequencing data, 
mutation data, and clinical data were obtained from the Cancer Genome Atlas Database (TCGA). 
Lasso algorithm and cox regression analysis were performed to identify a prognostic DRLs signature. 
Kaplan–Meier curves, principal component analysis (PCA), nomogram and calibration curve, function 
enrichment, TME, immune dysfunction and exclusion (TIDE), tumor mutation burden (TMB), and 
drug sensitivity analyses were analyzed. External datasets were used to validate the predictive 
value of DRLs. qRT-PCR was also used to validate the differential expression of the target lncRNAs 
in tissue samples and cell lines. We established a prognostic signature for the DRLs (MKLN1-AS and 
TMCC1-AS1) in LIHC. The signature could divide the LIHC patients into low- and high-risk groups, 
with the high-risk subgroup associated with a worse prognosis. We observed discrepancies in tumor-
infiltrating immune cells, immune function, function enrichment, and TIDE between two risk groups. 
LIHC patients in the high-risk group were more sensitive to several chemotherapeutic drugs. External 
datasets, clinical tissue, and cell lines confirmed the expression of MKLN1-AS and TMCC1-AS1 were 
upregulated in LIHC and associated with a worse prognosis. The novel signature based on the two 
DRLs provide new insight into LIHC prognostic prediction, TME, and potential therapeutic strategies.

Liver cancer is one of the most prevalent malignancies globally, with an estimated 905,677 (4.7% cancer-related 
new cases) new cases and 830,180 (8.3% cancer-related death) deaths worldwide in 20201. It is expected that 
there will be a 55.0% increase per year in new liver cancer cases between 2020 and 2040, with 1.4 million poten-
tial patients diagnosed in 20402. Liver hepatocellular carcinoma (LIHC) is the dominant type of primary liver 
cancer, accounting for 85–90% of all cases3. The main risk factors for developing LIHC include chronic hepatitis 
B/C virus infection, alcoholism, aflatoxin exposure, and metabolic risk factors4. Despite great advances in early 
diagnosis with molecular markers and multiple therapies, 5-year survival rates for LIHC remain unsatisfactory5. 
Recurrence or metastasis occurs in approximately 70% of LIHC patients who undergo surgical resection3. Worse, 
LIHC is a heterogeneous disorder with widespread chemotherapy and radiation resistance. Therefore, it is criti-
cal to identify and validate novel prognostic and predictive biomarkers for LIHC, which may lead to efficient 
detection and discovery of optimal therapies for LIHC.

Regulatory cell death (RCD) is a common type of cell death that is characterized by uncontrolled cell expan-
sion or accumulation6. RCD plays an essential role in cancer metabolic therapy7, tissue homeostasis, inflamma-
tion, and multiple pathophysiological conditions6. Over the past two decades, several emerging RCD modali-
ties have been highlighted, such as cuproptosis8, ferroptosis9, apoptosis, necroptosis, pyroptosis, parthanatos, 
autophagy-dependent cell death, immunogenic cell death, and so on6. The physiological forms of RCD are 
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generally regarded as key therapeutic targets for the management of multiple human diseases6. Most recently, 
Liu et al.10 provided the first insight into a novel form of RCD known as “disulfidptosis”, which differs from pre-
viously identified cell death modalities. This study revealed that excessive expression of solute carrier family 7 
member 11 (SLC7A11) in glucose-deficient cancer cells accelerates nicotinamide adenine dinucleotide phosphate 
(NADPH) depletion under glucose starvation conditions10. This leads to an accumulation of disulfides that can-
not be reduced, altering the conformation of cytoskeletal proteins and inducing disulfide stress, which ultimately 
leads to disulfidptosis, an unusual form of cell death with a specific underlying mechanism7,10,11. Disulfidptosis 
activation may require three elements: high SLC7A11 expression, glucose deprivation conditions that impair 
glucose metabolism, and aberrant disulfide bonds between actin cytoskeleton proteins12. Aberrant accumulation 
of intracellular disulfide molecules, such as lipoic acid and cystine, triggers disulfide stress and extremely rapid 
cell death13. Disulfidptosis is an unusual form of cell death in morphology, genetics, and biochemistry that is 
involved in the regulation of tumor progression12. A link between disulfidptosis and cancer has been established 
via bioinformatics analysis recently11,14–18. Yang et al. discovered disulfidptosis-based prognostic and tumor 
microenvironment (TME) characteristics of clear cell renal cell carcinoma and identified AJAP1 as a possible 
biomarker for the disease11. Zhao et al. investigated the role of disulfidptosis-related genes (DRGs) in bladder 
cancer prognosis and generated a risk signature to assess patient prognosis, TME, and immunotherapy14. Wang 
et al. developed a risk score for DRGs and discovered that SPP1 and MYBL2 genes might predict the survival of 
LIHC patients15. Currently, the role of disulfidptosis in the assessment of the occurrence, progression, prognosis, 
and treatment of LIHC is scarce. More indicators associated with disulfidptosis with cancer susceptibility are 
urgent to be established.

