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Acute ischemic stroke prediction 
and predictive factors analysis 
using hematological indicators 
in elderly hypertensives 
post‑transient ischemic attack
Chang Shu 1*, Chenguang Zheng 2, Da Luo 1, Jie Song 3, Zhengyi Jiang 3 & Le Ge 1*

Elderly hypertensive patients diagnosed with transient ischemic attack (TIA) are at a heightened 
risk for developing acute ischemic stroke (AIS). This underscores the critical need for effective 
risk prediction and identification of predictive factors. In our study, we utilized patient data from 
peripheral blood tests and clinical profiles within hospital information systems. These patients 
were followed for a three‑year period to document incident AIS. Our cohort of 11,056 individuals 
was randomly divided into training, validation, and testing sets in a 5:2:3 ratio. We developed an 
XGBoost model, developed using selected indicators, provides an effective and non‑invasive method 
for predicting the risk of AIS in elderly hypertensive patients diagnosed with TIA. Impressively, this 
model achieved a balanced accuracy of 0.9022, a recall of 0.8688, and a PR‑AUC of 0.9315. Notably, 
our model effectively encapsulates essential data variations involving mixed nonlinear interactions, 
providing competitive performance against more complex models that incorporate a wider range 
of variables. Further, we conducted an in‑depth analysis of the importance and sensitivity of each 
selected indicator and their interactions. This research equips clinicians with the necessary tools for 
more precise identification of high‑risk individuals, thereby paving the way for more effective stroke 
prevention and management strategies.

Transient ischemic attack (TIA) and acute ischemic stroke (AIS) are both characterized by a sudden reduction 
in blood flow, leading to temporary or permanent loss of neurological  function1. TIA is defined as a transient 
episode of neurologic dysfunction due to focal brain, spinal cord, or retinal ischemia, without acute  infarction2. 
Recent studies have shown a strong correlation between TIA and the subsequent development of  AIS3,4. Approxi-
mately 20% of TIA patients experience an AIS within three months of the initial TIA event, with the highest 
risk occurring within the first 48  h5. Over the long term, TIA patients face a 10-year stroke risk of 19% and a 
combined 10-year risk of stroke, myocardial infarction, and vascular death at 43%6. TIA and AIS share several 
common risk factors, such as hypertension, diabetes mellitus, hyperlipidemia, and atrial  fibrillation7. Among 
these, hypertension is the most prevalent risk factor for both  conditions8. Elderly patients with hypertension 
who experience TIA symptoms, such as sudden weakness or numbness in the face, arms, or legs; confusion; 
difficulty speaking; vision problems; dizziness; and severe headache, are at an increased risk of developing AIS 
in the days and weeks following the TIA  event9. The unpredictability of progression from TIA to AIS not only 
imposes a considerable burden on the healthcare system but also significantly impacts the mental well-being 
and daily activities of elderly hypertensive patients. Given these risks and the urgent need to identify predictive 
factors, establishing an effective risk prediction model for AIS following a TIA event in elderly hypertensive 
patients is crucial. However, the current literature on AIS prediction predominantly focuses on broader patient 
 populations10–12, often overlooking the unique characteristics and risk profiles of this specific group.

A peripheral routine blood test (RBT) is the most commonly performed clinical test and provides a com-
prehensive evaluation of various blood components and characteristics. This evaluation offers valuable insights 
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into an individual’s hematological profile, reflecting their overall health  status13,14. The direct measurements 
obtained from the RBT are known as primary hematological indicators (PHIs). Additionally, derived hemato-
logical indicators (DHIs), which are calculated from PHIs using various mathematical methods, are included. 
Together, these indicators are collectively referred to as primary and derived hematological indicators (PDHIs). 
Supplementary Material 1 in this study provides a comprehensive list of all PDHIs measured using the Sysmex 
XE 5000 Hematology Analyzer, including their full names, corresponding abbreviations, and the methodologies 
for calculating the DHIs. Numerous studies have indicated the critical role of PDHIs in the development and 
progression of hypertension, TIA, and  AIS15,16. Moreover, there is substantial evidence of common alterations 
in PDHIs across these three vascular-origin diseases. For instance, an elevation in neutrophils and a decrease in 
 lymphocytes17–19, as well as consistent changes in  hematocrit20–22 and red cell distribution width (RDW)14,23,24, 
have been observed across different studies focusing on these three vascular-origin diseases. These findings 
suggest the presence of numerous shared hematological indicators within the internal environment of patients 
with these vascular diseases. These shared hematological indicators may hold the key to predicting the risk of 
AIS in elderly patients with hypertension who have experienced a TIA.

