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Diffusion probabilistic models 
enhance variational autoencoder 
for crystal structure generative 
modeling
Teerachote Pakornchote 1, Natthaphon Choomphon‑anomakhun 1, 
Sorrjit Arrerut 1, Chayanon Atthapak 1,2, Sakarn Khamkaeo 1,2, Thiparat Chotibut 3 & 
Thiti Bovornratanaraks 1,2*

The crystal diffusion variational autoencoder (CDVAE) is a machine learning model that leverages 
score matching to generate realistic crystal structures that preserve crystal symmetry. In this study, 
we leverage novel diffusion probabilistic (DP) models to denoise atomic coordinates rather than 
adopting the standard score matching approach in CDVAE. Our proposed DP‑CDVAE model can 
reconstruct and generate crystal structures whose qualities are statistically comparable to those of 
the original CDVAE. Furthermore, notably, when comparing the carbon structures generated by the 
DP‑CDVAE model with relaxed structures obtained from density functional theory calculations, we 
find that the DP‑CDVAE generated structures are remarkably closer to their respective ground states. 
The energy differences between these structures and the true ground states are, on average, 68.1 
meV/atom lower than those generated by the original CDVAE. This significant improvement in the 
energy accuracy highlights the effectiveness of the DP‑CDVAE model in generating crystal structures 
that better represent their ground‑state configurations.

Advances in computational materials science have enabled the accurate prediction of novel materials possessing 
exceptional properties. Remarkably, these computational advancements have facilitated the successful experi-
mental synthesis of materials that exhibit the anticipated properties. Some predicted materials, such as near-
room-temperature superconductors, have been successfully synthesized under high-pressure conditions, with 
their superconducting temperatures in accordance with density functional theory (DFT)  calculations1,2. To 
achieve accurate predictions, a priori knowledge of plausible molecular and crystal structures play a vital role 
in both theoretical and experimental studies. Several algorithms, such as evolutionary algorithms, swarm par-
ticle optimization, random sampling method, and etc., have been employed for structure  prediction3–5. These 
algorithms rely on identifying local minima on the potential energy landscape obtained from, for example, 
DFT calculations and machine learning-driven  methods6–8. In the case of crystal structures, where atoms are 
arranged in a three-dimensional space with periodic boundaries, additional criteria are necessary to enforce 
crystal symmetry  constraints5.

Recent approach for structure prediction employs denoising diffusion models to perform probabilistic infer-
ence. These models sample molecular and crystal structures from a probability distribution of atomic coordinates 
and  types9–12, bypassing the computationally intensive DFT calculation that tediously determines the potential 
energy landscape. By leveraging sufficiently large datasets containing various compounds, this method enables 
the generation of diverse compositions and combinations of elements simultaneously. Furthermore, the models 
allow for the control of desired physical properties of the generated structures through conditional probability 
 sampling13–15. These machine learning-based algorithms also hold promise for solving inverse problem effi-
ciently, resolving structures from experimental characterizations, e.g., x-ray absorption spectroscopy and other 
techniques, a challenging problem in materials  science16–18.
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There are two primary types of denoising diffusion models: score matching approach and denoising diffusion 
probabilistic models (DDPM)19–21. These two models can denoise (reverse) a normal distribution such that the 
distribution gradually transforms into the data distribution of interest. The score matching approach estimates 
the score function of the perturbed data directing the normal distribution toward the data distribution and 
employing large step sizes of variance. In contrast, DDPM gradually denoises the random noise through a joint 
distribution of data perturbed at different scales of variance. Both approaches have been utilized for generating 
molecular  structures10–12. However, models based on DDPM tend to sample molecules with higher diversity and 
energy closer to the ground truth than models based on the score matching  approach11.

Since atomic positions in crystal structures are periodic and can be invariant under some rotation groups 
depending on their crystal symmetry, the core neural networks should favourably possess roto-translational 
 equivariance22–24. Xie et al.9 has proposed a model for crystal prediction by a combination between variational 
autoencoder (VAE)25 and the denoising diffusion model, called crystal diffusion VAE (CDVAE). The model 
employs the score matching approach with (annealed) Langevin dynamics to generate new crystal structures 
from random  coordinates19. The neural networks for an encoder and the diffusion model are roto-translationally 
equivariant. As a result, CDVAE can generate crystal structures with realistic bond lengths and respect crystal 
symmetry.