Long non-coding RNAs (lncRNAs) are RNA molecules length greater than 200 nucleotides that cannot code 
for protein19. Growing evidence suggests that the role of lncRNAs in basics, transcriptomic, and clinical oncology 
may be comparable to, and possibly greater than that of protein-coding genes19. Over the past decade, the research 
on lncRNA-based clinical tools has expanded rapidly, including in cancer diagnostic and prognostic biomarkers, 
and therapeutic targets19. LncRNA-related signatures for prognostic prediction of LIHC have attracted more and 
more attention, such as cuproptosis-related lncRNAs20–22, ferroptosis-related lncRNAs23–25, necroptosis-related 
lncRNAs26,27, pyroptosis-related lncRNAs28–30, and so on. However, disulfidptosis-related lncRNAs (DRLs) as 
prognostic markers for LIHC have never been investigated. Therefore, we aim to identify different clustering 
features and construct DRLs to predict the prognosis of LIHC patients, and evaluate the correlation between the 
signatures and the tumor microenvironment and drug sensitivity.

Materials and methods
Dataset and data acquisition
LIHC dataset was downloaded from the TCGA database (https://​portal.​gdc.​cancer.​gov/​repos​itory). The R (ver-
sion 4.1.3, https://​www.r-​proje​ct.​org/) and relative R packages were used to analyze the TCGA cohort. After 
obtaining from TCGA, an FPKM gene expression matrix was transformed into TPM format31. Next, using the 
R package “sva”, the merged expression matrix was normalized and eliminated from batch effects32.

Identification of co‑expressed DRGs and lncRNAs
Ten disulfidptosis-related genes (DRGs) were identified from the recently published studies10,11. Univariate cox 
regression method was applied to evaluate the hazard ratio of the DRGs to the LIHC. Then, the R package 
“limma” was used to acquire the expression of DRGs (see Supplementary Text files)33. According to previous 
documents, Pearson correlation analysis was performed to evaluate the relationship between DRGs and lncRNAs 
in the RNA-seq data of TCGA-LIHC samples. Next, to find adequate disulfidptosis-related lncRNAs (DRLs), we 
set correlation coefficient > 0.4 and P < 0.001 was the optimal cutoff value using the relevant R script (see Sup-
plementary Text files)22. Moreover, the R packages “ggplot2” and “ggalluvial” were used to construct a Sankey 
diagram to show the correlation between DRGs and DRLs34.

Construction of DRLs risk model
The LIHC patients were randomly assigned to the testing and training groups using the R package “caret” in a 
1:1 ratio35. Univariate cox regression was utilized for obtaining prognostic DRLs (P < 0.01). Lasso cox regression 
analysis was used to construct the prediction model for DRLs36,37. Multivariate cox regression analysis was applied 
to build a two-lncRNA predictive model. The calculated formula used for disulfidptosis-related prognostic risk 
score was based on the published documents22,38. The model of risk score was calculated as follows: risk score 
= ∑i = LnCoef(i) × EXP(i). Patients were classified into low-risk and high-risk groups, depending on the median 
value of the risk score. The R package ‘survminer’ was used to construct Kaplan–Meier curves to examine the 
prognostic relevance of risk models for DRLs39. The R package “timeROC” was utilized to investigate the receiver 
operating characteristic (ROC) of survival39. In addition, univariate cox regression and multivariate cox regres-
sion methods were applied to evaluate the prognostic predictive potential of this risk score model. The P < 0.05 
was selected by R software.

Principal component analysis (PCA) analysis and clinical features
PCA analysis was performed using the R packages “scatterplot3d”40 to demonstrate whether the DRLs prognostic 
risk score model can identify low-risk and high-risk groups of patients to further clarify the clinical utility of 
DRLs. The association between this risk score model and clinical variables, such as grade, gender, age, and stage, 
were evaluated by chi-square tests and Wilcoxon rank-sum test.

https://portal.gdc.cancer.gov/repository
https://www.r-project.org/
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Nomogram and calibration curve
Using the DRLs risk model and clinicopathological factors (age, gender, grade, stage, tumor (T), metastasis (M), 
and positive lymph node (N)), a nomogram for predicting the 1/3/5-year survival of LIHC patients was created. 
We used a calibration curve to check if the nomogram predicted survival rate agreed with recognition survival 
rate. The R package “rms” and “regplot” were used to construct the nomogram41, and calibration curve42.

Function enrichment analysis
For the purpose of investigating majorly enriched signaling pathways and biological roles involved in the 
disulfidptosis-related lncRNA signature, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes 
(KEGG) were performed43. GO analysis was performed to identify the enriched pathways in different sets by 
R packages “clusterProfiler”, “org.Hs.eg.db”, “enrichplot”, “ggplot2”, “circlize”, “RColorBrewer”, “dplyr”, “ggpubr”, 
“ComplexHeatmap” with P = 0.05 and q = 0.0544. KEGG analysis was used to reveal the pathways associated with 
high- and low-risk sets caring out by using R packages “DOSE”, “clusterProfiler”, “org.Hs.eg.db”, “enrichplot”, 
“ggplot”, “circlize, “RColorBrewer”, “dplyr”, and “ComplexHeatmap” with P = 0.05 and q = 0.0545–47.

