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Multi‑level deep Q‑networks 
for Bitcoin trading strategies
Sattarov Otabek  & Jaeyoung Choi *

The Bitcoin market has experienced unprecedented growth, attracting financial traders seeking to 
capitalize on its potential. As the most widely recognized digital currency, Bitcoin holds a crucial 
position in the global financial landscape, shaping the overall cryptocurrency ecosystem and driving 
innovation in financial technology. Despite the use of technical analysis and machine learning, 
devising successful Bitcoin trading strategies remains a challenge. Recently, deep reinforcement 
learning algorithms have shown promise in tackling complex problems, including profitable trading 
strategy development. However, existing studies have not adequately addressed the simultaneous 
consideration of three critical factors: gaining high profits, lowering the level of risk, and maintaining 
a high number of active trades. In this study, we propose a multi-level deep Q-network (M-DQN) 
that leverages historical Bitcoin price data and Twitter sentiment analysis. In addition, an innovative 
preprocessing pipeline is introduced to extract valuable insights from the data, which are then input 
into the M-DQN model. A novel reward function is further developed to encourage the M-DQN model 
to focus on these three factors, thereby filling the gap left by previous studies. By integrating the 
proposed preprocessing technique with the novel reward function and DQN, we aim to optimize 
trading decisions in the Bitcoin market. In the experiments, this integration led to a noteworthy 
29.93% increase in investment value from the initial amount and a Sharpe Ratio in excess of 2.7 in 
measuring risk-adjusted return. This performance significantly surpasses that of the state-of-the-art 
studies aiming to develop an efficient Bitcoin trading strategy. Therefore, the proposed method makes 
a valuable contribution to the field of Bitcoin trading and financial technology.

Trading, which is one of the oldest practices in the economic history of humankind, has undergone significant 
transformation with the advent of modern technology. Traditional trading, which is often characterized by human 
discretion and judgment, has been the bedrock of market transactions for centuries. Brokers and traders around 
the world make decisions based on their understanding of market movements, historical trends, and industry 
news. However, in the past few decades, fueled by advancements in computing technologies and the rise of data 
analytics, there has been a paradigm shift from traditional trading methods to algorithmic trading. Algorithmic 
or algo trading leverages complex mathematical models and algorithms to enable high-speed trading decisions. 
This method offers a multitude of advantages over traditional trading, such as increased speed and accuracy, 
reduced costs, and elimination of human emotional bias. In fact, according to a report by GlobeNewswire1, the 
algorithmic trading market size amassed 14.1 billion USD in 2021 and is expected to expand to 41.9 billion USD 
by 2030, growing at 12.9% per year.

This trend toward algorithmic trading has not spared the cryptocurrency market, and the emergence of 
Bitcoin as a leading digital currency has sparked significant interest among investors and financial traders 
worldwide2. As the pioneer of cryptocurrencies, Bitcoin has opened new venues for trading and investment, 
thereby revolutionizing the global economic landscape3. Bitcoin, with its growing popularity, increasing market 
capitalization, and decentralized nature, has become a significant player in the world of finance4. Its influence 
extends beyond the realm of cryptocurrencies, affecting traditional financial markets, monetary policies, and 
regulatory frameworks5.

In light of the rapidly evolving cryptocurrency ecosystem, driven by technological advancements as well as 
increasing public interest, Bitcoin trading has become a critical area of focus for investors seeking to capitalize 
on its potential for high returns6. As the market continues to mature, new opportunities and challenges emerge, 
requiring innovative methods to navigate the complex and volatile landscape effectively. This necessitates the 
development of advanced trading strategies that consider multiple factors to achieve optimal performance7.

An essential aspect of developing successful trading strategies is to leverage the historical price of Bitcoin8. 
Understanding past trends can help with informed decision-making in real-time trading, aiding in the identifica-
tion of patterns and market trends that can be exploited9. Incorporating historical data into trading algorithms 
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helps establish the context, enabling traders to make informed decisions based on past market behavior10. This 
can lead to more accurate predictions and improved risk management, ultimately contributing to the overall 
success of trading strategies.

Another crucial component of an effective Bitcoin trading strategy is the integration of people’s opinions on 
Bitcoin. Social media platforms, such as Twitter, which act as conduits for public opinion, can significantly influ-
ence market trends and impact the success of trading strategies11. The real-time nature of Twitter enables rapid 
dissemination of information, leading to potential short-term fluctuations in the market that can be exploited by 
traders12. By incorporating tweet-sentiment analysis into the decision-making process, traders can gain valuable 
insights into market sentiment, which enables them to anticipate potential price movements and adjust strategies 
accordingly as shown in Fig. 1.

Active trading, which refers to actual trading with an agent who chooses to buy or sell, is an essential aspect of 
a successful trading strategy, as it allows traders to take advantage of market fluctuations and price movements13. 
By maintaining a high level of trading activity, investors can capture short-term gains, adapt to changing market 
conditions, and optimize overall returns14. Balancing active trading with profit maximization and risk minimiza-
tion is a challenging task that has not been adequately addressed in the existing research.

To address these challenges, we adopted the deep Q-network (DQN) technique, which has demonstrated 
remarkable success in solving complex decision-making problems15. DQN offers several advantages over tradi-
tional methods, such as an ability to learn and adapt to dynamic environments, handle high-dimensional input 
spaces, and generalize from past experiences16. Moreover, DQN effectively balances exploration and exploitation, 
which leads to more robust and efficient trading strategies17. In particular, the major innovation in this study is 
that we propose a method to increase learning effectiveness by classifying DQN into several levels. This multi-
level structure occurs due to the step of predicting the bitcoin price through Twitter data and the step of the 
trade through historical price data in order to increase the final trade performance. We call this Multi-level DQN 
(M-DQN) through the paper. This approach uniquely integrates historical Bitcoin data and Twitter sentiment 
analysis into our preprocessing pipeline to maximize profits, minimize risks, and encourage active trading in the 
Bitcoin market. The proposed M-DQN consists of three DQN modules: (1) Trade-DQN generates initial trading 
recommendations by solely relying on Bitcoin historical price data, (2) Predictive-DQN is used to obtain future 
Bitcoin price predictions based on Bitcoin-related tweet sentiment scores and historical price information, and 
(3) Main-DQN explores the synergistic effects of integrating the outputs of the previous two DQN models (trade 
recommendation and price prediction), thereby examining a combination of these data sources for improved 
decision-making and trading performance. Furthermore, we also design a novel reward function that encour-
ages the DQN model to focus on these three critical factors, for a more balanced and effective trading strategy.

The M-DQN structure facilitates a more granular approach to learning and decision-making. By compart-
mentalizing the learning process, each module can specialize and become more efficient in its respective domain. 
This specialization leads to enhanced performance in each task—be it price prediction, sentiment analysis, or 
trade recommendation. The decision to integrate these modules into a unified framework is underpinned by the 

Figure 1.   Motivation for Bitcoin trading strategy based on historical information of Bitcoin price and Bitcoin-
related tweet sentiment analysis.
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belief that the interplay between different types of data (historical prices and sentiment) can uncover patterns 
and trading opportunities that might not be apparent when analyzed in isolation. The M-DQN structure is thus 
not just a sum of its parts but a synergistic ensemble that leverages the strengths of each component to deliver a 
comprehensive and potent trading strategy.

In summary, we explain the main contributions in some detail, as follows: 

(a)	� First, we propose a preprocessing methodology combining historical Bitcoin price data and Twitter senti-
ment analysis to extract key market features. Leveraging insights from our previous DQN-based Bitcoin 
trading model18 (Trade-DQN), we analyze over 5 years of Bitcoin’s price history to identify trading signals. 
We evaluate the influence of public opinion on Bitcoin prices using another DQN-based model (Predictive-
DQN), which analyzes sentiments in Bitcoin-related tweets, categorizing them as negative, positive, or 
neutral, and predicts future price changes in percentage terms.

(b)	� Second, a novel Main-DQN model is specifically designed for Bitcoin trading. The model incorporates 
preprocessed data, presenting the opportunity to learn complex patterns and market dynamics. Through 
extensive training, the Main-DQN model captures intricate relationships between historical prices, sen-
timent, and market trends. This enables the model to generate an efficient trading strategy capable of 
identifying and exploiting profitable opportunities in the Bitcoin market.

(c)	� Third, we propose a novel reward function that considers three important aspects of successful trading: 
profit maximization, risk minimization, and maintaining active trading. To maximize profit, the reward 
function encourages the model to identify and exploit profitable trading opportunities. The proposed 
reward function also penalizes high-risk actions to minimize potential losses, ensuring that the model 
does not take excessive risks. Further, rewarding a higher frequency of trading actions promotes active 
trading.

