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Coupling analysis of crane accident 
risks based on Bayesian network 
and the N‑K model
Bang‑Jie Wu 1,2*, Liang‑Hai Jin 1,3*, Xia‑Zhong Zheng 1,3 & Shu Chen 1,3

Crane usage is pervasive on construction sites, however, it is associated with a notably high accident 
rate. The analyzing of crane accident risks is essential for accident prevention, control, and ensuring 
the safety of lifting operations. Hence, significant emphasis should be placed on understanding 
the interaction among various risk factors. This paper proposes a quantitative coupling method 
for human, machine, management, and environmental risk factors in crane accidents, leveraging 
Bayesian networks (BN) and the N-K model. Firstly, text mining technology and fault tree analysis 
are employed to analyze the causes of crane accidents and categorize the associate risk factors. 
Secondly, the types of risk coupling resulting from human, machine, management, and environmental 
risk factors are defined. Thirdly, the BN model is developed based on the analysis of crane accident 
risksand its N-K model. Fourthly, the parameters of the risk coupling nodes in the developed BN are 
determined based on the calculation results of the N-K model. Finally, for the risk coupling types with 
high coupling values and the first-level node and second-level node, the failure probability is analyzed 
through posterior probability and sensitivity analysis. The results indicate that factors related to man 
and management significantly impact crane accidents and warrant enhanced attention. The interplay 
among multiple risk factors significantly influences the probability of crane accidents, necessitating 
careful attention.

As one of the most critical means of vertical lifting and horizontally moving materials, crane operations are widely 
used in infrastructure construction and other fields1. During crane operations, the complex man–machine-
management-environment interface, high task difficulty, and uncertain information2, contibuite to a potential 
high risk, leading to the causes of crane accidents. These causes, encompassing overload, collisions, and opera-
tion errors, are highly complex and can easily results in crane accidents, leading to serious consequences such 
as casualties and property losses3. Therefore, research the man–machine–management–enviroment interface of 
crane accidents holds significant meaning for preventing the occurrence of lifting injury accidents. Additionally, 
ensuring the safety of lifting operations and reducing economic losses are important issues that urgently need 
resolution in the construction of large-scale water conservancy and hydropower projects, long-span bridges, 
high-rise buildings, and other projects4,5.

However, as a critical facility and equipment associated with national economic construction and societal 
functioning, lifting machinery exhibits characteristics of high technical complexity, stringent operational require-
ments, challendingt maintenance, and elevated potential risks6. Various safety risks fromdiverse factors, inluding 
human, machanical, environmental, and managerial aspects, during crane operation. The safety state of lifting 
operations flucates with alterations in human factors, material factors, environmental factors, and manage-
ment factors. It can be observed that the interaction among risk factors in lifting accidents exhibits high-order 
nonlinearity7, and the complexity of the risk coupling relationshipheightens the inteicacy and challenges asso-
ciated withe safety control of lifting operations, rendering it highly unfavorable for effective risk management. 
Notably, the coupling among risks serves as the primary driving force for risk evolution. If the risk value resulting 
from coupling surpasses the safety threshold, it could result in a lifting accident. For instance, the factors con-
tributing to the collapse of the gantry crane at the wharf site of Hudong Zhonghua Shipyard Co., Ltd. encom-
pass improper safety supervision, illegal worker operation, low safety awareness, and improper investigation 
of safety hazards. The disaster resulted in a total of 36 deaths, 3 injuries, and direct economic losses amounting 
to nearly 80 million RMB. Therefore, disregarding the coupling effect among different risk factors, adapting a 
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linear perspective, or inadequately considering risk occurrence will result in deviations in the estimating actual 
risk threats and losses8.