Tumor microenvironment (TME) analysis
The proportion of tumor-infiltrating immune cells and immune function were displayed on boxplots for low- and 
high-risk sets created by R packages “limma”, “ggpubr”, and “reshape2”33. The level of immune cell infiltration 
in TME of LIHC was investigated using a single-sample gene set enrichment analysis (ssGSEA) algorithm48.

Immune dysfunction and exclusion (TIDE) analysis
The TIDE scoring file was acquired from the website (http://​tide.​dfci.​harva​rd.​edu). The R package “ggpubr” was 
utilized to examine the difference in TIDE between the high- and low-risk sets49.

Tumor mutation burden (TMB) analysis
The different analyses of TMB, survival analysis, the prognosis and tumor mutation between the high- and low-
risk sets was performed using the R package “ggpubr” and “limma”33.

Drug susceptibility analysis
We screened potential chemotherapeutic drugs using the R packages “pRRophetic”50 to determine whether high-
risk and low-risk groups have significant differential susceptibilities to the therapy (IC50 value). The filtering 
threshold was set at P < 0.001.

Clinical tissue samples
A total of 50 LIHC specimens and adjacent non-cancerous tissues were collected from LIHC patients who 
underwent surgical resection at the First Affiliated Hospital of Guangxi Medical University between June 2022 
and March 2023. The following were the inclusion criteria: (I) pathologically diagnosed with LIHC the cancer 
for the primary time; (II) didn’t receive radiation, chemotherapy, targeted therapy, ablation, or intervention prior 
to the operation. Patients were excluded if they met any one of the following criteria: (I) the presence of other 
malignancies; (II) the occurrence of diabetes, hypertension, or other chronic conditions. All the tissues were 
stored at − 80 °C until the extraction of total RNA. Informed consent was obtained from all subjects involved in 
the study. The Medical Ethics Committee of First Affiliated Hospital of Guangxi Medical University has approved 
the protocol (No. 2023-E321-01).

Cell lines
Normal LO2 cells and LIHC cells (Hep G2, Huh-7, Hep-3B, MHCC-97H, QGY-7703, SMMC-7721, and HCC-
LM3) were bought from the Chinese Academy of Sciences Cell Bank in Shanghai, China. All cell lines were 
cultured in Dulbecco’s modified Eagle’s medium (Gibco, USA) supplemented with 10% fetal bovine serum (FBS, 
Gibco, USA), 100 U/mL streptomycin, and 100 U/mL penicillin in a 5% CO2 environment at 37 °C.

RNA extraction and quantitative real‑time polymerase chain reaction (qRT‑PCR)
Total RNA from the tissues and cell lines was extracted using the TRIzol reagent. The quality and quantity of 
the RNA was then assessed using NanoDrop (Thermo Science). cDNA was synthesized using the Superscript 
II Reverse Transcriptase Kit (Takara, Japan). qRT-PCR was performed using the SYBR Green (Takara, Japan) 
method to detect transcript levels in tissues and cell lines by ABI 7500 Real-Time PCR System. The endogenous 
control gene glyceraldehyde 3-phosphate dehydrogenase (GAPDH) was used to normalize the expression of 
the target gene. The 2−ΔΔT approach was used to calculate the relative expression value. Primer sequences for 
MKLN1-AS: (f) 5′-TGA​CCG​ACA​CTG​GGT​CTG​A (r) 5′-AGG​CTT​TCA​GGA​GTC​CAA​CC; TMCC1-AS1: (f) 
5′-TGC​CAT​GCC​CGT​GTC​AAC​TG (r) 5′-CTC​TCT​CGT​TCT​GCC​TCC​CTT​ATG​.

Extended database validation
We used the GEPIA2: an updated and enhanced version of Gene Expression Profiling Interaction Analysis data-
base (http://​gepia2.​cancer-​pku.​cn/#​index)51 to further validate the credibility of the results. Gene expression, 
and overall survival (OS) survival analysis for MKLN1-AS and TMCC1-AS1 in LIHC samples were visually 
displayed. To divide high-expression and low-expression cohorts, the optimal cutoff was chosen automatically 
with log-rank P values.

http://tide.dfci.harvard.edu
http://gepia2.cancer-pku.cn/#index
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Statistical analysis
We used R software (version 4.1.3) and its associated packages to analyze all statistics. RNA-seq data, mutation 
data, clinical information, and Ensembl IDs for lncRNAs were extracted using Strawberry-Perl (version 5.30.0.1-
64bit, https://​www.​perl.​org). The transcript levels of MKLN1-AS and TMCC1-AS1 in LIHC tissues and para-
noncancerous tissues were compared using a paired t-test. The transcript levels of MKLN1-AS and TMCC1-AS1 
in normal LO2 cells and LIHC cells were compared using an unpaired t-test. The proportions of the clinical 
features were analyzed using the chi-squared test. Statistical significance was set at P < 0.05.

Ethics approval and consent to participate
The study follows the principles of the Declaration of Helsinki. The study protocol was approved by the Ethics 
Committee of scientific research and clinical trial of the First Affiliated Hospital of Guangxi Medical Univer-
sity (Approval Number: 2023-E321-01). All patients provided written-informed consent for the collection and 
publication of their medical information at the first visit to our center, which was filed in their medical records.