Because of the periodic boundary condition imposed on the unit cell, gradually injecting sufficiently strong 
noises (in the forward process) to the fractional coordinates can lead to the uniform distribution of atomic posi-
tions at late times, the consequence of ergodicity in statistical mechanical sense. Rather than beginning with a 
Gaussian distribution and denoising it as in the original CDVAE formulation, Jiao et al.26 perturbed and sampled 
atomic positions beginning with a wrapped normal distribution which satisfies the periodic boundary condition. 
With this approach, the reconstruction performance has been significantly improved. Other circular (periodic) 
distributions, e.g., the wrapped normal and von Mises distributions, are not natural for DDPM framework since 
there is no known analytical method to explicitly incorporate such distributions into the framework. There, one 
needs to resort to an additional sampling procedure to construct the  DDPM27.

In this work, we introduce a crystal generation framework called diffusion probabilistic CDVAE (DP-
CDVAE). Similar to the original CDVAE, our model consists of two parts: the VAE part and the diffusion part. 
The purpose of the VAE part is to predict the lattice parameters and the number of atoms in the unit cell of crystal 
structures. On the other hand, the diffusion part utilizes the diffusion probabilistic approach to denoise fractional 
coordinates and predict atomic coordinates. By employing the DDPM instead of the score matching approach, 
the DP-CDVAE model shows reconstruction and generation task performances that are statistically comparable 
to those obtained from original CDVAE. Importantly, we demonstrate the significantly higher ground-state 
generation performance of DP-CDVAE, through the distance comparison between generated structures and 
those optimized using the DFT method. We also analyze the changes in energy and volume after relaxation to 
gain further insights into models’ capabilities.

Results
The performances of DP-CDVAE models are herein presented. There are four DP-CDVAE models, differed by 
the choice of the encoder (see Fig. S1 in Supplemental Information (SI)). DimeNet++ has been employed for 
the main encoder for every DP-CDVAE  models28. We then modify the encoder of DP-CDVAE to encode the 
crystal structure by two additional neural networks: a multilayer perceptron that takes the number of atoms in 
the unit cell ( Na ) as an input, and a graph isomorphism network (GINE)29. Their latent features are combined 
with the latent features from DimeNet++ through another multilayer perceptron. The Na is encoded such that the 
model can decode the Na accurately, and GINE encoder is inspired by  GeoDiff11 whose model is a combination 
of  SchNet30 and GINE which yields better performance.

Three datasets, Perov-531,32, Carbon-2433, and MP-2034, were selected to evaluate the performance of the 
model. The Perov-5 dataset consists of perovskite materials with cubic structures, but with variations in the com-
binations of elements within the structures. The Carbon-24 dataset comprises carbon materials, where the data 
consists of carbon element with various crystal systems obtained from ab initio random structure searching algo-
rithm at pressure of 10  GPa33. The MP-20 dataset encompasses a wide range of compounds and structure types.

Reconstruction performance
The reconstruction performance is determined by the similarity between reconstructed and ground-truth struc-
tures. The similarity can be evaluated using StructureMatcher algorithm from pymatgen  library35. The 
algorithm takes a pair of crystal structures and performs Niggli reduction to reduce their  cells36,37. They are 
then compared by determining an average displacement between the two structures. If it falls within the error 
tolerence, the two structures are matched. The reconstructed and ground-truth structures are similar if they pass 
the criteria of StructureMatcher which are stol=0.5, angle_tol=10, ltol=0.3. Match rate 
is the percentage of those structures passed the criteria. If the reconstructed and ground-truth structures are 
similar under the criteria, the root-mean-square distance between their atomic positions is computed and then 
normalized by 3

√
V/Na , where V is the unit-cell volume, and Na is the number of atoms in the unit cell. An aver-

age of the distances of every pair of structures ( 〈δrms〉 ), computed using the StructureMatcher algorithm, 
is used as the performance metric.