(d)	� Finally, we provide a comprehensive comparative analysis of our proposed M-DQN method against not 
only traditional trading strategies but also several recent innovative models. As a result, when compared 
to traditional strategies that rely solely on raw data, our method demonstrates a remarkable increase in 
annualized returns by 29.93%, and a 2.74 value in the Sharpe Ratio, a key indicator of risk-adjusted return. 
Moreover, when we compare these performances with the other contemporary models, the M-DQN out-
performs in terms of risk-adjusted value.

 The remainder of this paper is organized as follows: “Related work” section  provides a review of related works. 
In “Data preparation” section, the data collection methodology is detailed. “Multi-level DQN” section presents 
the M-DQN model and the novel reward function. In “Experiment and results” section, the experimental results 
and performance analysis are explained, highlighting the advantages of the proposed approach over existing 
methods. In “Discussion” section, the findings of this study, limitations, and potential future research directions 
are discussed. Finally, “Conclusion” section concludes the paper.

Related work
This study is related to three strands of literature. First, it contributes to the extensive body of literature on the 
development of effective trading strategies. Second, it is associated with works that employ Bitcoin historical price 
data. Third, it is connected to research on the development of trading decisions with a focus on Twitter senti-
ment data. Table 1 provides general information on related studies, outlining the key algorithms/methods used.

Exploring Bitcoin trading strategy
The Bitcoin market, with its fast growth, high volatility, and 24/7 availability, has drawn significant individual 
and institutional investor interest despite the inherent risks of price fluctuations19,20. This dynamic, volatile 
market necessitates advanced trading strategies, leading to the deployment of machine learning as an approach 
for identifying patterns from historical data and improving trading performance.

Machine-learning algorithms have found wide applicability in financial world problems21,22, trading, includ-
ing portfolio management, risk assessment, and price forecasting23. Many studies emphasize predicting futures 
asset prices, like stocks or Bitcoin24–27, underpinning that accurate futures price predictions could guide traders’ 
decisions, increase profits, and hedge against market risks. Researchers are striving to develop more precise and 
reliable predictive models that contribute to better trading decisions and financial outcomes. In one of these 

Table 1.   Taxonomy of related works.

Categories Methods

Exploring Bitcoin trading strategy
Q-learning23, tree-based classification model24, backpropagation neural network25, ANN 
and SVM26, RNN and LSTM27, forecasting and classification algorithms28, SVM29, Ada-
Boost and XGBoost30, SVM and random forest31, Deep Q-Network [This paper].

Bitcoin historical data in strategy formulation
Machine learning and technical analyzing algorithms32, time-series analytical 
mechanisms33, deep reinforcement learning18, LSTM34, ARIMA35, random forest, 
XGBoost, SVM, quadratic discriminant analysis, and LSTM36, Deep Q-network [This 
paper].

Twitter sentiment analysis for trading decisions
Recurrent nets and CNN37, random forest38, linear discriminant analysis39, vector 
autoregression40, Q-learning41, logistic regression, Naive Bayes, and SVM42, Bullish tweet 
signals43, BERT and GRU​44, FinBERT, CNN, and NLP45, Deep Q-Network [This paper].
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studies, Attanasio et al.28 investigated the application of machine learning methods versus time-series forecasting 
techniques for predicting subsequent day prices of various cryptocurrencies. In this study, time-series forecast-
ing models yielded a higher average number of trade signals than machine learning-based methods, whereas 
classification models demonstrated a higher average return per trade than time-series forecasting techniques. In 
addition, although classification models frequently generated more precise signals, they tended to miss numerous 
profitable trading opportunities. Slepaczuk et al.29 evaluated an algorithmic trading approach using a support 
vector machine (SVM) model to identify cryptocurrencies with high or low anticipated returns. The SVM strategy 
ranked fourth in performance, surpassing the S &P B &H strategy, but lagging behind four other benchmark 
strategies. The authors attributed the SVM model’s modest performance to the large number of required param-
eters that make it susceptible to overfitting.

A common focus on developing efficient Bitcoin trading strategies by obtaining accurate price predictions 
are found in existing studies. Kumar et al.30 applied various machine learning techniques, including AdaBoost, 
RandomForest, XGBoost, and Neural Networks, to predict cryptocurrency movements on an intraday scale and 
to develop a trading strategy. They utilized a diverse range of labels and unique features, such as forecasts from 
econometric models like GARCH, as well as volume and trade data, to assess their interactions with returns. Their 
project effectively demonstrated the use of machine learning for trading, framing the problem as a classification 
task and employing hyperparameter tuning for optimal results. Helder et al.31 also investigated the predictability 
of Bitcoin and the profitability of trading strategies derived from several machine learning algorithms (e.g., linear 
models, SVM, and random forests). Their positive results further support the robustness of machine learning in 
terms of the predictability and profitability of Bitcoin, even in challenging market environments.

Bitcoin historical data in strategy formulation
Historical data consisting of past price movements, trading volumes, and other relevant market information 
have proven to be valuable resources for traders and investors attempting to develop effective trading strategies 
that would allow them to make informed decisions in the volatile Bitcoin market20.

Numerous studies have shown the potential of using historical data in conjunction with analytical techniques, 
such as technical analysis and machine learning algorithms. These tools enhance the performance of trading strat-
egies and accuracy of price prediction32. For instance, Ciaian et al.33 used time-series analysis of daily data from 
2009–2014 to investigate the Bitcoin price and its relationship to market fundamentals and investor attractiveness.

In our previous study18, we focused on developing an optimal trading strategy using Bitcoin historical price 
data, employing deep reinforcement learning (DRL) techniques to create a model capable of learning effective 
strategies through Bitcoin market interactions and adaptive decision-making. Training on historical price data 
of Bitcoin, Litecoin, and Ethereum, the DRL-based model identified profitable opportunities and managed mar-
ket risks, demonstrating the potential of DRL in the cryptocurrency market. The research done by Wei et al.34 
also showed the usage of Bitcoin historical price data can be useful for developing trade planning. Their model 
capitalized on LSTM’s ability to process historical price data, assisting investors in discerning upcoming market 
trends. Additionally, they proposed a daily trade strategy model aimed at guiding daily capital management based 
on market dynamics. This approach is noted for its simplicity, effectiveness, and adaptability to new datasets, 
marking a significant contribution to quantitative investment strategies and cryptocurrency trading. In order to 
minimize the risk while maximizing the returns, Hong et al.35 also aimed to uncover historical price patterns by 
developing two models: an ARIMA-based price prediction model (Model 1) and a quantitative trading strategy 
model using dynamic programming (Model 2). The ARIMA model was used to forecast the trends of gold and 
bitcoin, providing a foundation for trading decisions. Model 2 utilized the Sharpe ratio as a key parameter to 
balance investment risk and return. The models were optimized with a particle swarm algorithm, enhancing 
their efficiency. Notably, the accuracy of the gold and bitcoin price prediction curves was found to be 0.99 and 
0.92, respectively, demonstrating the effectiveness of their approach in predicting market trends. Although they 
aimed for the same goal, our current study however takes into account maintaining the active trading task as well.

Chen et al.36 offered insights into the underlying market dynamics by analyzing past price trends. They 
emphasized the significance of historical Bitcoin price data for forecasting, utilizing machine learning techniques 
to optimize input data representation and improve prediction accuracy. By comparing various machine learning 
models, they enhanced the Bitcoin price prediction accuracy, thereby contributing to the development of effective 
strategies in the cryptocurrency market.

Apart from the role of historical Bitcoin price data, it is essential to explore other factors such as the influence 
of social media sentiment on trading decisions. In the next subsection, we examine studies that investigate the 
impact of Twitter sentiment analysis on formulating effective trading strategies, with complementary insight 
from historical price data to create comprehensive and robust trading strategies.

Twitter sentiment analysis for trading decisions
This subsection explores the role of Twitter sentiment analysis in developing effective trading strategies, high-
lighting how social media sentiment complements historical price data for a robust strategy. Numerous stud-
ies use sentiment data to predict near-future Bitcoin prices, suggesting that the public opinion expressed on 
social media significantly influences market trends and Bitcoin prices37–41. However, few studies have directly 
incorporated Twitter sentiment data into strategy development, which is a potential growth opportunity for 
cryptocurrency trading.

For example, Colianni et al.42 examined Twitter sentiment analysis of algorithmic cryptocurrency trading 
strategies. They collected tweets on various cryptocurrencies, including Bitcoin, and preprocessed the data, prior 
to implementing supervised learning algorithms, such as logistic regression, Naive Bayes, and support vector 
machines. Sentiment data suggest a trading strategy in which buying or selling decisions are based on tweet 
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sentiments. Their simulation results indicate that the Twitter sentiment-based trading strategy outperforms the 
naive buy-and-hold strategy in terms of profitability.