Results
Identification and construction of DRLs risk model
RNA-seq data of 424 samples (374 tumor and 50 normal tissues) were downloaded from TCGA database. 
Individuals with incomplete genomes or clinical data were eliminated (n = 4), leaving 370 LIHC samples in the 
final group. In recent literature10, authors proposed a unique form of cell death termed disulfidptosis, which 
was not characterized previously. Ten DRGs were obtained from studies, and their details and correlation were 
presented in Fig. 1A and Supplementary Table S1. Then, a total of 1354 DRLs were obtained by Pearson analysis 
on the basis of R > 0.4 and P < 0.001. The significant prognostic DRLs were identified using univariate regression 
analysis (Fig. 1B) and Lasso cox regression analysis (see Supplementary Fig. S1A,B). The correlation between 
DRGs and DRLs was displayed in Fig. 1C and Supplementary Table S2. Finally, two key candidate OS-related 
DRLs were extracted to construct the prognostic signature, which include MKLN1-AS and TMCC1-AS1. The 
relation between the two DRLs and the DRGs was shown in Fig. 1D.

The expression of these 10 genes between tumor and normal tissues in LIHC patients was showed in Sup-
plementary Fig. S1C. The hazard ratio of the ten genes on the prognosis in LIHC patients was showed in Sup-
plementary Fig. S1D. A total of 370 LIHC patients were randomly divided into the training set (n = 185) and the 
testing set (n = 185). Table 1 showed the clinical characteristics of the two groups of patients, demonstrating that 
there was no variation in clinical characteristics between the training and testing groups.

Predicting the prognosis of LIHC patients with the DRLs predictive model
The coefficients of the two DRLs were used to assess the scores for each patient. The risk score was calculated as 
follows: risk score = expression of MKLN1-AS × 1.010769 + expression of TMCC1-AS1 × 0.692979. Next, LIHC 
patients were divided into high-risk and low-risk groups based on the median risk score value (Supplementary 
Fig. S2A–C). Patients exhibited a higher mortality rate with risk scores increasing (Supplementary Fig. S2D–F). 
Survival analysis revealed that high-risk patients had significantly worse overall survival than low-risk patients 
(Fig. 2A–C; all P < 0.001). The expression of MKLN1-AS and TMCC1-AS1 was higher in the high-risk patients 
than in the low-risk patients in all sets (Fig. 2D–F), indicating that the two DRLs might be the poor indicators 
of prognosis.

Univariate cox regression (see Supplementary Fig. S3A) and multivariate cox regression (Fig. 3A) analysis 
revealed that risk score was an independent prognostic factor for LIHC patients. The risk score’s area under 
the curve (AUC) was 0.745 (Fig. 3B), greater than that of the other clinical parameters, indicating that it was a 
more accurate predictor of LIHC patients’ overall survival. Furthermore, the survival probability of 1-, 3- and 
5-year for the LIHC patient in the nomogram was 0.758, 0.551, and 0.419, respectively (Fig. 3C). The nomogram 
predictions were validated by the calibration curves showing there was a high degree of congruence between 
the clinical outcomes and predictive overall survival rates at 1, 3, and 5 years (Fig. 3D). The risk score showed 
its value in evaluating the 1-, 3- and 5-year survival of patients (see Supplementary Fig. S3B). In addition, ROC 
curves showed that the 10-year concordance-index (C-index) scored higher in the risk model than other clinical 
variables (see Supplementary Fig. S3C). The survival probability and clinical parameters of LIHC patients were 
compared according to the gender, grade, stage, and tumor between the two risk groups (see Supplementary 
Fig. S3D–I). The results demonstrated that all clinicopathological variables were significant differences between 
the high- and low-risk groups, suggesting that patients with high-risk scores had a poor prognosis (all P < 0.05).

PCA analysis
PCA analysis was performed on the models of all genes, DRGs, DRLs, and risk lncRNAs model (Fig. 3E–H). 
The results indicated that our constructed model was all able to effectively classify high-risk and low-risk LIHC 
patients, demonstrating the accuracy of the model. All of the above findings suggest that risk scores could be a 
reliable prognostic factor in predicting survival in LIHC patients.

Functional and pathway analysis
GO and KEGG analyses were used to investigate the underlying different biological properties of genes in high-
risk and low-risk subsets. A total of 1405 differently expressed genes were discovered between the high-risk and 
low-risk groups. (Supplementary Table S3). According to GO pathway analysis (Fig. 4A), biological process (BP) 
terminology indicated that differently expressed genes are rich in the “organelle fission”, “nuclear division”, and 
“positive regulation of cell adhesion”. Cell composition (CC) showed differently expressed genes were mainly 

https://www.perl.org
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enriched in “collagen-containing extracellular matrix” “apical part of cell” and “microtubule”. In term of molecu-
lar function (MF), “signaling receptor activator activity”, “receptor ligand activity” and “tubulin binding” were 
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Figure 1.   Construction of the differentially expressed disulfidptosis-related lncRNAs (DRLs) in TCGA-LIHC 
cohort. (A) The ten disulfidptosis-related genes (DRGs) and their correlation. (B) The significant prognostic 
DRLs were identified using univariate regression analysis. (C) The Sankey relation between DRGs and DRLs. 
(D) Heatmap of the correlation between DRGs and DRLs involved in model construction (*P < 0.05, **P < 0.01, 
***P < 0.001, ****P < 0.0001).
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Table 1.   Clinical characteristics of 370 LIHC patients stratified by test and train sets.