Table 1 presents the reconstruction performance of different models for three different datasets: Perov-5, 
Carbon-24, and MP-20. Note that Fourier-transformed crystal properties (FTCP) model is presented as a base-
line model, which is based on VAE. It encodes and decodes both the real-space and reciprocal-space features of 
crystal  structures38. For the Perov-5 dataset, the DP-CDVAE model achieves a match rate of 90.04%, indicating 
its ability to reconstruct a significant portion of the ground-truth structures. This performance is 7.48% lower 
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than the CDVAE model but still demonstrates the effectiveness of our model. In terms of 〈δrms〉 , the DP-CDVAE 
model achieves a value of 0.0212, comparable to the FTCP  model38, but slightly higher than the CDVAE model. 
Similarly, for the Carbon-24 and MP-20 datasets, the DP-CDVAE model performs well in terms of both match 
rate and 〈δrms〉 . It achieves match rates of 45.57% and 32.42% for Carbon-24 and MP-20, respectively. The 
corresponding 〈δrms〉 values for Carbon-24 and MP-20 are 0.1513 and 0.0383, respectively, comparable to the 
CDVAE model.

Regarding the DP-CDVAE+Na model, the additional encoding of Na into the model leads to improved match 
rates for all datasets, with an increase of 2–5%. This enhancement can be attributed to the accurate prediction 
of Na . However, in terms of 〈δrms〉 , only the Perov-5 dataset shows an improvement, with a value of 0.0149. On 
the other hand, for the Carbon-24 and MP-20 datasets, the 〈δrms〉 values are higher compared to the DP-CDVAE 
model.

For the DP-CDVAE+GINE and DP-CDVAE+Na+GINE models, the additional encoding of GINE into the 
models leads to a substantial drop in match rates compared to the DP-CDVAE model, particularly for the Perov-5 
and Carbon-24 datasets. In contrast, there is a moderate increase in the match rates for the MP-20 dataset. The 
〈δrms〉 values for the Perov-5 and Carbon-24 datasets are comparable to those of the DP-CDVAE model. How-
ever, for the MP-20 dataset, the 〈δrms〉 is noticeably higher in the models with GINE encoder compared to the 
DP-CDVAE model.

Overall, while the reconstruction performance of the DP-CDVAE model may be lower than the CDVAE 
model in terms of match rate, it still demonstrates competitive performance with relatively low 〈δrms〉 . The match 
rate can be enhanced by additionally encoding the Na , but the performance is traded off by the increase in 〈δrms〉.

Generation performance
We follow the CDVAE model that used three metrics to determine the generation performance of the  models9. 
The first metric is the Validity percentage, which encompasses two sub-metrics: Structural Validity (Struc.) with a 
criterion that ensures the distances between every pair of atoms are larger than 0.5 Å, and Compositional Validity 
(Comp.) with a criterion that maintains a neutral total charge in the unit cell. The second metric is called coverage 
(COV), which utilizes structure and composition fingerprints to evaluate the similarity between the generated 
and ground-truth structures. COV-R (Recall) represents the percentage of ground-truth structures covered by 
the generated structures. COV-P (Precision) represents the percentage of generated structures that are similar 
to the ground-truth structures, indicating the quality of the generation. The third metric is the Wasserstein 
distance between property distributions of generated and ground-truth structures. Three property statistics are 
density ( ρ ), which is total atomic mass per volume (unit g/cm3 ), formation energy ( Eform , unit eV/atom), and 
the number of elements in the unit cell (# elem.). A separated and pre-trained neural network is employed to 
predict E of the structures where the detail of the pre-training can be found in Ref.9. The first and second metrics 
are computed over 10,240 generated structures, and 1000 structures are randomly chosen from the generated 
structures that pass the validity tests to compute the third metric. The ground-truth structures used to evaluate 
the generation performance are from the test set.

In Table 2, the DP-CDVAE model achieves a validity rate of 100% for the Perov-5 dataset and close to 100% 
for the Carbon-24 and MP-20 datasets in terms of structure. The validity rate for composition is comparable to 
that of the CDVAE model. The DP-CDVAE model also demonstrates comparable COV-R values to the CDVAE 
model across all three datasets. Furthermore, the DP-CDVAE models with Na and/or GINE encoders exhibit 
similar Validity and COV-R metrics to those of the DP-CDVAE model. However, for COV-P, all DP-CDVAE 
models yield lower values compared to CDVAE.