Similarly, Gao et al.43 studied the impact of financial Twitter sentiment on Bitcoin returns and high-frequency 
volatility. Their findings showed a significant link between Twitter sentiment and Bitcoin returns, with positive 
sentiment leading to higher returns and negative sentiment leading to lower returns. Thus, sentiment data can 
help predict high-frequency volatility in the Bitcoin market. A very similar approach to our current study has 
been employed by Haritha et al.44 by combining historical Bitcoin price data with Twitter sentiment analysis. Their 
model utilized a Bidirectional Encoder Representations from Transformers (BERT)-based Neural Network for 
sentiment analysis and a Gated Recurrent Unit (GRU) for price prediction, integrating both user-specific Twitter 
metrics and historical price trends. This unique amalgamation of sentiment and price data proved effective, with 
the sentiment analysis achieving a Mean Absolute Percentage Error (MAPE) of 9.45%, and the price prediction 
showing a notable accuracy with a MAPE of 3.6%. While their study primarily focuses on achieving higher 
accuracy in predicting Bitcoin prices, our research diverges in its objective. Our study aims not just at predicting 
price trends but at generating a reliable and actionable trade decision—whether to buy, sell, or hold. Finally, Zou 
et al.45 proposed and back-tested a trading strategy based on several correlated assets, technical indicators, and 
Twitter content with varying thresholds. They demonstrated that this approach can be used to build a profitable 
trading strategy with reduced risk compared to a ’hold’ or moving average strategy.

In summary, the studies discussed in this section demonstrate the various methods employed by researchers 
to develop effective cryptocurrency trading strategies. These studies underline the significance of social media 
sentiment and Bitcoin historical price data in understanding and predicting market behavior. The studies provide 
valuable insights and lay the groundwork for further research in this field. Our study builds upon their findings 
in introducing a unique preprocessing step that combines Bitcoin historical and Twitter sentiment data. This 
approach potentially creates a more robust trading strategy and contributes to the ongoing efforts to improve 
the performance of cryptocurrency trading strategies.

Data preparation
This section presents the data preparation process, which is a crucial step in developing the proposed trading 
strategy. We consider two types of data: (1) Bitcoin historical price data, which indicate the changes in Bitcoin 
price over a specific period of time and (2) Twitter sentiment data, which are Bitcoin-related positive or negative 
data mentioned on Twitter.

In providing detailed insight into the data preparation stage, the aim is to enhance the transparency and 
reproducibility of our approach, thereby facilitating the development of accurate trading strategies in the Bitcoin 
domain.

Bitcoin historical price data
Bitcoin price dynamics is influenced by a variety of factors ranging from geopolitical events to regulatory changes, 
making it an intriguing case for an in-depth study. The historical price data of Bitcoin offer a rich tapestry of 
information that serves multiple purposes and reveals patterns that have emerged over the years, which can be 
instrumental in predicting futures price movements. This provides insights into market sentiment, shedding 
light on how markets may react to future events based on past reactions. Additionally, by juxtaposing the data 
with major global events, certain geopolitical shifts, technological advancements, and regulatory changes that 
influence the Bitcoin value can be discerned.

As in our previous work18, all historical Bitcoin price data were sourced from the crypto platform46 which 
offers free historical cryptocurrency data, primarily for backtesting strategies and analysis. The historical price 
data used in this study comprise the closing prices of Bitcoin, spanning the period from October 1, 2014 to 
March 1, 2019, as shown in Fig. 2. This timeframe was specifically selected because it marks a significant period 
of substantial price fluctuations for Bitcoin. Such volatility provides a robust testing environment for verifying 

Figure 2.   Bitcoin historical price chart graph for the time period of 01.10.2014 and 01.03.2019.
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the effectiveness of the proposed trading strategy. These past fluctuations also serve as a narrative of Bitcoin’s 
journey. Each spike, dip, and plateau in the price chart indicates a story—a reflection of market sentiment, global 
events, or technological shifts. Figure 2 traces the trajectory of Bitcoin’s price changes throughout the selected 
period, offering readers a tangible understanding of its historical evolution.

In essence, the historical price data of Bitcoin go beyond a sequence of numbers, encapsulating the cryptocur-
rency’s journey and mirroring the market’s evolving sentiments, in responding to a myriad of external influences 
that have and continue to shape its value. In this study, we aim to decode an intricate sequence of numbers and 
narratives, offering insights into Bitcoin’s past, present, and potential trajectories.

Twitter sentiment data
Public sentiment often plays a crucial role in determining asset prices in financial markets, and this effect is 
pronounced in cryptocurrencies. Social media platforms, particularly Twitter, serve as primary conduits for 
public sentiments, making them invaluable sources of data for sentiment analyses47–49.

This study builds on the methodology presented in previous research, where Twitter sentiment data were 
employed to predict Bitcoin’s near-term price fluctuations41. The primary focus of this endeavor is to analyze the 
sentiments in tweets pertaining to Bitcoin, for a better understanding of community’s perceptions and potential 
market movements.

Data collection involved aggregating over seven million tweets related to Bitcoin from April 1, 2014, to 
November 14, 2018. The extraction utilized Twitter’s streaming API, targeting keywords such as #Bitcoin, #bit-
coin, #BTC, and #btc. The detailed statistics for this dataset can be found in Table 2. Given the inherent noise 
in raw tweets, preprocessing is of paramount importance. The data were subjected to rigorous cleaning, which 
involved the removal of URLs, unnecessary hashtags, extraneous symbols, and other irrelevant content. On the 
cleaned dataset, sentiment analysis was conducted using the VADER Python library50. The output sentiment 
scores were further categorized such that scores between − 1 and 0 indicated negative sentiment; a score of 0 was 
considered neutral; and scores between 0 and 1 indicated positive sentiment. In this study, to indicate the state 
of DQN, the continuous values were rounded to the second decimal place and used as discrete values.

The aim of integrating Bitcoin historical price data with Twitter sentiment data is to produce a more refined 
trading strategy. Combining objective historical price data with subjective sentiment data offers a comprehensive 
approach that can enhance the predictive accuracy of the trading model. In leveraging both datasets, the goal is to 
develop a trading strategy that accounts for past price movements while also adapting to current public sentiment.

Multi‑level DQN
This section presents the learning algorithm employed to develop an effective trading strategy by leveraging the 
processed datasets. A more comprehensive understanding of the proposed model is provided in the three subsec-
tions. The proposed M-DQN consists of three independent DQN-based models: Trade-DQN, Predictive-DQN, 
and Main-DQN. The subsections respectively cover the theoretical background of RL and DQN, a summary 
of the results from the Trade-DQN and Predictive-DQN models, and the design methodology of the proposed 
Main-DQN model.

Background—RL and DQN
As mentioned above, because the proposed M-DQN is based on the RL and DQN structures, the basic concepts 
are introduced prior to describing the method in detail.

Reinforcement learning
Reinforcement learning is a machine-learning paradigm in which an agent learns to make decisions by interact-
ing with its environment51. The goal of the agent is to maximize its cumulative reward by discovering an optimal 
policy that maps states to actions. The agent performs actions based on its current state, and the environment 
responds by providing feedback in the form of rewards or penalties. This process is iterative and continues 
until the agent has acquired a sufficient understanding of the environment to ensure that the given task is well 
performed.

The foundation of RL lies in the MDP framework, which comprises a tuple ( S,A,P,R, γ ), where S denotes 
the set of states; A represents the set of actions; P is the state-transition probability function; R is the reward 
function; and γ is the discount factor with 0 ≤ γ ≤ 1 . This indicates the agent’s preference for present over future 

Table 2.   Statistical information on dataset.

Definition Value

Starting time of tweet gathering 01.04.2014

Ending time of tweet gathering 14.11.2018

Number of total tweets 7,142,716

Tweet with keywords used once 4,294,621

Tweet with keywords used twice 1,927,842

Tweet with keywords used more than three times 1,057,181
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rewards. When γ is closer to zero, the agent prioritizes immediate rewards, whereas a γ value of approximately 
one suggests that the agent values future rewards almost as much as immediate rewards.

The agent’s objective is to learn an optimal policy π that maximizes the expected cumulative reward, which is 
known as the value function, for each state. The value function V(s) is defined as the expected cumulative reward 
starting from state s and following policy π . Similarly, the action-value function Q(s, a) represents the expected 
cumulative reward starting from state s, taking action a, and following policy π.

A popular method for solving RL problems is Q-learning, which is a model-free, value-based method that 
directly estimates the optimal action-value function52. Q-learning is an off-policy algorithm that learns the 
optimal policy regardless of the agent’s current policy. In Q-learning, the agent updates its action-value function 
using the Bellman equation, which expresses the optimal value of a state-action pair as the immediate reward 
plus the discounted future value of the next state-action pair. The agent iteratively updates the Q values using 
this equation until the optimal Q values converge.