Covariates Type Total Test Train P

Age
 ≤ 65 232 (62.7%) 125 (67.57%) 107 (57.84%) 0.068

 > 65 138 (37.3%) 60 (32.43%) 78 (42.16%)

Gender
Female 121 (32.7%) 60 (32.43%) 61 (32.97%) 1.00

Male 249 (67.3%) 125 (67.57%) 124 (67.03%)

Grade

G1 55 (14.86%) 34 (18.38%) 21 (11.35%) 0.195

G2 177 (47.84%) 82 (44.32%) 95 (51.35%)

G3 121 (32.7%) 64 (34.59%) 57 (30.81%)

G4 12 (3.24%) 5 (2.7%) 7 (3.78%)

Unknown 5 (1.35%) 0 (0%) 5 (2.7%)

Stage

Stage I 171 (46.22%) 89 (48.11%) 82 (44.32%) 0.640

Stage II 85 (22.97%) 38 (20.54%) 47 (25.41%)

Stage III 85 (22.97%) 45 (24.32%) 40 (21.62%)

Stage IV 5 (1.35%) 3 (1.62%) 2 (1.08%)

Unknown 24 (6.49%) 10 (5.41%) 14 (7.57%)
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significantly abundant. KEGG pathway analysis (Fig. 4B) indicated that differently expressed genes were mainly 
concentrated in “organelle fission”, “nuclear division”, and “positive regulation of cell adhesion”. According to the 
results, we proposed that the DRGs primarily affect the cellular metabolic activities.

Tumor microenvironment (TME) analysis
The correlation of immune function differences between the low- and high-risk groups was depicted in Fig. 5A. 
“Cytolytic_activity”, “MHC_class_I”, and “Type_II_IFN_Reponse” were significantly different between the low- 
and high-risk groups. Furthermore, the relationship between the risk score and the content of tumor-infiltrating 
immune cells were surveyed. As illustrated in Fig. 5B, the “aDCs”, “B_cells”, “iDCs”, “Macrophages”, “Mast_cells”, 
“NK_cells”, and “Treg” were substantially different between high-risk and low-risk groups. The high-risk group 
had significantly higher proportion of “aDCs”, “Macrophages” and “Treg” whereas the low-risk group exhibited 
greater percentage of “B cells,” “Mast_cells”, and “NK_cells”. These results indicated that disulfidptosis acts a vital 
role in the formation of the TME.

Immune dysfunction and exclusion (TIDE) analysis of the risk score
Immune escape and immunotherapy differences between high and low risk groups were examined to determine 
the impact of immunotherapy in LIHC patient populations. The clinical response to immune checkpoint blocking 
(ICB) therapy was evaluated using the TIDE score. A high TIDE score implies a low response to ICB and a poor 
prognosis for the cancer. TIDE score was lower in the high-risk group (Fig. 5C; P < 0.001). The lower composite 
TIDE score attained in the high-risk group could be explained with a higher proportion of treatment remissions.

Tumor mutation burden (TMB) analysis of the risk score
Using the “maftools” software package, we examined the somatic mutation scope of LIHC patients in high- and 
low-risk groups and chose 15 genes (TP53, CTNNB1, TTN, MUC16, PCLO, ALB, RYR2, APOB, CSMD3, 
LRP1B, XIRP2, OBSCN, ABCA13, HMCN1, FLG) with the highest mutation frequency for representation 
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Figure 5.   Tumor microenvironment (TME), immune dysfunction and exclusion (TIDE), and tumor mutation 
burden (TMB) analysis of the risk score between the low and high-risk groups. (A) Immune function differences 
analysis. (B) Tumor-infiltrating immune cells differences analysis. (C) TIDE analysis. (D,E) The waterfall plot 
showed the mutated genes. (F) TMB analysis of the risk score. (G,H) TMB survival analysis and risk score 
(*P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001, ns no significance).
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(Fig. 5D,E). The waterfall plot revealed that the top three mutated genes in high risk LIHC samples were TP53 
(35%), CTNNB1 (31%), and TTN (23%), whereas in low risk LIHC samples, TTN (24%), CTNNB1 (21%), and 
TP53 (18%) were the most common alteration genes. In all groups, the most common variation categorization 
was missense mutation. Overall, there were no significant differences in TMB between the low- and high-risk 
groups (Fig. 5F; P = 0.42). According to a TMB survival analysis, patients in the high TMB group had a poorer 
prognosis (Fig. 5G; P = 0.031). When TMB and patient risk scores combined, the survival rate of high TMB + high 
risk score groups had the poorest prognosis (Fig. 5H; P < 0.001).