Despite the recognized importance of these PDHIs, a comprehensive and systematic study investigating their 
predictive power and associated risk factors for AIS following a TIA in elderly hypertensive patients is lacking. 
The complexities inherent in PDHIs, such as nonlinear  relationships25 and  multicollinearity26, necessitate the use 
of advanced data science methodologies to unlock their predictive potential and unravel associated risk factors. 
To address these challenges, this paper employs a robust analytic strategy by initially utilizing the searching for 
uncorrelated list of variables (SULOV)-recursive method, tailored for nonlinear data to select relevant variables 
while minimizing redundancy. Subsequently, an extreme gradient boosting (XGBoost) model, known for its 
efficacy in handling multicollinearity and capturing complex interaction relationships, is constructed. The model 
is fine-tuned through an exhaustive hyperparameter optimization process and further calibrated to enhance 
predictive accuracy. This comprehensive approach aims to construct a reliable three-year AIS risk prediction 
model for elderly hypertensive TIA patients, harnessing the full spectrum of PDHIs. The model’s interpretability 
and sensitivity analysis are designed to identify and highlight the key factors that contribute to the progression 
from TIA to AIS in this high-risk group. Our research aims to enhance early prediction and intervention for AIS, 
potentially improving management and outcomes for elderly hypertensive patients post-TIA.

Methods
Cohort selection and variables definition
Our study extracted data from the Hospital Information System (HIS) and included 32,643 elderly patients 
consecutively admitted with a history of hypertension and subsequently received a primary diagnosis of TIA at 
Tianjin Huanhu Hospital’s emergency department from July 2015 to December 2019. Follow-ups were conducted 
using a bulk mobile messaging-WeChat-remote follow-up system, supplemented by phone calls when neces-
sary, to determine if the patients experienced cerebral infarction within three years post-TIA. Outcomes were 
gauged using a binary question: "Have you, or the patient, been diagnosed with cerebral infarction, confirmed by 
a neurologist’s cranial CT or MRI scan, within three years following the TIA diagnosis at our hospital?" If direct 
contact failed, we reached out to relatives based on contact information provided during the initial hospital visit. 
This methodology ensured precise identification of AIS incidents within the follow-up window. We excluded 
patients based on the following criteria: (1) Patients were diagnosed with chronic cerebral infarction or other 
cerebrovascular diseases based on cranial CT or MRI scan reports in the EMR system. (2) Patients admitted 
to the emergency department who did not have a completed electronic medical record, thus precluding the 
extraction of RBT report, past medical history, and alcohol and tobacco use data. (3) Patients whose admission 
blood routine tests showed white blood cell (WBC), red blood cell (RBC), or platelet counts (PLT) outside of 
the normal range (WBC: 4–10 ×  109 cells/L, RBC: 4–6 ×  1012 cells/L, PLT: 150–450 ×  109 cells/L), were excluded. 
This criterion was set to mitigate the impact of infections and hematological diseases on the PDHIs. (4) Patients 
admitted to the emergency department who did not provide contact information. (5) Patients lost to follow-
up. Supplemental Fig. 1 is the flowchart of patient selection. Our research incorporated 28 PHIs, eight DHIs, 
and eight categorized demographic and lifestyle variables including gender, age (categorized into three groups: 
60–69, 70–79, and 80 + years), drinking history, and past medical history. All PDHIs (n = 36) used in this study 
are continuous variables, and they were obtained from the first blood draw post-admission. A comprehensive 
list of these PDHIs is provided in Supplementary Material 1.

All data used in this study were extracted from the hospital’s business system with risk minimization measures 
to ensure data security. Private information, such as patient names, ID numbers, and addresses, was hidden, 
and data usage was in compliance with the provisions for informed exemption of the hospital ethics commit-
tee. Informed consent was obtained from all subjects or their legal guardian(s). The study was approved by 
the Huanhu Ethics Committee (No. 2021060). This study has been registered in the Chinese Clinical Trial 
Registry (https:// www. chictr. org. cn/ login. aspx? refer url=% 2flis tbycr eater. aspx), with the registration number 
ChiCTR2100054189. All methods were performed in accordance with the Helsinki Declaration for human 
research.