Deep Q‑network
Building upon the foundations of Q-learning, DQN is an extension that combines reinforcement learning with 
deep learning techniques15. It uses a deep neural network as an approximator to estimate the action-value func-
tion Q(s, a). DQN addresses the main challenges of traditional Q-learning, such as learning stability. Moreover, 
by employing deep learning, DQN can handle high-dimensional state spaces, such as those encountered in 
image-based tasks or large-scale problems53.

To ensure stable learning, DQN incorporates two essential techniques: experience replay and target networks. 
Experience replay is a mechanism that stores an agent’s experiences (i.e., state transitions and rewards) in a replay 
buffer54. During training, the agent samples random minibatches of experiences from the buffer to update the Q 
values. This process helps break the correlation between consecutive experiences, thereby reducing the variance 
of updates and leading to more stable learning.

Complementing experience replay, target networks address the issue of moving targets in the Q-value update 
equation. In DQN, a separate neural network called the target network is used to compute the target Q-values 
for the Bellman update. The target network has the same architecture as the main Q-network. However, its 
parameters are updated less frequently, by periodically copying weights from the main network. This technique 
mitigates the issue of nonstationary targets and improves learning stability.

In summary, RL and DQN provide a robust and scalable framework for learning optimal policies in complex 
environments with large state spaces. By leveraging deep learning techniques, DQN effectively tackles the chal-
lenges of scalability and stability in traditional Q-learning. In the context of this study, the DQN framework was 
applied to develop an enhanced trading strategy that incorporates both Bitcoin historical price data and Twitter 
sentiment data.

Preprocessing DQN
As described previously, the proposed M-DQN consists of two parts: (1) Preprocessing DQN and (2) Main Trading 
DQN. Preprocessing DQN is a DQN that preprocesses the input data of Main DQN using the original data. For 
this purpose, two different types of DQN: trade-DQN with Bitcoin price data and predictive-DQN with Bitcoin 
price and tweet sentiment data, were constructed to deal with different datasets. A detailed explanation of the 
preprocessing DQN is provided below.

Trade‑DQN with Bitcoin price data
In the Trade-DQN model, the agent attempts to maximize short-term profits in the Bitcoin market, learning from 
features related to market conditions, relationships between historical Bitcoin prices, and agent’s current finan-
cial position. Over time, the agent learns how to make optimal investment decisions—buy, sell, or hold Bitcoin.

The agent interacts with its environment, which is defined as an hourly Bitcoin market. That is, the agent 
observes the environment and receives hourly Bitcoin price data as a state, chooses an action based on the policies 
learned during training, and obtains a reward for the actions taken. In this study, the state, action, and reward 
are denoted by st , at , and rt , respectively for all DQN models at time t.

In the Trade-DQN step, the state is defined as st := APt , where APt is the actual Bitcoin price at time t. The 
Bitcoin price is considered up to the second decimal place and used as a discrete value. The action of the agent 
is at ∈ {buy, hold, sell} i.e.,, the agent can perform three types of actions: buy, hold, and sell Bitcoins, as shown 
in Fig. 3. Reward rt is designed to encourage the agent to make profitable trades and discourage unprofitable or 
indecisive actions. If the agent chooses to “hold,” it gets zero feedback from the environment ( rt = 0 ). However, 
if the “hold” action is repeated consistently several times (more precisely twenty times), the agent is punished 
with a negative reward ( rt = −1 if the number of consecutive “hold” actions m ≥ 20 ). After each “sell” action, 
an agent gets a reward from the environment, negative or positive. The reward value depends on the profitability 
of the selling action. This is calculated by subtracting the selling price, denoted by Psell from the last purchasing 
price, denoted by Pbuy , whereby the reward is rt = Psell − Pbuy . If the agent continuously chooses the “buy” action 
and the number becomes higher than the limit (in this case 20), the agent receives a negative reward ( rt = −1 ). 
This is to prevent the market from making many sequential purchases and improve the agent’s performance.

The DQN model consists of four multilayer models designed to suggest one of three possible actions: buy, sell, 
or hold a position. The first layer has 64 hidden units; the second layer has 32; the third layer has eight neurons; 
and the last layer contains three units, corresponding to the number of possible actions. The activation function 
uses a rectified linear unit (ReLU) in the first three hidden layers and a linear function in the last layer. The mean 
square error (MSE) is used as the error function. The final results of all the four models are used to assess the 
confidence indicators for each of the three available outcomes.
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Predictive‑DQN with Bitcoin price and tweet sentiment data
In Predictive-DQN, Bitcoin-related tweets are utilized to extract sentiments, thereby separating them into posi-
tive (compound score between 0 and 1), neutral (score of 0), and negative (score between 0 and − 1) categories 
as described above. In leveraging these sentiment scores and employing the DQN algorithm, the objective is to 
construct a model capable of predicting future Bitcoin prices. Hence, in this model, the state st is defined by the 
pair st := [APt ,TSt ] , where TSt is the Twitter sentiment score at time t. Because up to the second decimal place 
is considered for APt and TSt , the state space is discrete. Based on this state, the action of the agent is defined as 
a number between at ∈ {−100,−99, . . . , 0, . . . , 99, 100} , representing the future prediction of the price as the 
change from its current value in terms of percentage (Fig. 4). The comparative difference reward (CDR) function 
designed in our previous work41 was adapted as the reward function. This is a unique reward function designed 
to provide more nuanced feedback to the model based on the accuracy of its predictions. The CDR function 
considers the rate of change in the actual Bitcoin price and introduces the concept of a zero-reward value, which 
was defined in41, as follows:

Definition 1  41 Let α = (APt − APt−1)/APt−1 where APt is the actual price of Bitcoin at time t, and 
APt−1 > 0 i.e.,the rate of change in the actual price. Let PPt be the predicted price at time t and let 
l = APt − PPt−1(1+ α) > 0 . This point is referred to as zero-value reward ( ZRt ) at time t where the difference 
from APt is l.

The reward value is then computed based on whether the predicted price ( PPt ) is higher or lower than the 
actual price ( APt ). Therefore, two ZRs exist, as shown in Fig. 5. The former case is denoted by ZR1

t  and the latter 
case by ZR2

t  . If PPt is smaller than APt , the agent receives a negative reward ( PPt < ZR1
t  ) or a positive reward if 

PPt is between ZR1
t  and APt . Mathematically, the reward value is calculated as follows:

(1)rt =
PPt − ZR1

t

APt − ZR1
t

∗ 100%

Figure 3.   Trade-DQN model structure18.

Figure 4.   Predictive-DQN model structure.



9

Vol.:(0123456789)

Scientific Reports |          (2024) 14:771  | https://doi.org/10.1038/s41598-024-51408-w

www.nature.com/scientificreports/

If PPt is higher than APt , the reward is positive if PPt is between APt and ZR2
t  , and the reward is negative if PPt 

is higher than ZR2
t  . In this case, the equation for calculating the reward value is:

In both cases, the reward increases when the predicted price approaches the actual price. The CDR function 
provides a more detailed feedback to the model, allowing it to better adjust its predictions over time.

The Predictive-DRL model comprises five multilayer models designed to output any number between − 100 
and 100 with up to two decimal-point precision. As previously mentioned, this number represents the percent-
age change from the actual price. The first layer serves as the input layer and has two neurons that reflect the 
two features of the Bitcoin price: the actual price and sentiment scores. The three subsequent layers, referred 
to as the dense layers, contain 64 hidden units each. The final output layer comprises 20,001 units. These units 
correspond to the number of possible actions, accounting for all possible numbers between − 100 and 100 with 
up to two-decimal point precision. The ReLU function serves as an activation function for the first three hidden 
layers, whereas the output layer uses a linear function. MSE was adopted as the error metric.

To summarize, the results from the Predictive-DQN model were positive, achieving 86.13% accuracy and 
drawing attention to the effects of Bitcoin-related tweets on Bitcoin futures price changes. Therefore, in this study, 
to develop an efficient Bitcoin trading strategy, a unique dataset was proposed to include market decisions and 
market prediction information for Bitcoin.

Main trade recommendation DQN with integrated data
In the main DQN, for the final trade, the output data of the aforementioned two Preprocessing DQNs are used 
for learning. Therefore, the performance of the proposed Main-DQN model is based on the output results from 
Trade-DQN, which provide trade recommendations, and Predictive-DQN, which offer futures price predic-
tions. Before providing a detailed explanation of the Main-DQN model, the process of leveraging these outputs 
is described.

Data integration
First, two different types of output data are merged into one. Combining these datasets allows us to develop a 
more comprehensive trading strategy that leverages the strengths of both data sources.