To mitigate crane accidents, numerious scholars have validated various accident prevention methods.These 
methods encompass the utilization of frequency and complex network topology parameters, aiming to identify 
the key causes of crane accidents9,10. Many scholars have conducted extensive studies on accident prevention. 
Extensive research has been conducted on the safety risks of lifting operations, considering various perspectives, 
including people, machinery, environment, and organization at the lifting site11–14. The installation and disas-
sembly of cranes are highly perilous, constituting the primary stages that lead to lifting accidents and serve as 
focal points for safety management and control of lifting operations15. Additionally, Chen et al.16 conducted eye 
movement experiments focusing on tower crane operations to analyze the visual effects and optical mechanisms 
influencing crane drivers. However, the majority of scholars have given inadequate consideration to the coupling 
relationship among risk factors in crane accidents, and the interplay among different risk factors significantly 
influendes the occurrence, development, and severity of crane accidents17. However, most of these conventional 
research methods rely on expert experience to investigate the causes of lifting accidents, leading to subjective 
results. The N-K model can capture the coupling of accident causes through analysis of existing accident reports. 
Subsequently quantitative research can be conducted. The BN network can serve as an effective tool for inferring 
the coupling relationship among various factors. Therefore, this study will explore the coupling among the causes 
of lifting accidents by integrating the N-K model and the BN model.

This paper introduces a new method to quantify the coupling of accident causes using both the BN and the 
N-K models. This paper unveils the risk coupling mechanism of crane accidents, examing interactions among 
various risk factors. The method proposed is described in "Materials and methods". "Model construction" pre-
sents a detailed description of the model construction process, encompassing model structure definitions and 
parameter specifications. "Results and discussions" is covers the results and discussion. "Conclusion" provides 
a summary of the paper.

Materials and methods
The proposed method
The BN structure is established through the analysis of risk factors using text mining technology and the N-K 
modelstructure. The proposed method is illustated in Fig. 1. To determine the structure of the N-K model, it is 
imperative to identify the type of risk coupling. Leveraging expert experience and crane accident reports, text 

Crane Accident

Crane operation risk factors

Risk coupling analysis

Determing 31 coupling types

Assess probability of risk 
factors

Calculating probability of risk 
coupling

Calculating values of risk 
coupling degree

BN structure

BN parameters

BN analysis

Validation of the 
BN model

Posterior 
probability

Sensitivity

Structure of N-K model

BN ModleN-K Modle

Model nodes

Prior 
probability

Figure 1.   The proposed method.
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mining technology is employed to identify risk factors and their probability. Subsequently, the values of various 
risk coupling degrees are calculated using the N-K algorithm. These data are incorporated into the BN model to 
define the parameters, and posterior probability and sensitivity analyses are conducted, respectively.

This method can delineate the coupling relationship among risk factors in various subsystems, quantitatively 
analyze the uncertainty and the effect of risk coupling, demonstrate the dynamic characteristics of risk evolution 
and risk coupling, and analyze how risk factors contribute to the evolution process of triggering accidents. The 
research findings can serves as references for enhancing the safety control of lifting operations.

Bayesian network of the risk factors in crane operation
A Bayesian Network (BN) is a graphical network rooted in probabilistic reasoning, comprising nodes and directed 
edges. Nodes in the network represent variables, and the directed edges dipict interaction among these nodes18. 
It can effectively achieve the representation of uncertain knowledge and support complex reasoning. In this 
context, the risk factors associated with crane operations are assigned to nodes, and the coupling relationship 
among different risk factors are represented by edges, culminating in the establishment of the Bayesian network 
model of the risk factors of crane operations19,20.

N‑K model of the risk factors in crane accidents
The N-K model was initially introduced by Kauffman and Weinberger21 within the realm of evolutionary biol-
ogy and subsequently explored further by Kauffman22. It aims to delineate the roles of interdependence and 
complexity in complex adaptive systems. It is extensively utilized for the degree of correlation and risk coupling 
among factors contributing to unsafe events. The N-K model comprises two parameters: N denotes the number 
of elements, and K represents the number of coupling relationships (as obtained by consulting experts in related 
fields). In a complex system comprising n elements, where each element has n states, then nN possible couplings.