Handling collinearity and variable selection
Considering the significant correlations among PDHIs internally, we employed the SULOV-Recursive  method27. 
The SULOV (Searching for Uncorrelated List of Variables) algorithm is an adaptation of the Minimum-Redun-
dancy-Maximum-Relevance (MRMR) method, designed to handle multicollinearity. It works by identifying 
pairs of highly correlated variables, assessing their relevance to the target using the Mutual Information Score, 
and subsequently excluding the less informative variable of each pair. This process leaves a set of variables 
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with maximum informational value and minimal mutual correlation. Subsequently, the algorithm deploys the 
XGBoost machine learning method in an iterative manner to pinpoint the most predictive variables, conducting 
multiple training-validation cycles and collating top features from varying data subsets. This procedure concludes 
by discarding redundant variables, providing a streamlined and effective set of predictors for the subsequent 
modeling stages. For the demographic and lifestyle variables, we applied integer encoding. The Cramer’s V cor-
relation matrix algorithm was utilized to further remove multicollinearity among these categorical variables. 
For both continuous and categorical variables, we set the correlation threshold at 0.3.

Non‑linearity assessment and modeling workflow
To assess the potential non-linearity between the final selected PDHIs and the outcome variable, we employed 
the Box-Tidwell test. This test investigates the linearity of predictors with respect to the logit of the outcome 
variable by introducing log-transformed interaction terms between the continuous predictors and their respec-
tive natural logs. This step is crucial as it aids us in making an informed choice about the appropriate predictive 
model to employ. A significant interaction term (p ≤ 0.05) signifies the presence of non-linearity.

Supplemental Fig. 2 illustrates the overall workflow of our model fitting and testing. To address the combined 
linear and non-linear characteristics of our data, we employed XGBoost as our principal model. This choice was 
based not only on the preliminary screening results from our training and validation sets, which demonstrated 
XGBoost’s superior performance among 15 different machine learning algorithms, but also on its considerable 
suitability for handling medical tabular data, as evidenced by the relevant literature in the  field28–30. Three different 
XGBoost models were constructed. The first model utilized only the selected PDHIs as input. The second model 
incorporated both the selected PDHIs and categorical variables, while the third included all variables without 
feature selection. After applying Robust Scaler for continuous variables and Label Encoding for categorical 
variables, we tuned the hyperparameters for each XGBoost model using the Tree-structured Parzen Estima-
tor (TPE) method within the Optuna  framework28. During the model training phase, we integrated a ten-fold 
cross-validation process. For each fold, class imbalance was addressed uniquely for each of the three models: 
applying the Synthetic Minority Over-sampling Technique (SMOTE) to the training subset for the model with 
only  PDHIs31, and SMOTENC for the models including both PDHIs and categorical  variables32. This treatment 
was restricted to the nine out of ten folds used for training in each cross-validation iteration. The remaining 
one fold, serving as the validation set, was kept untouched by either SMOTE or SMOTENC, thus preserving its 
original distribution. After hyperparameter tuning, we performed model calibration on the initially separated 
validation set, utilizing isotonic regression and sigmoid calibration methods. The optimal calibration approach 
for each model was determined by comparing the uncalibrated model with these two methods, selecting the one 
that yielded the lowest Brier score. To evaluate the performance of the three calibrated models, we employed a 
ten-fold cross-validation approach on the training set, incorporating appropriate class imbalance adjustments. 
This enhanced the models’ ability to detect minority classes and ensured a balanced performance evaluation, 
preventing the overestimation of accuracy due to imbalanced class distributions. For the ultimate evaluation on 
the test set, we abstained from applying class imbalance processing to prevent data leakage and to ensure that 
the models’ performance reflected a more realistic prediction scenario, where the original class distribution was 
maintained. In our study, three calibrated XGBoost models with varying input variables were developed in paral-
lel. Each model underwent a rigorous process of hyperparameter tuning using cross-validation on the training 
set and calibration on an independent validation set. To assess the performance of these models, we initially 
conducted a comparative analysis using McNemar’s test with Benjamini–Hochberg  correction33,34, applying it 
to both the validation and test sets. This is a statistical method used for comparing the predictive capabilities of 
already fitted classifiers.

Multi‑tiered approach for predictive factor analysis
In this study, we adopted a multi-tiered approach for our predictive factor analysis. In the individual sensitivity 
analysis, we systematically varied the value of each selected PDHIs within its observed range, evaluating how 
these changes influenced the model’s predictions for specific patients. In the global sensitivity analysis, we ran-
domly shuffled the values of each PDHI across the entire dataset, disrupting their original correlations with the 
target variable. This process enabled us to evaluate the independent contribution of each PDHI to the model’s 
predictive performance. Following the sensitivity analyses, we applied the SHAP (SHapley Additive exPlanations) 
methodology to rank risk factors according to their  importance35. The ranking is derived from each feature’s 
SHAP value, which quantifies both the direct (main effect) and interaction contributions of each PDHI to the 
predictive outcome. The SHAP values essentially capture a feature’s average contribution to the prediction out-
come, considering all possible coalitions of features. Finally, we examined the interaction effects among the risk 
factors utilizing SHAP interaction values. This step uncovered the pairs of risk factors that significantly interact 
with each other, thereby shedding light on the complex interdependencies among the PDHIs.