Drug susceptibility analysis
To determine whether the high-risk and low-risk groups had significantly different susceptibilities to the chemo-
therapy, we performed drug sensitivity analysis using “pRRophetic” package to screen prospective anti-tumor 
drugs (IC50 value). The sensitivity to medicines increases with decreasing IC50 values. Because too many chemo-
therapeutic drugs were screened based on the two DRLs, we picked nine chemotherapy agents with great dif-
ferences including sorafenib, 5-fluorouracil, dasatinib, doxorubicin, imatinib, gemcitabine, sunitinib, paclitaxel, 
and erlotinib commonly used in clinical settings to do our further research. Doxorubicin (Fig. 6A), gemcitabine 
(Fig. 6B), sunitinib (Fig. 6C), paclitaxel (Fig. 6D), 5-fluorouracil (Fig. 6E), imatinib (Fig. 6F), sorafenib (Fig. 6G), 
and dasatinib (Fig. 6H) are eight of the nine treatments with better sensitivity/lower IC50 in the high-risk 
group, suggesting that these eight medications are more likely to be beneficial for high-risk LIHC patients 
(P < 0.0001). Erlotinib (Fig. 6I) is only one of nine treatments with better sensitivity/lower IC50 in the low-risk 
group (P < 0.001).

Validation data
The relative expression levels of MKLN1-AS and TMCC1-AS1 in LIHC tissues and adjacent normal tissues, cell 
lines, and validation dataset were showed in Fig. 7. According to the TCGA and GEPIA2 data, the expression 
levels of these two lncRNAs were both considerably increased in LIHC tissues when compared to nearby normal 
tissues (Fig. 7A–F). MKLN1-AS and TMCC1-AS1 transcription levels were also found to be strongly linked with 
a poor prognosis of LIHC (Fig. 7G,H). We used qRT-PCR to examine the expression levels of MKLN1-AS and 
TMCC1-AS1 in 50 pairs of LIHC tissue and adjacent normal tissue (see Supplementary Original data). MKLN1-
AS and TMCC1-AS1 transcription levels were significantly higher in LIHC tissues compared to adjacent normal 
tissues, which was consistent with the TCGA and GEPIA2 database results (Fig. 7I,K). The expression of the 
two lncRNAs in LIHC cells was compared to that of normal LO2 cells and LIHC cells (Hep G2, Huh-7, Hep-3B, 
MHCC-97H, QGY-7703, SMMC-7721, and HCC-LM3) (see Supplementary Original data). MKLN1-AS was 
considerably higher in Hep G2, Huh-7, MHCC-97H, QGY-7703, and HCC-LM3 cells than in normal LO2 cells 
(Fig. 7J), while TMCC1-AS1 was significantly higher in Hep G2, Huh-7, Hep-3B, MHCC-97H, QGY-7703,and 
SMMC-7721 cells (Fig. 7L). Overall, the results demonstrated that the MKLN1-AS and TMCC1-AS1 expression 
levels were up-regulated in LIHC and associated with the worse prognosis of LIHC.

Discussion
RCD plays a crucial role in regulating tumor proliferation and cell metabolism6. Disulfidptosis, a novel metabolic-
related RCD proposed in 2023, was suggested to provide a therapeutic strategy to target disulfidptosis in cancer 
therapy10. Currently, there is a dearth of research on the role of disulfidptosis in the oncogenesis, progression, 
prognosis, immune profile, signaling pathways, and targeted therapy for LIHC. In the present study, 374 LIHC 
samples and 50 normal controls were obtained from the TCGA database. We focused on the expression lev-
els of DRLs (MKLN1-AS and TMCC1-AS1) and the clinical features of LIHC to construct a comprehensive 
disulfidptosis-related predictive model. Based on the expression levels of the DRLs, the LIHC sample was divided 
into low-risk and high-risk group to investigate the effect of this disulfidptosis pattern on LIHC prognosis and 
immunotherapy response. In addition, 369 LIHC samples and 160 normal controls from the GEPIA2 database 
were used to further validate the credibility of the results. We also used qRT-PCR to examine the expression levels 
of MKLN1-AS and TMCC1-AS1 in 50 pairs of LIHC tissue and adjacent normal tissue, as well as in LIHC cell 
lines. Our data demonstrated that MKLN1-AS and TMCC1-AS1 expression levels were upregulated in LIHC 
and associated with a worse prognosis. In addition, the LIHC patient in high-risk group was associated with 
poor OS. GO and KEGG data demonstrated that DRGs primarily affect the cellular metabolic activities. Moreo-
ver, the tumor-infiltrating immune cells were significantly different between the high-risk and low-risk groups. 
Surprisingly, the TIDE results showed a higher immune escape potential in the low-risk group, suggesting that 
immunotherapy was less effective in low-risk LIHC patients. Finally, LIHC patients in the high-risk group were 
more sensitive to several potential chemotherapeutic drugs. Taken together, the novel signature based on the 
two DRLs provide new insight into LIHC prognostic prediction, immune microenvironment characteristics, 
and potential therapeutic strategies using a combination of disulfidptosis and drug sensitivity.