By quantifying the interactive information coupling among risk factors in crane operations, the risk factors 
of four subsystems: Man, Machine, Management, and Environment are effectively measured, leading to the 
formation of a new risk state. The formula for calculating interactive information is as follows:

where RM1M2M3E represents the probability associate with Man being in state m1, Machine being in state m2, 
Management being in state m3, Environment being in state e while the four factors are coupled. The variables 
are defined as following: m1 = 1,2,…,M1; m2 = 1,2,…,M2; m3 = 1,2,…,M3; e = 1,2,…,E. Furthermore, Rm1, Rm2, Rm3, 
and Re are the probabilities of each risk factor in different states. The R value as a comprehensive measure of the 
coupling effect of safety risks in lifting operations, where a higher R value corresponds to an increased probability 
of a lifting operation occurrence.

Model construction
The definition of crane operation risk factors
Firstly, nearly 400 valid crane accident reports spanning the years 2000 to 2021 were systematically crawled. These 
reports encompass crucial datails, including the fundamental accident scenario, causal factors, identification of 
responsibility, preventive measures, and recommendations rectification. Moreover, the reported incidents are 
substantiated as accurate and reliable, covering diverse provinces and cities across China, rendering the data 
suitable for research purposes. The severity of each incident is assessed, distinguishing those without personal 
injuries from the general accident category and labeling them as "no casualty accidents," as illustrated in Fig. 2a. 
Based on this dataset of crane accidents, the monthly frequency of incidents is tabulated according to their 
occurrence, as depicted in Fig. 2b.

(1)R(M1,M2,M3,E) =

M1
∑

m1=1

M2
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m2=1

M3
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E
∑

e=1

Pm1m2m3e × log2
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Pm1m2m3e/Pm1... × P.m2.. × P..m3. × P...e

]

Figure 2.   The situation of crane accident.
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As depicted in Fig. 2a, there were five accidents without casualties, constituting 1.3% of the tatal. Despite the 
absence of personal casualties in these incidents, they frequently resulted in substantial economic losses. Addi-
tionally, there were 309 instances of general accidents, representing 80.3%, and 60 major accidents, accounting 
for 15.6%. This suggests that the overall impact of lifting injury accidents was relatively limited, and in some 
instances, there were a few casualties. Specifically, there were eight major accidents, constituting 2.1%, and three 
major accidents, constituting 0.8%.

Observing Fig. 2b, it is evident that the lowest number of accidents occurs in January, and fewer accidents are 
reported in May–June and August-November, indicating favorable conditions for crane operations. Conversely, 
the hightest number of accidents is observed in February-April, and July and December register the highest 
frequency of accidents. These patterns are associated with management factors, including safety management 
inspection time and construction weather in China23.

In this study, 385 crane accident reports are compiled and processed through text mining technology. Apply-
ing system safety theory, crane operation is analyzed as a word frequency statistic across four subsystems: Man 
(M1: crane driver, on-site construction worker, commander, safety supervisor), Machine (M2: crane), Manage-
ment (M3: lifting operation safety regulations, on-site safety supervision measures, etc.), and Environment (E: 
crane operation surrounding environment, weather conditions, etc.). High-frequency words are fitted, and the 
results, illustrated in Fig. 3 below, demonstrate a well-fitting effect with the fitting coefficient R = 0.9967.

As depicted in Fig. 3, the majority of words have a low frequencies, with only a small number appearing at 
high frequencies. The range of word types is limited, suggesting that a restricted number of high-frequency words 
can more effectively capture crucial information about the causes of heavy injury accidents.

The fault tree method can efficiently analyze the direct causes and uncover potential causes of accidents, 
contributing to the valid identification of risks within the crane operation system24. The fault tree method, along 
with the statistical hazard source method, is emplyed to establish the fault tree for crane accident safety risks, 
as illustrated in Fig. 4.

Risk coupling mechanism of crane accidents
The crane machinery, field personnel, and surrounding buildings are defined as coupling risk bearers of crane 
accidents25, subject to direct or indirect effects from various risk factors within the four subsystems. If the cou-
pling effect of these risk factors surpasses a predefined safety threshold, it results in a lifting accident and inflicts 
damage upon each risk bearer26,27. The coupling effect among the various subsystems is shown in Fig. 5.

Risk coupling styles of crane accidents
Risk coupling among different subsystems of the crane operation system is categorized into three categories28–30: 
single-factor coupling, double-factor coupling, and multi-factor coupling with the corresponding coupling styles 
are shown in Fig. 6.