Sample size and statistical analysis
We performed a power analysis for the sample size determination of our training, validation, and test sets 
using the R Package ’pmsampsize’. This package computes the minimum sample size required for developing a 
multivariable prediction model. It specifies an anticipated AUC of 0.9 and utilizes the expected prevalence to 
approximate the Cox-Snell R-squared, following the methodology proposed by Riley et al.36. In our study, for 
the dataset with 44 input variables, the minimum sample size required is 989 cases. For the dataset with 14 input 
variables, it is 315 cases, and for the dataset with 7 input variables, it is 303 cases. The sizes of our training, vali-
dation, and test sets significantly exceed these thresholds, indicating a reduced risk of overfitting and ensuring 
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precise estimation of key parameters in the prediction models. This substantial sample size provides a robust 
foundation for the development and validation of our models.

Continuous variables were reported as medians with interquartile range (IQR) and categorical variables as 
percentages. Statistical comparisons were performed using the Kruskal‒Wallis and chi-squared tests. P ≤ 0.05 for 
statistical significance. In this study, given the characteristics of imbalanced data and our practical experience, 
balanced accuracy was employed as the primary optimization metric to rank the performance of these models. 
In our model evaluation, we also reported other metrics. For detailed introductions to these metrics, please refer 
to Supplementary Material 2. The computer program was implemented in Python 3.8.13, with XGBoost (1.6.1), 
scikit-learn (1.1.1), SHAP (0.41.0), running on Ubuntu 20.04.

Results
Data split, variables selection and nonlinear detection
Our study cohort consisted of 11,056 elderly patients diagnosed with TIA, having a mean age of 68 [@@64, 73] 
and a male to female ratio of 5451:5605. All patients had a history of hypertension. By applying a random shuf-
fle strategy, the cohort was randomly split into training (n = 5527), validation (n = 2212), and testing datasets 
(n = 3317) at a ratio of 5:2:3. The proportions of positive outcomes were 28.2% in the training set, 26.8% in the 
validation set, and 27.8% in the test set. The descriptive statistics of variables across these datasets are provided 
in Supplementary Table 1. A pairwise Pearson correlation analysis was performed on 36 PDHIs in the training 
set (Supplementary Table 2). We found 12 pairs of PDHIs with absolute correlation coefficients greater than 0.9, 
and 48 pairs with coefficients greater than 0.7, indicating multicollinearity among the PDHIs data. the application 
of the SULOV algorithm effectively reduced multicollinearity among PDHIs, identifying seven key indicators 
(SIRI, HCT, RDW_CV, PLT, IG_p, BAS_p and EOS) with mutual correlation coefficients below 0.3. Similarly, 
using the Cramer’s V correlation matrix for categorical variables, we pinpointed seven significant factors: smok-
ing status, alcohol consumption, diabetes, heart disease, respiratory disorders, gender, and age, each exhibiting 
a correlation coefficient under 0.3.

Based on the results of the Box-Tidwell test, we observed that in the training set, the predictors ’HCT’, 
’RDW_CV’, ’PLT’, and ’SIRI’ showed p-values less than 0.05, indicating non-linear relationships with the outcome. 
Conversely, ’IG_p’ (p = 0.168), ’BAS_p’ (p = 0.413), and ’EOS’ (p = 0.375) had p-values greater than 0.05, sug-
gesting linear relationships. Given the presence of both linear and non-linear relationships among the variables, 
we opted for the versatile XGBoost algorithm for our modeling, following an initial screening of 15 machine 
learning algorithms (Supplemental Fig. 3).