Large-scale timespans were considered for both datasets. As there was a slight difference in the time periods 
covered by each, to maintain data integrity and consistency, we identified overlapping periods between the two 
datasets. Furthermore, to satisfy the research objective of uncovering correlations between variables within these 
datasets, it is crucial that the data originate from a consistent timeframe. This alignment guarantees that genuine 
relationships are not distorted by variations over time. The overlapping time periods in the datasets were identi-
fied as spanning from October 1, 2014 to November 14, 2018, comprising 1505 days. This overlapping period 
enabled us to effectively combine the datasets and ensure the integrity of the analysis.

Next, the two datasets were merged into a single dataset by aligning trading recommendations and futures 
price predictions based on their respective timestamps. For each hour within the overlapping period, the cor-
responding trading recommendations and futures price predictions were placed in the same row. This approach 
facilitates the seamless integration of data, allowing a more effective examination of the relationship between 
trading recommendations and futures price predictions.

Given that the objective was to develop an hourly trading strategy, the total number of hours within the 
experimental period were calculated by multiplying the number of days (1505) by 24 h. This resulted in 36,120 
h of data, which formed the basis of our dataset. Therefore, the final dataset comprised 36,120 rows, with each 
row representing an hour within the experimental period. Each row contained trading recommendations and 
futures price predictions for a specific hour. This integrated dataset enabled us to explore the synergistic potential 
of combining Bitcoin historical price data with Twitter sentiment analysis, ultimately aiming to enhance our 
trading strategy and improve its performance in the volatile Bitcoin market.

(2)rt =
PPt − ZR2

t

APt − ZR2
t

∗ 100%

Figure 5.   Computation of zero-value reward41.
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Modeling the main DQN
After obtaining the integrated dataset, the DQN-based Bitcoin trading model (Main-DQN) was built. Similar 
to the preprocessing models, the proposed DQN model, which acts as an agent, interacts with the environment 
represented by the Bitcoin market. The MDP elements of state, action, and reward are defined as follows:

•	 State Space S A state represents the current situation in the market, which is crucial for making informed 
decisions. In our study, each row of the prepared dataset describes hourly data of historical price and Twitter 
sentiment and is considered a state st := [x1, x2] ∈ S at time t. Specifically, each state is a two-dimensional 
array, where the first element x1 can be either − 1, 0, or 1, indicating a sell, hold, or buy recommendation, 
respectively, and the second element x2 is a number between − 100 and 100, representing the predicted futures 
price change percentage based on Twitter sentiment, as shown in Fig. 6.

•	 Action Space  A An action represents the decision made by the agent at a particular state. In our trading task, 
the action of the agent at ∈ A at time t is defined as the final decision on trading, which can represent one of 
three options: buy a Bitcoin from the market, hold, or sell. The agent learns how to choose the most suitable 
action based on the state information and experience, aiming to maximize the expected cumulative reward.

•	 Reward Function r For the trading task, the three important aspects considered for effective trading are: 
gaining high profits, keeping risk at a low level, and maintaining active trading, based on which the pro-
posed reward function evaluates the agent’s decision and guides the learning process. As mentioned earlier, 
achieving high returns is one of the components of an effective trading strategy. In this study, the agent’s 
performance is assessed in terms of gains through profit and loss (PnL) calculations after each decision. It is 
important to note that transaction fees, which are charges incurred by traders when conducting buy or sell 
actions in the market, play a role in determining the PnL. These fees vary depending on the trading platform; 
however, they typically range between 0.1 and 1.5% of the trade value55. For the purpose of this study, a con-
stant 1.5% transaction fee rate was assumed. Despite the transaction fee, a PnL can only be generated when 
a trade has both purchasing and selling prices. Therefore, when the agent decides to buy or hold, it receives 
zero reward, and as soon as it decides to sell, the selling price is subtracted from the sum of the buying price 
of Bitcoin and all transaction fees. If the resulting value is positive, the agent receives an equivalent positive 
reward. If the value is negative, the agent receives a penalty equal to the negative value. Thus, the reward 
function considers both the profit potential and transaction costs involved in trading. To define the reward 
function mathematically, the following notation is introduced: Pbuyk  and Psellk  represent the buying and selling 
price values of the Bitcoin for a given order k (i.e., the 1st Bitcoin, 2nd Bitcoin, and so forth), whereas cbuyk  

Figure 6.   Proposed M-DQN model. In Preprocessing DQN: Trade-DQN receives Bitcoin price data as input, 
and generates initial trade decisions as output x1 ; Predictive-DQN receives Bitcoin price data along with Tweet 
sentiment score as input and generates predicted change in percentage as output x2 . In Trade Decision DQN: 
Main-DQN utilizes the two preprocessed outputs [ x1, x2 ] as input, thereby generating the final trade decision as 
output.
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and csellk  refer to the transaction fees incurred during the purchase and sale of the kth Bitcoin, respectively. 
Under these terms, the PnL for each Bitcoin transaction can be computed as: 

 This formula specifies a comprehensive method for quantifying the net profit (or loss) obtained from the kth 
Bitcoin transaction, after considering the transaction fees. This way, the reward value at time-step t is equal 
to the value of PnLk ( rt = PnLk ). In describing the reward function, the second critical factor for an effective 
trading strategy is to maintain a low risk level. In this work, risk level is described as the percentage of the 
investment that the model is allowed to risk. After each decision made by the agent, the amount of investment 
is calculated, and if it is below a certain threshold, the agent receives a penalty. By contrast, if the investment 
is above the threshold, the agent receives zero reward. More precisely, Icurrent is defined to represent the cur-
rent value of the investment, which is determined at each time-step t after purchasing Bitcoin. This value is 
computed by deducting all relevant expenses ( Pbuyk  and cbuyk  ) from the initial investment amount, IInitial . The 
threshold, denoted by α , represents the maximum permissible part of the investment that the agent is allowed 
to risk. The final factor for an efficient trading strategy is to maintain active trading, which refers to buying 
or selling Bitcoins in the market rather than simply holding them. Encouraging the agent to engage in active 
trading is essential for capitalizing on market opportunities and adapting to changing market conditions. To 
promote active trading, a threshold is established and monitored to determine the number of active trades 
at the time of reaching or exceeding this threshold. Let m be the sum of all the number of purchases and sells 
and ω be the threshold for active trades. In this scenario, the agent receives a negative reward only when the 
number of active trades (m) exceeds the threshold, rt = −1, if m > ω . Then, the reward rt can be computed 
depending on the action at by: 

 In the equation above, when the action is buy or sell, m becomes m+ 1 . This formula provides a way to 
measure the instantaneous reward obtained at each time step, given the current state of the investment, the 
cost of the transaction, and the predefined risk threshold. To determine the optimal threshold, three different 
risk levels are considered, whereby the agent is trained separately for each level: 30% (low), 55% (medium), 
and 80% (high)56. The performance of the agent under these different risk levels is analyzed and reported in 
“Experiment and results” section. Furthermore, as the Bitcoin market operates 24/7 and our dataset reported 
hourly, the maximum number of possible active trades was 24 per day. To explore the optimal number of 
trades for the proposed model, we defined three different thresholds: up to 8, 16, and 24 active trades per 
day. By testing these thresholds, a better understanding can be acquired on how the agent’s trading activ-
ity impacts performance. The results of the experiments conducted with these thresholds are presented in 
“Experiment and results” section, showcasing the effectiveness of the proposed trading strategy under various 
levels of trading activity.

In incorporating these factors into the reward function, the goal is to create an agent capable of making effective 
trading decisions that balance risk, profitability, and trading activity, ultimately for an optimal trading strategy. 
The key components and layers of the architecture used in our trading strategy are outlined, explaining the role 
of each layer in extracting meaningful information from the input data and estimating the action-value func-
tion Q(s, a). The model architecture begins with an input layer that has two neurons which capture the relevant 
information in the data, necessary for making trading decisions. These neurons represent market actions (− 1, 
0, or 1) and the price prediction score (ranging from − 100 to 100).

The DQN model contains three fully connected dense layers, each containing 64 neurons. These layers aim to 
capture the complex relationships between the input features and actions. Increasing the number of neurons and 
layers allows the model to learn more complex patterns, at the expense of increased computational cost and risk 
of overfitting. Each dense layer utilizes a ReLU activation function to prevent vanishing gradient issues during 
training. The choice of the activation function is critical, as it introduces nonlinearity into the model, enabling 
the learning of intricate patterns.

The output layer of the model comprises three neurons corresponding to the three possible actions: buy, 
sell, or hold. These neurons represent the Q-values for each action, given the current state, and help the model 
produce a probability distribution for the actions to guide the decision-making process. To minimize the differ-
ence between the predicted and target Q-values, the model uses the MSE loss function. This choice of the loss 
function dictates model learning from errors and parameter updates. The Adam optimizer was employed in this 
model because it strikes a balance between fast convergence and stability during training.