Single-factor risk coupling pertains to the coupling of risk factors within each of the four subsystem, Machine, 
Management, and Environment. There are four types of risk factors, namely, M1–M1 coupling, M2–M2 coupling, 
E–E coupling, and M3–M3 coupling The coupling risk values are denoted as R11, R12, R13, and R14, respectively. 
The total coupling degree value is recorded as R1, but in cases by a risk factor, so there is no risk coupling, which 
is a special case.

Double-factor risk coupling involves the coupling of risk factors in two distinct subsystems among the four 
subsystems: Man, Machine, Management, and Environment. This includes M1–M2 coupling, M1–M3 coupling, 
M1–E coupling, M2–M3 coupling, M2–E coupling, and M3–E coupling, amonting to a total of six categories. The 

Figure 3.   Word frequency fitting trend of crane accidents.
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Figure 4.   Fault tree of crane accidents.

Figure 5.   Risk coupling mechanism of crane accidents.



6

Vol:.(1234567890)

Scientific Reports |         (2024) 14:1133  | https://doi.org/10.1038/s41598-024-51425-9

www.nature.com/scientificreports/

respective coupling risk values are recorded as R21, R22, R23, R24, R25, and R26, with the total coupling degree value 
is recorded as R2.

Multi-factor risk coupling involves the coupling of risk factors acorss three or four different subsystems 
among the four: Man, Machine, Management, and Environment. This includs M1–M2–M3 coupling, M1–M2–E 
coupling, M1–M3–E coupling, M2–M3–E coupling, and M1-M2-M3-E coupling, for a total of five kinds. The 
coupling risk values are recorded as R31, R32, R33, R34, and R41, and the total coupling degree value of multi-risk 
factors is recorded as RT.

Calculation of coupling effect of risk factors
The safety risk in crane operations arises from the localized interaction of risk-coupling following the coupling 
of various risk factors. This can be effectively assessed by the calculating the effects of single-factor coupling, 
double-factor coupling and multi-factor coupling effects in crane operation risk factors. Leveraging a wealth of 
accident reports, a layered decomposition is conducted, and the frequency of decomposition for each risk factor 
(Man, Machine, Management, and Environment) is tallied. Risk factors in a safe state are recorded as ’0’, where 
those in a dangerous state leading to accidents are recorded as ’1’. The 385 crane accidents occurring from 2000 
to 2021 are divided in detail, and the occurrences of single, double, and multi-factor coupling fresulting from 
the coupling of risk factors in each subsystem are counted. The results are shown in Table 1.

Considering the type of risk coupling, the calculation formulas of 6 types of two-factor risk coupling are given 
by formula (2), while the calculation formulas of 5 types of multi-factor risk coupling are provided by formula 
(3). The resulting settlement are as follows. Additionally, the coupling degree value for single factor is too small, 
so it is not included in the table31.

Figure 6.   Risk coupling styles of crane accidents.

Table 1.   Coupling styles number of crane accidents.

Coupling style Number Coupling style Number Coupling style Number

1111 54 1100 27 0011 23

1000 15 1010 33 1110 21

0100 17 1001 13 1011 33

0010 21 0110 25 1101 38

0001 7 0101 22 0111 36
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Utilizing Eqs. (2) and (3), the coupling degree values of risk factors are computed. Observations reveal that the 
coupling degree value of risk factors is directly proportional to the number of risk factorsinvolved in coupling, 
with the order R4 > R3 > R2 > R1. The coupling degree value of 4 factors is the highest, followed by multi-factor, 
double factors, and single factors. In the context of multi-factor coupling risk, the values are as follows: R(M1, 
M2, M3, E) = 0.0802, R(M1, M2, M3) = 0.0746, and R(M1, M3, E) = 0.0690. The risk factors of Man and Manage-
ment are included in the larger risk coupling degree value, indicating that the risk of Man and Management is 
most easily coupled with other risks, which poses a threat to the safety system of crane operations. In addition, 
in the multi-factor coupling, the risk factors of the Management are included in the risk coupling degree value, 
which manifests that the lack of safety education and training and the special construction plan are the main 
causes of crane accidents (Fig. 7).