On the other hand, our models show significant improvements in property statistics. In the case of the MP-20 
dataset, the DP-CDVAE models, particularly those with the GINE encoder, yield substantially smaller Wasser-
stein distances for ρ , Eform , and the number of elements compared to other models. For the Carbon-24 dataset, 
our models also exhibit a smaller Wasserstein distance for ρ compared to the CDVAE model.

Ground‑state performance
Another objective of the structure generator is to generate novel structures that also are close to the ground state. 
To verify that, the generated structures are relaxed using the DFT calculation where the relaxed structures exhibit 
balanced internal stresses with external pressures and reside in local energy minima. These relaxed structures 
are then compared with the generated structures to evaluate their similarity. In this study, we have chosen a 
set of 100 generated structures from each of CDVAE, CDVAE+Fourier, and DP-CDVAE models for relaxation 
where CDVAE+Fourier model is CDVAE model with Fourier embedding features of the perturbed coordinates. 
However, relaxation procedures for multi-element compounds can be computationally intensive. To address this, 
we have specifically selected materials composed solely of carbon atoms, using the model trained on Carbon-24 
dataset. This selection ensures a convergence of the self-consistent field in DFT calculation. Moreover, in the 
relaxation, we consider the ground state of the relaxed structures at a temperature of 0 K and a pressure of 10 
GPa since the carbon structures in the training set are stable at 10  GPa33.

We here introduce a ground-state performance presented in Table 3. The StructureMatcher with the 
same criteria as in the reconstruction performance is used to evaluate the similarity between the generated and 
relaxed structures. The relaxed structure was used as a based structure to determine if the generated structure 
can be matched. Four metrics used to determine the similarity are 1) match rate, 2) 〈δrms〉 , 3) �Vrms and 4) �Erms . 
The �Vrms and �Erms represent the root mean square differences in volume and energy, respectively, between 
the generated structures and the relaxed structures in the dataset.
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In Table 3, the DP-CDVAE model achieves the highest match rate and the lowest 〈δrms〉 and �Erms . Although 
the CDVAE+Fourier model achieves the lowest �Vrms , the DP-CDVAE model demonstrates the �Vrms that is 
comparable to that of the CDVAE+Fourier model.

Discussion
The DP-CDVAE models significantly enhance the generation performance, particularly in terms of property 
statistics, while maintaining comparable COVs to those of CDVAE. Specifically, for Carbon-24 and MP-20 
datasets, the density distributions between the generated and ground-truth structures from DP-CDVAE mod-
els exhibit substantially smaller Wasserstein distance compared those of the CDVAE model (see Table 2). The 
�Vrms of the DP-CDVAE model presented in Table 3 is significantly lower than that of the original CDVAE. 
This is corresponding to smaller Wasserstein distance of ρ shown in Table 2. The DP-CDVAE model also dem-
onstrates significantly smaller 〈δrms〉 than the original CDVAE. These suggest that our lattice generation closely 
approximates the relaxed lattice, while also achieving atomic positions that closely resemble the ground-state 
configuration. This could be an attribute of the DP approach that gradually learns perturbed coordinates, which 
in turn enhances the quality of sampled coordinates during the reverse process, much like its successful applica-
tions in image and molecular structure  generation11,21,39. Additionally, the distribution of the number of elements 
in the unit cells is relatively similar to that of the data in the test set, particularly in the results from the models 
with GINE encoder. This could be attributed to the capability of GINE to search for graph  isomorphism40. For 
the MP-20 dataset, the Wasserstein distances of the Eform values generated by our models are notably lower. This 
suggests that the crystal structures we generate are more likely to have Eform values within the specific range we 
are interested in. Hence, by selecting an appropriate training set, we can concentrate on structures with Eform 
values falling within the synthesizable candidate range.