Model fitting and performance evaluation
We employed three models for thorough assessment of variable fitting to the outcome. These included XGBoost 
with only selected PDHIs (XGB-PDHIs); XGBoost featuring both selected PDHIs and categorical variables (XGB-
Mixed); XGBoost incorporating all variables without feature selection (XGB-All). The optimal hyperparameters 
determined for each model after tuning are outlined in Supplementary Table 3. The probability calibration 
results are depicted in Fig. 1. It was observed that for the three XGBoost models, the Brier scores were higher 
after calibration. Hence, the uncalibrated versions of these models were selected for further dataset evaluation. 
Table 1 outlines the results of our assessment, featuring the performance metrics of the optimized models as 
evaluated through tenfold cross-validation on the training set, and their ultimate evaluation on the test set. The 
slightly lower metrics on the test set, in comparison to the training set cross-validation results, indicate that our 
model maintains good generalization capabilities. This finding suggests that our model has effectively learned 
the underlying patterns in the data without overfitting to the training set, thereby ensuring its applicability to 
real-world scenarios.

To compare the classification abilities of the three final fitted models, we employed McNemar’s test in con-
junction with the Benjamini-Hochberg (BH) correction. From our results (Table 2), we found no significant 
difference in the predictive capabilities of the three examined models on different data set, even though they each 
yielded different McNemar test statistics. This lack of statistical distinction suggests that, given our dataset, the 
predictive performances of the three models are effectively indistinguishable. Moreover, the input data for the 
XGB-PDHIs model consist solely of objectively measured continuous variables, which can be easily obtained 
through a single routine blood test, making it highly suitable for clinical application. Considering both its per-
formance and simplicity, we chose the XGB-PDHIs model for in-depth interpretation.

Figure 1.  Model calibration. The results of model calibration for XGB-PDHIs model (a), XGB-Mixed model 
(b) and XGB-All model (c).
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Risk factor analysis
Through the individual sensitivity analysis, we observed that modifying each selected PDHI within its observed 
range uniquely influenced the model’s predictions for specific patients (Fig. 2a–g). This highlighted the distinct 
impact each risk factor had on the predicted outcome. For instance, as the value of SIRI increased, the prob-
ability of predicting a positive outcome for samples that were originally negative also increased. The RDW_CV 
displayed a notable trend: as the value increased, samples that were originally negative initially saw an increased 
probability of being predicted as positive, followed by a decrease. The trends for other indicators were more 
complex, with the probability variation for individual samples demonstrating polymorphism, likely due to intri-
cate interactions. This indicates the existence of complex interactions leading to diverse trends in single sample 
probability variations.

Our global sensitivity analysis revealed that among the independent predictive factors, SIRI exerted the most 
significant influence on the predictive outcome, with a value of 0.117 (Fig. 2h). This value represents the degree 
of change in the model’s predicted outcome when SIRI values are shuffled, thereby disrupting their correlation 
with the target variable. The second most influential factor was HCT, with a value of 0.108. All other examined 
factors exhibited values less than 0.08, indicating a lesser degree of influence on the prediction outcome. This 
suggests that, in the context of forecasting acute ischemic stroke occurrence in elderly hypertensive patients 
with TIA, the impact of a single PDHI appears relatively limited. In parallel with the global sensitivity analysis, 
we employed SHAP values for a comprehensive feature importance analysis (Fig. 2i). The results revealed that 
the top five contributors to the model, in order, were: SIRI, RDW_CV, BAS_p, HCT, and PLT. Apart from SIRI, 
the overall contribution rankings of factors in the model differed from those obtained in the global sensitivity 
analysis. These analyses highlight the intricate interplay of selected PDHIs in determining the outcome variable.

Finally, we sought to elucidate potential interaction effects within our XGB-PDHIs model by conducting a 
pairwise analysis of all PDHIs using SHAP interaction values. Our analysis, conducted at the individual level, 
revealed complex interactions between different pairs of PDHIs. For illustrative purposes, we visualized the inter-
action effects involving SIRI (Fig. 3). Positive SHAP interaction values imply that the synergistic presence of two 
features increases the risk of elderly hypertensive TIA patients subsequently developing Acute Ischemic Stroke 
(AIS). Conversely, negative SHAP interaction values signify that the combined existence of two features reduces 
the likelihood of a positive prediction, thus amplifying the probability of these patients not suffering from AIS in 