Experiment and results
In this section, the results of the experiments conducted to determine the effectiveness of the reward function, 
risk level, and active trading thresholds are presented for the proposed Main-DQN model and a Bitcoin trading 
task. To conduct the experiments, we created an environment using Python, utilizing the Pandas library for data 
preprocessing and employing TensorFlow and Keras for model training and testing, respectively. To train and 
test the Main-DQN model, the dataset was split into two parts. The model was trained on a dataset comprising 
trading decisions and price predictions, with the data spanning the period of October 1, 2014 to October 14, 2018. 
The Main-DQN model incorporated a deep neural network architecture and a set of hyperparameters fine-tuned 
to optimize the trading strategy for a given task. The choice of the optimizer influences the speed and stability of 

(3)PnLk = Psellk − P
buy
k − c

buy
k − csellk .

(4)rt =

{

−1, if m > ω or at = buy with Icurrent < α

0, if m ≤ ω, at = buy with Icurrent ≥ α or at = hold
PnLk , if m ≤ ω, at = sell,
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the learning process, making it a critical factor in the overall performance of the model. In our experiment, the 
learning rate was set to 0.001 and the discount factor ( γ ) to 0.95. The exploration rate ( ǫ ) started at 1 and decayed 
exponentially, with a decay factor of 0.995. Despite differing structures and tasks, the three DQN models share 
similar hyperparameters and the rationality of this was a deliberate choice. Using a common set of hyperpa-
rameters created a consistent baseline for comparison, isolating the impact of each model’s unique architecture.

The target network update frequency in the model was set to 400 steps. This determines how often the 
parameters of the target Q-network are updated, which affects learning stability. Among the different update 
frequencies used in the experiment, 400 Hz provided an optimal balance between stability and responsiveness. 
Finally, the batch size for the experience replay was set to 64. This implies that during training, the agent samples 
random minibatches of 64 experiences from the replay buffer to update the Q values. Table 3 provides a concise 
overview of the architectures and hyperparameters used in the three DQN models of this study to determine 
market actions and sentiment scores. Complementing this detailed presentation, Fig. 6 provides a visual depic-
tion of the experimental procedures and offers a comprehensive presentation of the methodology.

The experimental results are presented in four distinct subsections, each focusing on a different aspect of 
model performance. (1) First, the various evaluation metrics used to assess the performance of the M-DQN 
model in the Bitcoin trading task are discussed in terms of PnL and risk-adjusted level. (2) Second, the M-DQN 
model’s performance is analyzed under different risk levels. By varying the risk thresholds in the reward function, 
the most suitable risk level for the trading strategy is identified. The impact of varying the number of active trades 
on the M-DQN model performance is also assessed, with the goal of determining the optimal active trading 
threshold for the trading strategy. (3) Third, the efficiency of the proposed reward function is compared with 
two existing reward functions from the literature, to demonstrate the effectiveness of the proposed approach. 
(4) Finally, the results are compared with those of other state-of-the-art studies in the field of trading strategy 
optimization. This comparison further validates the performance of the M-DQN model and its potential appli-
cability to real-world trading tasks.

By presenting the experimental results in a comprehensive manner, we aim to provide a thorough evaluation 
of the effectiveness of the M-DQN model in optimizing Bitcoin trading strategy, considering various factors 
such as risk, return, and active trading.

Performance measures
Evaluation metrics play a crucial role in assessing the performance of a trading strategy, as they provide quantita-
tive measures for gauging effectiveness in different aspects. Through an analysis of these metrics, the strengths 
and weaknesses of the strategy can be identified, enabling us to refine and optimize the model to achieve better 
results in real-world trading scenarios. 

(1)	� Return of Investment (ROI) This is one of the primary evaluation metrics used in this study, representing 
the net gain or loss of an investment after the completion of a trade57. ROI is an essential measure, as it 
directly captures the financial outcome of a trading strategy, indicating profit or loss. In our experiment, 
ROI was calculated as follows: 

 Here, Initial cash is the amount of investment at the beginning, and Final cash is the amount of investment at 
the end of the trading. By calculating the ROI of the trade and analyzing it, the overall profitability of the trading 
strategy can be determined.

(5)ROI =
Final cash− Initial cash

Initial cash
∗ 100%.

Table 3.   Summary of the M-DQN model architecture and hyperparameters for the Bitcoin trading task, 
incorporating market action and sentiment scores.

Component Description Trade-DQN Predictive-DQN Main-DQN

Input layer Input neurons for market action and
sentiment score 1 neuron 2 neurons 2 neurons

Dense layer Fully connected layers with ReLU
activation function

3 layers
(64, 32, 8 neurons each)

3 layers
(64 neurons each)

3 layers
(64 neurons each)

Output layer Output neurons for representing all
possible actions 3 neurons 20,001 neurons 3 neurons

Loss function Metric to quantify the difference between predicted and true values, guiding weight 
update function MSE MSE MSE

Optimizer Algorithm used to update and compute network weights Adam Adam Adam

Learning rate Step size at each iteration while moving toward a minimum of the loss function 0.001 0.001 0.001

Discount factor Factor by which future rewards are diminished compared to immediate ones 0.95 0.95 0.95

Exploration rate Probability of selecting a random action rather than the model choice 1 1 1

Exploration decay Rate at which exploration decreases over time 0.995 0.995 0.995

Target network update Frequency of updating the target
Q-network’s parameters Every 400 steps Every 400 steps Every 400 steps

Batch size Batch size for experience replay 64 64 64
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(2)	� Sharpe Ratio (SR) SR is a widely used metric in finance for assessing the risk-adjusted performance of an 
investment or trading strategy. In the context of Bitcoin trading, SR measures the average return generated 
by the trading strategy, relative to the risk-free rate, per unit of risk, as represented by the standard devia-
tion of the returns. The higher the SR, the better is the risk-adjusted performance of the trading strategy. 
Amjad et al.58 proposed an equation to calculate the SR for Bitcoin trading, letting N denote periods; profiti 
denote the profit (or loss) achieved during the ith period, where 1 ≤ i ≤ N ; and p0 and pN denote the price 
of Bitcoin at the start and end of the given interval (i.e., N periods), with SR determined as follows: 

 In practice, an SR between 1 and 2 is considered good. A ratio between 2 and 3 is very good, and any result >3 
is excellent.

Experiment on different thresholds α and ω
Before discussing the experimental results, it is necessary to define the two terms used in this subsection to 
demonstrate the effectiveness of the preprocessing DQN. 

(a)	� Proposed method In the proposed method, the Main-DQN model leverages the previously described dataset 
of “Multi-level DQN” section, consisting of a two-dimensional array with elements taken from the outputs 
of Trade-DQN and Predictive-DQN models. The preprocessing DQN aims to better extract and capture 
the relationship between Bitcoin prices and Twitter sentiment scores.

(b)	� Classic method By contrast, in the classic method, the Main-DQN model directly utilizes raw data, includ-
ing Bitcoin historical prices and Twitter sentiment scores, without any preprocessing DQN or additional 
data transformations. This means that the Main-DQN model relies solely on the raw data to capture the 
relationship between the variables.

In defining these methods, the goal is to highlight the potential benefits of the preprocessing DQN, as opposed 
to using the raw data directly, in enhancing the performance of the Main-DQN model for the development of 
effective Bitcoin trading strategies.

Subsequent to Main-DQN model training, we evaluated the performance using the remaining portion of the 
dataset. This test set comprised 30 days (720 h) of data covering the remaining part of the dataset.

As previously mentioned, the proposed reward function was designed to focus on the three primary factors 
of an efficient trading strategy. To strike a balance between these factors, three distinct thresholds were estab-
lished for risk management by varying the allowed risk levels: 30% (low), 55% (medium), and 80% (high). Three 
other thresholds were defined for active trading by varying the number of permitted active trades per day: up 
to 8, 16, and 24 times. The Main-DQN model was trained separately for each case, and the ROI and SR values 
were obtained. The experimental results depict these values, whereby the most suitable thresholds were selected 
through comparisons in each case.

First, the M-DQN model was tested by defining the risk threshold ( α ) as 30%. In Table 4, the results show 
that the highest ROI for the classic method is observed when the active trading threshold ( ω ) is set to 16 times 
per day, yielding a 12.8% ROI. In terms of risk-adjusted returns, the SR values for the classic method are rela-
tively close, but the maximum value is 2.63424, demonstrating a reasonable level of return, given the level of 
risk involved. Similarly, the proposed method achieves the highest ROI of 14.6%, with the same active trading 
threshold of 16 times per day. The SR values obtained using the proposed method also exhibit a slight difference, 
with a maximum value of 2.73962. This further reinforces that the proposed method provides not only a higher 
return but also a slightly more favorable risk-return tradeoff, as indicated by the higher SR value compared to 
that of the classic method.