Moreover, �E is the energy difference between the generated structures and their corresponding relaxed 
structures. The ground-state energy represents a local minimum that the generated structure is relaxed towards. 
A value of �E close to zero indicates that the generated structure is in close proximity to the ground state. In 
Table 3, it can be observed that our model achieves the �Erms value of 400.7 meV/atom which is about 68.1 meV/
atom lower than the �Erms of CDVAE. The mode of �E of our model is 64–128 meV/atom, which is lower than 
its root-mean-square value (see Fig. S2 in SI). Nevertheless, both the �Erms and the mode of �E exhibit relatively 
high values. In many cases, the formation energy of synthesized compounds is reported to be above the convex 
hull less than 36 meV/atom41–43. To obviate the need for time-consuming DFT relaxation, it is essential for the 
generated structures to be even closer to the ground state. Therefore, achieving lower �Erms values remains a 
milestone for future work.

Methods
Diffusion probabilistic model
In the diffusion probabilistic model, the data distribution is gradually perturbed by noise in the forward process 
until it becomes a normal distribution at late times. In this study, the distribution of the fractional coordinate 
( rf  ) is considered since their values of every crystal structures distribute over the same range ,i.e., rf ∈ [0, 1)3 . 
The Markov process is assumed for the forward diffusion such that the joint distribution is a product of the 
conditional distributions conditioned on the knowledge of the fractional coordinate at the previous time step:

where r0 ∼ q(rf ) the data distribution of the fractional coordinate, t is the discretized diffusion time step, T is 
the final diffusion time, αt is a noise schedule with a sigmoid  scheduler44, and the conditional q(·|·) is a Gaussian 
kernel due to the Markov diffusion process assumption. Then rt can be expressed in the Langevin’s form through 
the reparameterization trick as

where ǫ ∼ N (0, I) , and ᾱt =
∏t

i=1 αi . This update rule does not necessitate rt to remain in [0, 1)3 ; however, we 
can impose the periodic boundary condition for the fractional coordinate so that

Then, rft ∈ [0, 1)3.
In the reverse diffusion process, if the consecutive discretized time step is small compared to the diffusion 

timescale, the reverse coordinate trajectories can be approximately sampled also from the product of Gaussian 
diffusion kernels as

where

(1)
q(r1:T |r0) =

T
∏

t=1

q(rt |rt−1),

q(rt |rt−1) = N (rt;
√
αtrt−1, (1− αt)I),

(2)rt =
√

ᾱtr0 +
√

1− ᾱtǫ,

(3)rft = π(rt) := rt − ⌊rt⌋.

(4)
pθ (r0:T ) = p(rT )

T
∏

t=1

pθ (rt−1|rt),

pθ (rt−1|rt) = N (rt−1;µθ , σ
2
t I),
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The reverse conditional distribution can be trained by minimizing the Kullback-Leibler divergence between 
pθ (rt−1|rt) and q(rt−1|rt , r0) , the posterior of the corresponding forward  process21. We use GemNetT for the 
diffusion network to train the parametrized noise ǫθ45. Then, the coordinate in the earlier time can be sampled 
from rt−1 ∼ pθ (rt−1|rt) , whose corresponding reverse Langevin’s dynamics reads

where ǫ′ ∼ N (0, I) . Crucially, we empirically found that the final reconstruction performance is considerably 
improved when we impose the periodic boundary condition on the fractional coordinate at every time step 
such that rt−1 ∼ pθ (rt−1|rft ) and αt in the first term of Eq. (6) is replaced by ᾱt . Namely, in our modified reverse 
process, the coordinate is sampled from

An illustration of denoising atomic coordinates with Eq. (7) is demonstrated in Fig. 2. The model performance 
using Eq. (6) is shown in Table S1 in SI, whereas the performance using Eq. (7) is shown in Table 1.

Graph neural networks
Graph neural networks architecture facilitate machine learning of crystal graphs G = (V , E) , graph representa-
tions of crystal structures. V and E are sets of nodes and edges, respectively, defined as

where n and m are indices of atoms in a crystal structure, fn is a vector of M features of an atom in the unit 
cell, T is a translation vector, and L is a lattice matrix that converts a fractional coordinate rfn into its atomic 
Cartesian coordinate rcn . The atomic features, fractional coordinates, and atomic Cartesian coordinates of the 
crystal structure are vectorized (concatenated) as f = (f1, . . . , fNa ) ∈ R