Figure 2.  Risk factor analysis. Individual sensitivity analysis for SIRI (a), IG_p (b), HCT (c), RDW_CV (d), 
EOS (e), PLT (f), and BAS_P (g). Global sensitivity analysis for these predictive factors (h). Global SHAP value 
plot demonstrating the overall effect ranking (i).
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the future. In Fig. 3, SIRI is shown to have significant non-linear interactions with each of the selected PDHIs. 
For instance, Fig. 3a displays the impact of different SIRI and BAS_p values on their interaction as captured by 
the XGB-PDHIs model. The graph demonstrates that as SIRI values increase, the direction and strength of their 
interaction with BAS_p values vary within different SIRI ranges. Initially, there is an enhancement in the posi-
tive interaction when BAS_p values are low, followed by a stronger positive interaction with high BAS_p values, 
and then a stronger negative interaction emerges as BAS_p values remain high. Subsequently, increased nega-
tive interaction occurs when BAS_p values are low again. Overall, the interaction between these two variables 
transitions from positive to negative enhancement. In Fig. 3b, within the same range of SIRI values, the impact 
of RDW_CV values on their interaction is dichotomous: higher RDW_CV values are associated with a strong 
positive interaction, while lower RDW_CV values correlate with a strong negative interaction. Then, the pattern 
reverses, showing a strong negative interaction with high RDW_CV values, and a strong positive interaction 

Figure 3.  SHAP interaction values plots. Utilizing SHAP interaction values, we visualized the interactive effects 
between SIRI and other predictive factors. The x-axis represents the values of SIRI after robust scaling. The color 
gradient in the plot, from green to red, indicates the increasing values of other predictive factors (a BAS_p, b 
RDW_CV, c PLT, d HCT, e EOS, f IG_p) post robust scaling. The y-axis shows the calculated SHAP interaction 
values between SIRI and these predictive factors, reflecting the impact of their interactions on the model’s 
prediction for each sample.

Table 1.  Model performance assessment through cross-validation on training set and independent evaluation 
on test set. Bal-ACC  balanced accuracy, ROC-AUC  Area Under the Receiver Operating Characteristic Curve, 
PR-AUC  Area Under the Precision-Recall Curve, C-Kappa Cohen’s Kappa, Jaccard Jaccard Index, MCC 
Matthews Correlation Coefficient.

Metrics

Cross-validation on training set Independent evaluation on test set

XGB-PDHIs XGB-Mixed XGB-All XGB-PDHIs XGB-Mixed XGB-All

Bal-ACC 0.9082 ± 0.0212 0.9101 ± 0.0167 0.9122 ± 0.0182 0.9022 0.9031 0.9077

ROC-AUC 0.9713 ± 0.0069 0.9715 ± 0.0056 0.9732 ± 0.0067 0.9700 0.9721 0.9735

PR-AUC 0.9350 ± 0.0132 0.9347 ± 0.0112 0.9396 ± 0.0126 0.9315 0.9362 0.9379

Recall 0.8837 ± 0.0359 0.8921 ± 0.0299 0.8908 ± 0.0309 0.8688 0.8742 0.8764

Precision 0.8377 ± 0.0265 0.8304 ± 0.0272 0.8407 ± 0.0290 0.8387 0.8318 0.8470

Specificity 0.9327 ± 0.0116 0.9282 ± 0.0130 0.9335 ± 0.0133 0.9357 0.9319 0.9390

F1-score 0.8598 ± 0.0278 0.8598 ± 0.0221 0.8647 ± 0.0245 0.8535 0.8525 0.8614

C-Kappa 0.8029 ± 0.0387 0.8020 ± 0.0312 0.8095 ± 0.0346 0.7957 0.7937 0.8068

F2-score 0.8740 ± 0.0319 0.8788 ± 0.0252 0.8801 ± 0.0271 0.8626 0.8654 0.8703

Jaccard 0.7552 ± 0.0427 0.7547 ± 0.0343 0.7625 ± 0.0384 0.7444 0.7429 0.7566

MCC 0.8037 ± 0.0390 0.8034 ± 0.0315 0.8105 ± 0.0348 0.7959 0.7942 0.8070
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with low RDW_CV values. Similar trends are observed with other variables interacting with SIRI, indicating a 
complex pattern of interactions within the components of the XGB-PDHIs model. This complexity underscores 
the interdependent and regulatory nature of hematological indicators within the body’s internal environment.