The development of the BN model
The Bayesian Network(BN) structure depicting crane accidents is illustrated in Fig. 8. In this study, Genie soft-
ware is employed to develop the BN model. Based on the 16 risk factors identified in "The definition of crane 
operation risk factors", the node variables of the BN model can be preliminarily established. Assigning two states, 
whether the nodes exist or not, represents the occurrence or non-occurrence of the state described by the node. 
The construction of the BN model under factors coupling involves two steps: (1) Determine whether there are 
edges between nodes according to the results of the N-K model calculation; (2) considering the causal relation-
ship among nodes, the arrow direction of each edge is determined to form a complete BN topology.

Validation of the developed BN model
Model verification constitutes a crucial aspect of the proposed model. The three-kilometer verification method, 
a common common approach for Bayesian networks, is employed in this study to assess the effectiveness of 
the proposed model. The three-kilometer theory should adhere the following criteria: (1) a change in the prior 
subjective probability of each parent node should result in a change in the posterior probability of the child node; 
(2) the change of the subjective probability of each parent node has the same influence on the value of the child 
node; (3) the change of attribute probability of x–y (y ϵ x) has less influence on the value than x32.

When the vibration of the parent node of the child node Man-Factor is set to 0, the probability of M1–M3 
coupling decreases from 47 to 23%. If the low safety awareness is set to 0, the probability of M1–M3 coupling 
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will decrease to 9.2%. If all the parent nodes are set to 0, the probability of M1–M3 coupling is also 0. Repetitive 
training of these nodes to conform to the axioms enables model validation.

Results and discussions
The reasoning ability of a BN model denotes the capability to manipulate the nodes in the network to deduce 
changes in other nodes based on the established Bayesian network. The probability of occurrence or non-occur-
rence of any node can be calculated using the method of conditional probability in the Bayesian network. 

Figure 7.   Risk factors coupling probability.

Figure 8.   Expanded BN based on the N-Kmodel.
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Furthermore, any alteration in the input value of any node may lead to a change in the probability value of the 
target node.

Based on the established Bayesian network depicting the coupling of crane accident risk factors, sensitivity 
analysis and the analysis of the most approximate cause chaina are conducted for the three risk factors M1–M2-
M3–E, M1–M2–M3, and M1–M3–E. This exploration identifies the sensitivity risks and key factors in risk coupling, 
offering a scientific foundation for the safety management of crane operations.

Prior probability and posterior probability
A comparative analysis of the prior probability and posterior probability results for each node in the above three 
high-risk coupling effects is presented in Fig. 9.

From the posterior probability, it can be inferred that the risk factor M3 of the M1–M2–M3–E coupling type is 
most significant, constituting 69.1%, making it the primary factor contributing to the lifting operation accidents. 
Environmental factors exert the least influence on the risk of coupling in crane operations. Illegal operations 
emerge as a important factor leading to lifting accidents.

Sensitivity analysis
The BN model suggests that the impact of the change in each factor on the risk coupling of crane operations 
varies.For the analysis of the influence trend of the value change of each factor on the risk coupling, the factors 
are adjusted within a certain range during the selection of uncertain factors in the sensitivity analysis, such 
as ± 5%, ± 10%, ± 15%, ± 20%, etc. Consideration must be given to the smoothness of the curve when choosing 
the specific step size. If the step size is too large, the curve may lack smoothness. Contraryly, a very small step size 
will result in a large calculation load and excessive smoothness. In the analysis of sensitivity for the M1–M2–M3–E 
with the largest risk coupling degree value, the factor value step size is 0.1, and the value range is [0, 1]. Subse-
quently, the probability sensitivity of related nodes affected by single-factors of Man, Machine, Environment, and 
Management is analyzed, and the key nodes of BN probability change are identified. When the probability of each 
node is 0, the probability value of other nodes does not change; that is, the risk coupling of crane operations is 
not affected by this factor. The abscissa is the probability value of node failure, and the ordinate is the probability 
of lifting accidents caused by multi-factor risk coupling. The results are shown in Fig. 10.