In this study, we identified ten genes that suppress disulfidptosis based on recent publications10,11. Six of these 
ten DRGs, namely GYS1, LRPPRC, NCKAPA1, RPN1, SLC3A2, and SLC7A11, were significantly associated with 
the risk of LIHC. It is well established that SLC7A11 is overexpressed in multiple human cancers and protects 
cancer cells from amino acid deprivation, oxidative stress, and metabolic stress52. Mechanistically, high levels 
of SLC7A11 expression, H2O2 therapy, and cystine uptake in tumor cells trigger the accumulation of harmful 
disulfide molecules and NADPH depletion, eventually resulting in rapid cell death—disulfidptosis12,53. Currently, 
few research has been conducted to investigate the involvement of DRGs in cancer11,14–17. Most recently, Feng 
et al. used 24 DRGs to create a classification and model that can effectively predict the prognosis and drug sen-
sitivity of thyroid carcinoma patients17. Besides, Chen et al. reported a DRG prognostic model with ten features 
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and found that bladder cancer patients with high DRG scores may have worse survival, inflamed TME, and an 
increased TMB, suggesting that the model could be used for personalized therapy16.

Increasing evidence suggests that the tumor microenvironment (TME) plays a crucial role in the progression 
and metastasis of tumors54. The TME of LIHC comprises extracellular matrix, endothelial cells, stromal cells, 
as well as various cytokines and proteins55. The infiltration of multiple immune cells within the TME promotes 
tumor cell growth, immune tolerance, and immune evasion, thereby facilitating cancer cell metastasis54. In this 
study, we observed a significant correlation between MHC_class_I responses and immune function enrichment 
specifically in the high-risk group. Furthermore, it has been observed that the high-risk cohort exhibited a sig-
nificantly increased proportion of antigen-presenting dendritic cells (aDCs), macrophages, and regulatory T cells 
(Treg cells). Importantly, tumor-infiltrating macrophages have been identified as potent producers of diverse 
mediators within the tumor microenvironment (TME), thereby facilitating tumor proliferation, metastasis, and 
invasion, ultimately leading to an unfavorable prognosis56,57. Tregs play a crucial role in maintaining self-tolerance 
within the immune system, suppressing antitumor immunity, facilitating tumor invasion and migration, and 
are closely associated with cancer development and progression58. The presence of Tregs infiltrating tumors 
has been consistently linked to unfavorable survival outcomes in various malignancies, including LIHC58. One 
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study revealed that the high subtypes of disulfidptosis-related gene exhibited elevated levels of immune cells and 
immune scores in LIHC15. Furthermore, Yang et al. demonstrated a significant increase in the infiltration level of 
immune cells within the high disulfidptosis-related gene score group59. Additionally, there was a positive correla-
tion between high disulfidptosis-related gene (SLC7A11) expression in LIHC and T helper cells, macrophages, 
and NK CD56 bright cells60. Our study consistently demonstrated that patients with LIHC in the high-risk 
group exhibited higher levels of activated dendritic cells (aDCs), macrophages, and Tregs compared to those in 
the low-risk group. The role of B cells in LIHC proliferation and metastasis remains unclarified based on recent 
studies54. On one hand, research has suggested that the loss of specific TGF-β on the surface of B cells could 
inhibit LIHC development61. On the other hand, a study discovered that CXCR3+ B cells could interact with 
the LIHC microenvironment to promote polarization of M2b macrophages and enhance metastatic potential62. 
In this study, we observed that the low-risk group with a better prognosis had a higher percentage of B cells.