Discussion
A vast array of studies has employed machine learning and statistical methods for AIS prediction. However, most 
of these studies focus on the prognosis of AIS, while research specifically aimed at predicting the incidence of AIS 
is less  common37–39. Studies focusing on AIS incidence risk frequently address AIS as a uniform condition or may 
introduce a single stratifying factor, such as hypertension or diabetes, to forecast AIS  occurrences11,12. Research 
that incorporates multiple stratifying factors to identify specific populations, such as forecasting in elderly dia-
betic patients or in hypertensive patients with coronary artery disease, remains relatively  uncommon40,41. This 
scarcity can largely be attributed to the challenges in gathering large sample sizes for specific populations defined 
by numerous restrictive criteria. Furthermore, when multiple criteria are used to define a study population, the 
complexity of interactions among variables often increases and becomes more intricate. Traditional statistical 
models often fall short in accurately analyzing these intricate interactions, thereby limiting our understand-
ing of AIS risk factors in these targeted cohorts. Our study overcomes these issues by extracting data from the 
HIS of a national-level neuro-specialty hospital, thereby ensuring a substantial sample size. We employed the 
XGBoost model to fully utilize the non-linear interactions between input  variables42,43. Innovatively, we pre-
dicted the occurrence of AIS within three years in a patient cohort defined by three stratifying factors: elderly 
age, transient ischemic attack (TIA), and hypertension. Each of these is a key factor for AIS  incidence4,9,44, and 
older hypertensive patients with TIA are undoubtedly a high-risk group in need of predictive assessment for AIS. 
We opted for the simplest model comprising only seven PDHIs (’SIRI’, ’HCT’, ’RDW_CV’, ’PLT’, ’BAS_p’, ’IG_p’, 
and ’EOS’), given its comparable performance to more complex models. This decision was based on balancing 
predictive accuracy with practicality for clinical application, ensuring both efficacy and ease of use for future 
research and practical deployment.

Machine learning significantly enhances stroke prediction accuracy by focusing on pivotal risk factors and 
utilizing extensive healthcare  datasets45. Recent reviews identified several commonly used ML algorithms in 
cerebrovascular risk assessment, such as support vector machines, artificial neural networks, linear and logistic 
regression, and tree-based methods like random forests and gradient tree  boosting45–47. Due to the lack of models 
specifically designed for predicting AIS in elderly hypertensives with TIA, we screened 15 models incorporat-
ing these algorithms. XGBoost emerged as the top performer. Its advanced tree-building and regularization 
techniques provide nuanced pattern recognition and help mitigate overfitting, rendering it particularly adept at 
predicting AIS within specific patient  demographics48. Ruixuan Huang et al., using data from the Chinese Lon-
gitudinal Healthy Longevity Study (CHADS) and similar class imbalance techniques as our study, constructed 
multifactorial stroke prediction models for the elderly. The performance of these models was as follows: Logistic 
Regression (Recall: 0.75, Specificity: 0.68, AUC: 0.72), SVM (Recall: 0.70, Specificity: 0.72, AUC: 0.71), and 
Random Forest (Recall: 0.62, Specificity: 0.79, AUC: 0.71)49. Yuexin Qiu et al. compared multiple tree-based 
models after hyperparameter tuning in a large sample study of 46,240, finding the best performances in random 
forest (sensitivity: 0.778, specificity: 0.913, AUC: 0.924) and XGBoost (sensitivity: 0.776, specificity: 0.916, AUC: 
0.924)50. Chuan Hong et al., using neural networks and random survival forests on data from diverse large-scale 
studies in Western populations, fitted models for subgroups based on race, sex, and age, with the highest AUC 
for neural networks at 0.75 and for random survival forests at 0.7351. Our XGB-PDHIs model (Sensitivity: 0.869, 
Specificity: 0.936, AUC: 0.970) not only surpasses the performance of the above-mentioned specific cohort mod-
els but is also precisely tailored for a more narrowly defined specific high-risk population: elderly hypertensive 
patients with TIA. The input variables for this model, derived from easily accessible clinical laboratory data, 
enhance its practicality and suitability for clinical application.

Our analysis prominently identifies SIRI as the most significant predictive factor, a consistent finding across 
global sensitivity and feature importance analyses, reaffirming its pivotal role in our model. SIRI, indicative of 
systemic immune-inflammation, is calculated from neutrophil, monocyte, and lymphocyte counts, and is inte-
gral in reflecting the balance between inflammatory and immune  responses52. Parameters like HCT, RDW_CV, 
and PLT, linked to erythrocyte and platelet series, have been widely acknowledged in numerous studies for their 
association with AIS development and  progression24,53,54. These factors, relating to blood’s oxygen-carrying 
capacity, erythrocyte size variability, and clotting potential, are fundamentally connected to AIS via pathways 

Table 2.  Table of McNemar’s test results. PDHIs: XGB-PDHIs, Mixed: XGB-Mixed, All: XGB-All. Adj.p-val: 
the p-value adjusted for multiple testing using the Benjamini–Hochberg correction. *Statistic refers to the 
number of discordant pairs from the contingency table used in McNemar’s test. *H0 assumes that the error 
rates of the two models are identical, suggesting that there is no significant difference in the performance 
between the two models.