Figure 10a illustrate that as the failure probability of the nodes related to Man risk factors increases from 0 to 
1, the impact of each node on the crane accident grows, with a substantial change at the end. This suggests that 
Man risk factors have a significant impact on the crane accident. Specifically, low safety awareness and illegal 
operations exert a greater impact on the probability of crane accidents. In Fig. 10a, c, the box type rises steadily, 
indicating that the risk factors of the Management and Machine have a significant and stable impact on the crane 
accident; in Fig. 10d, it maintains steady growth in the early stage but increases sharply, with a notable difference 
when the probability is 0.9. This implies that the failure probability of environmental factors increases to a certain 
extent, exerting a significant impact on crane accidents33.

To analyze the influence trend of single-factor, double-factor, and multi-factor on the coupling effect of 
crane operations, the probability changes of Man, Machine, Management, and Environment secondary nodes 
are drawn in Fig. 11.

Figure 11a implies that the single-factors of Man, Machine, Management, and Environment exhabit a linear 
positive correlation with the risk of crane operation accidents, and the fitting correlation coefficient R2 is greater 
than 0.98. The risk of crane operation accidents increases with the increase in the failure probability value of 
single-factor nodes, and the influence of Management factors is the most significant. Observing Fig. 11b, it is 

Figure 9.   Failure probability distribution of risk factor.
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evident that the double-factor coupling curve of Man, Machine, Management, and Environment forms a quad-
ratic positive correlation function, with the correlation coefficient R2 exceeding 0.96. The risk of a crane accident 
increases with the increase in double-factor failure probability, and the change range of the Man–Machine fac-
tor is the largest, at 98.07%. The probability change and fitting curve of a crane operation accident under the 
combined action of Man, Machine, Management, and Environment are shown in Fig. 11c. The fitting curve is 
positively correlated, and the fitting accuracy R2 is greater than 0.99. At a failure probability of 100%, the error 
probability reaches as high as 94%. Hence, to prevent the occurrence of crane accidents, attention should be paid 
to reducing the impact of multi-factors on crane operations at the same time34.

Conclusion
This paper presents a methodology for quantifying the risk coupling of crane accidents using Bayesian Network 
and the NK models. The paper defines the types of risk coupling caused by Man factors, Machine factors, Man-
agement factors and Environment factors in crane accidents. The paper unveil the risk coupling mechanism of 
crane accidents by examing the interactions among different types of risk factors.

The BN structure is established based on the risk analysis of crane accidents and its N-K model. The param-
eters of risk coupling nodes in the developed BN are determined by the calculation results from the NK model. 
Following the completion of the BN model, validation is carried out using posterior probability, and further 
analysis, including sensitivity analysis and uncertainty analysis, are conducted to investigate the effects of risk 
factors on different types of risk coupling.

Through reasoning simulation analysis, it is determianed that among the influencing factors at the root nodes, 
workers’ illegal operations, inadequate safety supervision, and bad weather conditions are high-risk factors that 

Figure 10.   Curve of first-order node probability.
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induce accidents and should be paid more attention to in risk prevention and control. Among the influencing 
factors of the first-level node, the failure probability caused by Man factor failure and Management factor failure 
changes more greatly, and the training management and on-site supervision of construction workers should be 
strengthened. Among the influencing factors of the secondary node, the crane accident increases in the order 
of single-factor, double-factor, and multi-factor, and the double-factor and multi-factor cases are nonlinear.

This paper expands the theoretical approach to analyzing safety risk factors in lifting operations, offering a 
theoretical reference for establishing a dual prevention mechanism for safety accident risks in lifting operations. 
It also enriches the theoretical methods for the prevention and control of safety accident risks in construction 
projects. It provides guidance for formulating schemes, including hazard source identification, accident preven-
tion in advance, accident rescue in the event, and accident investigation after the event.

Each risk factor in the safety accident of lifting operations will change over time, and the risk coupling effect 
at different time nodes will also vary. Therefore, future research will consider the influence of time parameters 
and establish a dynamic analysis model of the risk coupling effect of safety accidents in lifting operation.

Data availability
The datasets generated and/or analysed during the current study are not publicly available and are available from 
the corresponding author on reasonable request.
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