To further explore, the threshold was raised for the permissible level of risk that the agent could take. In this 
scenario, the agent was allowed to undertake trading risks of up to 55% of the investment without incurring any 

(6)SR =
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Table 4.   Comparison of classic and proposed methods with varying thresholds at an adjusted 30% level of 
risk. Significant values are in bold.

Active trade threshold  ω  (per day) Initial investment ($) Number of trades Final investment ($) ROI (%) SR    

Classic method (risk rate α - 30%)

   Up to 8 times 1,000,000 167 1,037,293 3.7  2.628

   Up to 16 times 1,000,000 283 1,128,492 12.8 2.634

   Up to 24 times 1,000,000 492 1,098,814 9.8 2.631

Proposed method (risk rate α - 30%)

   Up to 8 times 1,000,000 207 1,092,843 9.2 2.737

   Up to 16 times 1,000,000 325 1,146,942 14.6 2.739

   Up to 24 times 1,000,000 544 1,108,284 10.8 2.737
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penalties. If the investment status fell below 45%, the agent received a penalty in the form of a negative reward. 
As in the previous experiment, three different thresholds were implemented for the number of active trades to 
identify the optimal performance under the current risk level. Table 5 presents the experimental results. In the 
experiment, the highest ROI values were achieved when the active trade threshold was set to 16 times per day 
for both the classical and proposed methods. The ROI values were 23.5% for the classic method and 29.9% for 
the proposed method, further emphasizing the advantages of the proposed method over the classic method. As 
the level of allowed risk was increased, lower SR values than those of the previous experiment were anticipated. 
In both the classic and proposed methods, the SR value is higher than 2.2. Nonetheless, the proposed method 
outperforms the classic method in terms of risk-adjusted returns, with an SR of 2.39421.

Finally, to assess the performance of the M-DQN model under a high level of risk, the risk threshold was 
increased to 80%. In this scenario, the agent was permitted to take higher risks to maximize its reward, which 
translates into higher profits. However, it is important to note that high risk can lead to losses in many cases. Simi-
lar to the previous experiments, Table 6 displays the results of the M-DQN model trained with different active 
trading thresholds considering an 80% risk level. Examining the data in Table 6, we draw several conclusions. 
First, the optimal threshold for active trading remains up to 16 times per day in all cases. Both the classical and 
proposed methods achieve their highest ROI at this level, with values of 24.1% and 28.1%, respectively. Second, 
the findings reinforce the notion that a higher risk level does not always yield a higher profit. This sometimes 
results in lower profits than those with lower risk levels. Interestingly, as the allowed risk level is increased to 
80%, the SR values, which measure risk-adjusted return, are understandably lower than those of the previous 
experiments. In this case, the classical method yields an SR of 1.58003, whereas the proposed method yields an 
SR of 1.88034. Despite the higher risk level, the proposed method outperforms the classic method in terms of 
risk-adjusted returns.

Finally, the proposed method consistently had higher ROI values than the classical method, further high-
lighting the efficiency of the proposed preprocessing technique and reward function in enhancing the trading 
strategy. Figure 7 provides a deeper understanding of the trading process, specifically, with fixed thresholds 
that yield the most reliable results. In this case, the thresholds are set at a risk level of 55% and a maximum of 
16 trades per day. The x-axis in Fig. 7 represents the time span of the experiment, and the y-axis corresponds to 
the Bitcoin price. The blue line graphically depicts the price of Bitcoin over the duration of the experiment. The 
red dots indicate instances of the Main-DQN agent deciding to buy Bitcoin, whereas the green dots indicate the 
instances the agent decides to sell. Upon visual examination, it is observed that the M-DQN model typically 
purchases Bitcoins at lower prices and sells them after the Bitcoin price significantly increases. This behavior 
demonstrates the effectiveness of the model in navigating the Bitcoin market.

Table 5.   Comparison of classic and proposed methods with varying thresholds at an adjusted 55% level of 
risk. Significant values are in bold.

Active trade threshold ω (per day) Initial investment ($) Number of trades Final investment ($) ROI (%) SR

Classic method (risk rate α - 55%)

   Up to 8 times 1,000,000 218 1,134,521 13.4 2.284

   Up to 16 times 1,000,000 403 1,235,356 23.5 2.315

   Up to 24 times 1,000,000 692 1,108,432 10.8 2.299

Proposed method (risk rate α - 55%)

   Up to 8 times 1,000,000 227 1,134,558 13.4 2.324

   Up to 16 times 1,000,000 372 1,299,381 29.93 2.394

   Up to 24 times 1,000,000 708 1,192,961 19.2 2.347

Table 6.   Comparison of classical and proposed methods with varying thresholds at an adjusted 80% level of 
risk. Significant values are in bold.

Active trade threshold ω (per day) Initial investment ($) Number of trades Final investment ($) ROI (%) SR

Classic method (risk rate α - 80%)

   Up to 8 times 1,000,000 225 1,149,738 14.9 1.507

   Up to 16 times 1,000,000 468 1,241,620 24.1 1.580

   Up to 24 times 1,000,000 714 1,165,843 16.5 1.539

Proposed method (risk rate α - 80%)

   Up to 8 times 1,000,000 231 1,239,486 23.9 1.817

   Up to 16 times 1,000,000 468 1,281,183 28.1 1.880

   Up to 24 times 1,000,000 711 1,257,433 25.7 1.861
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Experiments with different reward functions
In this subsection, we present the experimental results of evaluating the performance of the proposed reward 
function by comparing it with two other reward functions in the literature. The objective of this comparison 
is to demonstrate the effectiveness of the proposed reward function in the context of Bitcoin trading, thereby 
highlighting its advantages over alternatives. The reward functions proposed by Allen et al.59 and Sadighian60 
was selected as the benchmark for this comparison.

Allen et al.59 indicated that excess returns can be calculated in two ways based on the action type. For buy or 
sell action, the return is computed as follows:

where P is the daily closing price for a given day t; c denotes the one-way transaction cost; rf  is the risk-free cost; 
and n denotes the number of trades. If the action is to wait (hold), it is computed as:

The second benchmark was the reward function proposed by Sadighian60. In this study, seven different reward 
functions were proposed and their impact on an agent’s market-making strategy was evaluated. Overall, the trade 
completion (TC) reward function generated the highest return, and TC was computed as follows:

where ̟ is the transaction fee, and RPnLstept  is the realized profit or losses obtained between time steps t and 
t − 1 and is calculated as

Here, ExE,shortt  and ExE,longt  are the average entry prices for the long and short sides, respectively, and ExX,sellt  
and ExX,covert  are the average exit prices of the actions executed between time steps t and t − 1 . The Main-DQN 
model was trained separately based on the two reward functions, thereby obtaining both ROI and SR values. By 
analyzing each value obtained from the Main-DQN models trained with each reward function, the performance 
of the proposed reward function was assessed in comparison to the alternatives. This comparison enabled us 
to determine the superiority of the proposed reward function in terms of better trading strategies and overall 
performance. Table 7 shows the ROI and SR values for each reward function. The performance of the proposed 
reward function is the best with the highest values as in the previous experiments, for both the classical and 
proposed methods.

The data presented in Table 7 offer several observations. In the classic method, the proposed reward function 
achieves the highest ROI of 23.5.
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Figure 7.   Visualization of the proposed M-DQN agent’s trading strategy with fixed thresholds: 55% of risk level 
and active trading of up to 16 times per day. The blue line represents Bitcoin price trends; the red dots indicate 
instances of “buy” action; and the green dots indicate instances of “sell” action.
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Similarly, for the proposed method, the proposed reward function exhibits superior performance, yielding 
the highest ROI of 29.9%. This underscores not only the effectiveness of the proposed reward function for both 
the classic and proposed methods but also the inherent advantage of the proposed method. This is further sup-
ported by an even stronger SR of 2.73962, which indicates a robust risk-adjusted return, despite a higher risk level.

Performance comparisons
To thoroughly assess the effectiveness of the proposed M-DQN model, we examine the results that demonstrate 
the profitability and risk level of the trading strategies, using ROI and SR as metrics, respectively. We compared 
these outcomes with those of similar studies that employ different methodologies for efficient trading strategies, 
to obtain a better understanding of the performance of the proposed model. This comparative analysis not only 
enabled us to pinpoint the areas in which the proposed model excels but also helped identify the aspects that 
may need further improvement. Through this evaluation, valuable insights were acquired into the robustness of 
our approach and its potential for real-world applications in trading strategies. The results of previous studies 
are compared with those of the proposed method in Table 8.