XGBoost model

Validation set Test set

Statistic* p-val Adj.p-val Reject H0* Statistic p-val Adj.p-val Reject H0

PDHIs versus Mixed 51 0.0487 0.1460 FALSE 82 0.8771 0.8771 FALSE

PDHIs versus All 66 0.1230 0.1845 FALSE 89 0.3852 0.6656 FALSE

Mixed versus All 51 0.8454 0.8454 FALSE 64 0.4437 0.6656 FALSE
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like inflammation, oxidative stress, endothelial dysfunction, hemostatic balance and regulation of coagulation 
 mechanism20,24,53–55. While BAS_p, IG_p, and EOS in AIS have been less explored, their potential in providing 
unique predictive insights cannot be overlooked. A study indicates that eosinophil cationic protein, a marker of 
eosinophil activity and degranulation, when elevated, is associated with an increased incidence of  AIS56. IG has 
been recommended as a new indicator of systemic inflammation, showing potential to predict AIS  risk57. There 
has also been a report of BAS being successfully used as one of the input variables in machine learning to predict 
 AIS58. Notably, apart from SIRI’s consistent top ranking, the order of other indicators varies in global sensitivity 
and SHAP value-based feature importance analyses. As global sensitivity analysis evaluates the impact of indi-
vidual input variability on predictions, SHAP values provide insights into both the direct and interaction effects 
of features on model outputs. Such differential ranking highlights the complex nature of vascular mechanisms in 
the pathogenesis of AIS, where each predictor’s biological significance may vary depending on interactions with 
other  factors59. Utilizing SHAP interaction value plots, our study has uncovered, for the first time, the intricate 
and non-linear interplay among various hematological indicators (SIRI, HCT, RDW_CV, PLT, IG_p, BAS_p and 
EOS) in elderly hypertensive patients with TIA. We observed that these interactions exhibit considerable com-
plexity and demonstrate varying trends across individuals, depending on the values of different hematological 
indicators, underscoring the necessity for personalized risk prediction for AIS within this demographic. Our 
XGB-PDHIs model emerges as a promising tool for such individualized predictions.

Advantage and limitation
Our study introduces a precise XGBoost model, meticulously developed to predict AIS progression within 
three years in elderly hypertensive patients with TIA. This model utilizes a rigorous workflow and focuses on 
key PDHIs. We conducted an in-depth analysis of the non-linear interactions between these PDHIs, elucidating 
their collective impact at an individual level in the assessment of AIS risk within this demographic. Our study 
also has some limitations. First, our findings were derived from a single-center dataset, which may limit the 
generalizability of our results. Multi-center studies with diverse patient cohorts would be beneficial in validat-
ing and refining our predictive model. Second, our analysis was primarily centered on the pairwise interactions 
among variables. The investigation into more complex interactions involving more than two factors, as well as 
the establishment of thresholds for interaction effects, remains unexplored. These elements are key areas for our 
future research efforts. Third, although our XGBoost model shows promising results, machine learning offers 
possibilities for further improvement. Future research could explore alternative models and reassess feature 
importance to potentially enhance our findings. Last, we recognize the potential influence of additional factors 
such as nutrition, socioeconomic, and psychosocial elements on the onset of AIS. Integrating these factors into 
our analysis could improve the predictive accuracy and offer a more comprehensive understanding of AIS risk 
in elderly hypertensive patients with TIA.

Conclusion
We developed an optimized XGBoost model using selected PDHIs (XGB-PDHIs), which performed competi-
tively against more complex models incorporating a wider range of variables. This indicates the efficacy of the 
XGB-PDHIs in capturing the primary key variations necessary for accurate AIS prediction over a three-year 
period in elderly hypertensive patients with TIA. Through model interpretability analysis and SHAP interac-
tion value plots, our study revealed the importance of nonlinear interactions among SIRI, HCT, RDW_CV, PLT, 
BAS_p, IG_p, and EOS in assessing AIS risk within this demographic. The XGB-PDHIs model, notable for its 
robust performance and practicality, provides a valuable contribution to predicting AIS risk by enabling more 
targeted screening and personalized risk assessment. Future work should focus on validating these findings in 
larger, multicenter studies and further investigating the interaction mechanisms that link key PDHIs to AIS risk.

Data availability
Due to data security reasons, the Huanhu data derived from the hospital’s systems are not publicly available, but 
can be obtained from the corresponding author upon reasonable request for research purposes. The data will be 
updated and supplemented in real time.

Code availability
The code used for feature selection, model hyperparameter selection, and calibration will be made available at 
https:// github. com/ nkcha ngshu/ PDHIs_ ML/ tree/ main.
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