Emerging research highlights critical roles of lncRNAs to the LIHC development and progression63–65. 
Recently, Chi et  al. found that the lncRNA PTOV1-AS1 is up-regulation in LIHC and associated with 
patients’ prognosis and sorafenib resistance64. Another study revealed that LINC01977 accelerated LIHC pro-
gression by inhibiting Notch2 ubiquitination and depletion, suggesting that LINC01977 could be a potential 
biomarker and therapeutic target for LIHC patients63. Similarly, Sun et al. indicated that LINC01124 played a 
tumor-promoting role in LIHC through regulating the miR-1247-5p-FOXO3 axis65. Interestingly, the crucial role 
of RCD-related abnormally expressed lncRNAs in monitoring and promoting the development and progression 
of LIHC is drawing growing interest. Several RCD related lncRNA signatures to forecast prognosis and tumor 
progression in LIHC patients have been established, such as cuproptosis-related lncRNAs20–22, ferroptosis-related 
lncRNAs23–25, necroptosis-related lncRNAs26,27, pyroptosis-related lncRNAs28–30, and so on. For instance, Guo 
et al. established a cuproptosis-prognostic signature for four cuproptosis-related lncRNAs (SNHG4, AC026412.3, 
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Figure 7.   The relative expression levels of two candidate lncRNAs in LIHC tissues compared with normal 
tissues, cell lines, and validation dataset. The expression of MKLN1-AS (A,B) and TMCC1-AS1 (C,D) in 374 
LIHC tissues compared with 50 normal tissues in the TCGA database. The expression of MKLN1-AS (E) and 
TMCC1-AS1 (F) in 369 LIHC tissues compared with 160 normal tissues in the GEPAI database. Overall survival 
(OS) of different MKLN1-AS (G) and TMCC1-AS1 (H) expression level in LIHC samples. The expression of 
MKLN1-AS (I) and TMCC1-AS1 (K) in 50 pairs of LIHC and adjacent normal tissues in the validation dataset. 
The expression of MKLN1-AS (J) and TMCC1-AS1 (L) in HCC cell lines (*P < 0.05, **P < 0.01, ***P < 0.001, 
****P < 0.0001).
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AL590705.3, and CDKN2A-DT) that could predict prognosis and evaluate the efficacy of immunotherapy for 
LIHC20. Liu et al. constructed a predictive model based on eight cuproptosis-related lncRNAs (AC004112.1, 
AC007064.2, AC012186.2, AC026412.3, AL031985.3, AL133477.1, AL365361.1, and TMCC1-AS1) to give valu-
able data for predicting the prognosis of LIHC patients and developing individualized targeted therapy21. Li et al. 
built a five cuproptosis-related lncRNAs (FOXD2-AS1, NRAV, MED8-AS1, WARS2-AS1, and MKLN1-AS) pre-
dictive signature for LIHC and confirmed the results of bioinformatics analysis using LIHC tissue samples and 
cell lines22. Li et al. concluded that the predictive signature could independently predict the prognosis of LIHC 
patients and provide treatment references for LIHC patients22. However, the role of DRLs in the development 
and progression of LIHC has never been investigated. Therefore, we estimated a risk signature based on DRLs 
to predict the survival of LIHC patients. Ten DRGs and 1354 DRLs were co-expressed from the transcriptome 
data of 374 LIHC samples from the TCGA database. Among them, 160 DRLs were significantly associated with 
prognosis of the LIHC patients. Subsequently, two DRLs (MKLN1-AS and TMCC1-AS1) were identified by 
LASSO and multivariate cox regression analysis. This is the first investigation of the role of lncRNA signatures 
associated with disulfidptosis in the prediction of LIHC prognosis and immune landscape, as well as drug 
sensitivity. Previously, MKLN1-AS and TMCC1-AS1 were identified as lncRNAs related to cuproptosis22,66, 
pyroptosis67, autophagy68, ferroptosis and necroptosis27,69 in LIHC. For example, Zhang et al. used lncRNA 
expression data from TCGA to establish that five necroptosis-related lncRNAs (KDM4A-AS1, ZFPM2-AS1, 
AC099850.3, MKLN1-AS, and BACE1-AS) were well associated with patient prognosis, clinicopathological 
features, and immunotherapy effects69. More recently, a six-lncRNA prognosis model (AC012073.1, AL031985.3, 
LINC01060, MKLN1-AS, MSC-AS1, and TMCC1-AS1) was construed by Zhu et al.70, and this was with the 
potential prognosis and immunotherapy response predictive value of LIHC. On the other hand, the functional 
role of MKLN1AS or TMCC1‑AS1 in LIHC progression has also been reported. Gao et al. found that MKLN1AS 
promoted LIHC progression by acting as a molecular sponge for miR6543p to promote hepatoma‑derived growth 
factor (HDGF) expression71. The researchers concluded that the MKLN1AS/miR654/3p/HDGF axis might serve 
as a potential target for LIHC diagnosis, prognosis, and therapy71. Another study revealed that MKLN1-AS over-
expression contributes to stabilizing Yes-associated transcriptional regulator 1 (YAP1) mRNA, which is essential 
for MKLN1-AS to be carcinogenic72. Chen et al. reported that TMCC1-AS1 were significantly overexpressed in 
LIHC tissues and cell lines and promoted the proliferation, migration, invasion, suggesting TMCC1-AS1 could 
serve as a prognostic biomarker for LIHC patients73. Collectively, both of these critical lncRNAs have a role in 
LIHC development and progression. According to the findings of Liu et al.10, high expression of SLC7A11 in 
kidney cancer cells speeds up the depletion of NADPH in the cytoplasm under glucose starvation. This leads to 
an accumulation of unreducible disulfides, inducing disulfide stress and eventually disulfidptosis. As one of the 
DRGs, SLC7A11 upregulating plays an essential role in promoting disulfidptosis and tumor development7,74, 
which is harmful for cancer patients. This observation implies a positive relationship between DRGs and the two 
target lncRNAs. This was the first study to demonstrate that these two lncRNAs were identified to be involved 
in the development of LIHC disulfidptosis.

There are some limitations in this study. First, our results were obtained from the TCGA database, and we 
were unable to extract external validation from the GEO database due to the lack of relevant clinical data for 
the two lncRNAs. Second, the findings of our research depended mostly on integrative bioinformatics and pre-
liminary qRT-PCR results. More basic research is needed to confirm the biological function of our identified 
lncRNAs in disulfidptosis.

In conclusion, we succeeded in firstly constructing a signature of disulfidptosis-related lncRNAs that predicts 
prognosis of LIHC patients. Besides, this signature can be a valuable tool for a deeper understanding of tumor 
immune microenvironment and the immunotherapy response of LIHC, providing us new insights into the 
therapeutic strategies of LIHC patients.

Data availability
The datasets used and/or analyzed during the current study are available from the corresponding author on 
reasonable request.
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