In Table 8, we have provided a performance comparison of our M-DQN model against several notable meth-
odologies in the domain of cryptocurrency trading. This comparison is essential to demonstrate the effectiveness 
and innovation of our approach to existing strategies. We included the DNA-S method by Betancourt et al.61, 
which offers a unique perspective in algorithmic trading, and the Sharpe D-DQN by Lucarelli et al.62, a varia-
tion of the DQN model emphasizing the Sharpe ratio. Additionally, we compared our model with the Double 
Q-network combined with a Beep Boltzmann Machine by Bu et al.63, showcasing an integration of Double 
Q-learning with Boltzmann Machines. For a direct comparison, we also included the standard DQN approach 
by Theate et al.64. Furthermore, our analysis extends to the TD3 model by Majidi et al.65, which employs con-
tinuous action space in deep reinforcement learning, and a forecasting model by Amjad et al.58, which leverages 
econometric approaches for Bitcoin price prediction. This diverse range of comparisons, encompassing various 
machine learning paradigms, was deliberately chosen to provide a thorough evaluation of our model’s perfor-
mance against both traditional and innovative approaches in the field.

As a result, M-DQN first outperforms the other models in terms of SR, achieving a value of 2.73962. This 
indicates that the model can generate higher risk-adjusted returns than those used in other studies. However, 
the ROI metric, indicating model performance, ranks second with a value of 29.93%. The highest ROI was 
reported by Majidi et al.65, who obtained a 57.5% ROI value. Despite having the lowest performance in terms of 
ROI, the proposed model has a significantly higher SR value (1.53) than that of Majidi et al.65. Because the SR 
metric is used to describe the risk level, with higher values indicating less risk, we concluded that the strategy 

Table 7.   Comparison of classical and proposed methods for different reward functions. Significant values are 
in bold.

Reward function Initial investment ($) Number of trades Final investment ($) ROI (%) SR

Classic method

   Allen et al.59 1,000,000 147 1,110.968 11.0 1.903

   Sadighian60 1,000,000 209 1,116,987 11.6 1.954

   Ours 1,000,000 403 1,235,356 23.5 2.634

Proposed method

   Allen et al.59 1,000,000 185 1,151,961 15.1 2.113

   Sadighian60 1,000,000 242 1,166,377 16.6 2.209

   Ours 1,000,000 372 1,299,381 29.93 2.739

Table 8.   Performance comparison with other results. The “>” symbol in the table indicates greater than the 
corresponding number.

Metrics Studies Year Value

 ROI

DNA-S (Betancourt et al.61) 2021 > 24%

SharpeD-DQN (Lucarelli et al.62) 2019 26.14%

Double Q-network with Beep
Boltzman Machine (Bu et al.63) 2018 27.87%

DQN (Theate et al.64) 2021 29.4%

TD3 (Majidi et al.65) 2022 57.5%

M-DQN (our paper) 2023 29.93%

 SR

TD3 (Majidi et al.65) 2022 1.53

Forecasting model (Amjad et al.58) 2017 > 2.0

M-DQN (our paper) 2023 2.74
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developed by the proposed M-DQN model is less risky and more robust than that of other models. A higher SR 
value suggests that the model generates more consistent and stable returns, making it a more attractive choice 
for investors who prioritize risk management.

Discussion
This study demonstrated that it is more effective and resource-efficient to extract and utilize data tailored for 
price prediction than using all available data when developing an effective Bitcoin trading strategy. Specifically, 
by incorporating both market actions and sentiment scores derived from a set of influential Twitter users, the 
proposed method yielded significantly better results than the classical method which uses all available raw data. 
Moreover, the proposed model contributes to the literature in designing a reward function for DQN agents 
involved in Bitcoin trading and reinforcement learning, offering valuable insights for further in-depth analysis.

Nevertheless, it’s important to recognize that the methodology introduced in this study comes with certain 
limitations and corresponding future works that warrant discussion. 

(1)	�  Diversity of data First and foremost, our model chiefly relies on a combination of market action data and 
Twitter sentiment scores to make projections about Bitcoin prices. These metrics, although significant, 
may not adequately capture the multitude of variables at play in shaping Bitcoin’s fluctuating market value. 
Twitter is indeed a resource-rich platform for sentiment analysis, but it is not the only platform where 
financial discussions take place. Hence, our future work could focus on a more rounded approach that 
could involve examining other social media platforms, such as Reddit and Facebook. Furthermore, main-
stream news sources including YouTube broadcasts and traditional television news channels might offer a 
fuller, multi-dimensional view of market sentiment that is not currently accounted for in our model. This 
consideration would allow us to capture people’s opinions with far more accuracy than potentially leading 
an accurate predictions.

(2)	�  Diversity of ML models Second, the trading model under examination employs a DQN algorithm as its core 
predictive mechanism. DQN algorithms have exhibited efficacy in a range of applications, but they are not 
the end-all-be-all of machine learning solutions. It is also worth noting that the hyperparameters deployed 
in the current DQN models are based on commonly accepted values. While these parameters have proven 
effective, there is room for further optimization. Therefore, it is recommended that subsequent research 
explores expanding the model to incorporate other DRL algorithms, such as Proximal Policy Optimization 
(PPO), Twin Delayed DDPG (TD3), or Advantage Actor-Critic (A2C), which could introduce added layers 
of sophistication and flexibility. By doing so, it is conceivable that the model could fine-tune the accuracy of 
the Q-function, leading to an enhancement in the trading system’s overall predictive capabilities. Moreover, 
experimenting with different neural network hyperparameters, such as types of functions, batch sizes, and 
discount factor values—can lead to even better results. In essence, the performance benchmarks set by the 
current study may serve as a starting point, and fine-tuning the neural network hyperparameters could 
unlock further improvements in model accuracy.

(3)	� Complexity of reward function The third, yet significant, limitation lies in the structure of the current reward 
function employed within the DQN algorithm. The existing reward function primarily serves to encourage 
profitable trading, adjusted risk rate, and active trading, but it may not be sufficiently tailored to address the 
complexities and nuances inherent in the trading environment. Specifically, the current reward function 
may overlook important real-world considerations such as transaction costs, slippage, market liquidity, 
and the impact of large trades on market prices which are critical for evaluating the true effectiveness of 
trading strategy. To overcome the limitation regarding the reward function, future investigations should 
consider real-world trading problems such as transaction costs, slippage, market liquidity, and the impact 
of large trades on market prices, aiming to produce seemingly profitable strategies that are suboptimal 
when applied to a more realistic trading context. Therefore, future iterations of this model could benefit 
immensely from the development and integration of a more sophisticated reward function, thereby creat-
ing a trading system that is more aligned with real-world complexities.

(4)	�  Diversity of cryptocurrencies platforms Lastly, the current research presents a notable limitation in its focus 
on Bitcoin and the scope of data utilized. This study’s confinement to a single cryptocurrency platform, 
while providing in-depth insights, potentially overlooks the diverse and dynamic nature of the broader 
cryptocurrency market. The exclusive use of sentiment data from limited sources may not fully capture the 
multifaceted sentiment dynamics that influence the cryptocurrency market. This limitation is particularly 
significant given the rapidly evolving landscape of cryptocurrencies, where factors influencing one platform 
may differ substantially from those affecting another. Hence, addressing the diversity of cryptocurrency 
platforms will require an aim to broaden the scope by integrating data scores from a variety of platforms 
and considering a wider range of cryptocurrencies, such as Ethereum or Ripple. Such an expansion would 
not only enhance the robustness of the findings but also adapt the developed trading strategies to the 
diverse and ever-changing cryptocurrency markets. Rigorous exploration of these different avenues is 
essential. It would likely lead to the refinement and improvement of the methodologies and trading strate-
gies employed in the current study, offering a more comprehensive understanding of the cryptocurrency 
trading landscape.

Conclusion
In this study, we presented the M-DQN model, a novel approach for an enhanced Bitcoin trading strategy. This 
model integrates both market-action data and sentiment scores from influential Twitter users, showcasing its 
efficacy and resource efficiency over traditional models that utilize unrefined data. The distinctiveness of our 
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M-DQN model is evidenced by its high SR value of over 2.7, indicating a strong risk-adjusted performance. 
Additionally, the model achieved an impressive ROI of 29.93%, ranking as the second-best in our comparative 
analysis. These results underline a trading strategy that is not only profitable but also robust and less risky com-
pared to existing methodologies. For example, when we compare the performances with the other contemporary 
models, the M-DQN outperforms in terms of risk-adjusted value. As a future work, we suggest that further 
explorations into diverse Deep Reinforcement Learning algorithms and additional sources of sentiment data, 
encompassing a broader range of cryptocurrencies, could significantly enhance the efficacy and applicability of 
the trading strategies we’ve developed.
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