Na×M , rf = (rf1 , . . . , rfNa ) ∈ R
Na×3 , and 

rc = (rc1 , . . . , rcNa ) ∈ R
Na×3 . Three graph neural networks implemented in this work are DimeNet++28,  GINE29, 

and  GemNetT45. DimeNet++ and GINE are employed for encoders, and GemNetT is used for a diffusion network. 
DimeNet++ and GemNetT, whose based architecture concerns geometry of the graphs, are rotationally equivari-
ant. GemNetT has been devised by incorporating the polar angles between four atoms into DimeNet++ . This 
development grants GemNetT a higher degree of expressive power compared to DimeNet++46. Furthermore, 
GINE has been developed to distinguish a graph isomorphism, but not graph geometry nor the distance between 
nodes, which is important for our study. Thus we supplement the edge attributes into GINE with the distances 
between atoms, i.e. E = {||�r

(T)
cmn ||}.

DP‑CDVAE’s architecture
The forward process of DP-CDVAE model is illustrated in Fig. 1. The model is a combination of two generative 
models, which are VAE and diffusion probabilistic model. The pristine crystal structures consist of the fractional 
coordinate ( rf  ), the lattice matrix ( L ), ground-truth atomic type (Z), and the number of atoms in a unit cell 
( Na ). For crystal graphs of the encoders, their node features are f = Z . The number of atoms in a unit cell Na is 
encoded through multilayer perceptron before concatenated with the latent features from other graph encoders. 
They are encoded to train µφ and logvarφ where φ is a learnable parameter of the encoders. The latent variables 
( z ) can be obtained by

where ǫ′′ ∼ N (0, I) . Then, z will be decoded to compute the lattice lengths and angles, which then yield the lat-
tice matrix ( Lz ), Na , and Az . In the original CDVAE, Az is the probability vector indicating the fraction of each 
atomic type in the compound and is used to perturb Z by

where M is a multinomial distribution, A is a one-hot vector of ground-truth atomic type Z, and σ ′
t  is the vari-

ance for perturbing atomic types at time t, which is distinct from σt used for perturbing the atomic coordinates. 
Similar to the original CDVAE, σ ′

t  is selected from the range of [0.01, 5].
For the diffusion network, the input structures are constructed from rft , Zt , and Lz where the (Cartesian) 

atomic coordinates at time t are computed by rct = Lzrft . These are then utilized by the crystal graphs for the 
diffusion network, whose node features are ft = (Zt , Ft , z, t) where Ft is a Fourier embedding feature of rt (see 
SI). As proposed by Ho et al.21, we use the simple loss to train the model such that

(5)
µθ =

1
√
αt

(

rt −
1− αt√
1− ᾱt

ǫθ

)

,

σ 2
t =

(1− ᾱt−1)(1− αt)

1− ᾱt
.

(6)rt−1 =
1

√
αt

(

rt −
1− αt√
1− ᾱt

ǫθ

)

+ σtǫ
′,

(7)
rt−1 =

1
√
ᾱt

(

rft −
√

1− ᾱtǫθ

)

+ σtǫ
′,

rft = π(rt).

V = {(fn, rcn) | fn ∈ R
M , rcn = Lrfn ∈ R

3},

E = {�r
(T)
cmn

| �r
(T)
cmn

= rcm − rcn + T; rcm , rcn ∈ R
3},

(8)z = µφ + elogvarφ ǫ′′,

(9)Zt ∼ M(softmax(A+ σ ′
tAz))
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Since the diffusion model is trained to predict both ǫ and A , so the loss of the diffusion network is

where LCE is the cross entropy loss, � is a loss scaling factor, and t ∈ {1, . . . ,T} where T = 1000 . In this work, 
t is randomly chosen for each crystal graph and randomly reinitialized for each epoch in the training process. 
The total loss in the trainig process is shown in Eq. S1 in SI.

In the reverse diffusion process, we measure the model performance of two tasks: reconstruction and gen-
eration tasks. For the former task, z is obtained from Eq. (8) by using the ground-truth structure as an input 
of the encoders. For the latter task, z ∼ N (0, I) , which is then used to predict Na , Lz , Az , and concatenate with 
the node feature of the crystal graph in the diffusion network. At the initial step, t = T , ZT is sampled from the 
highest probability of Az , and the final-time coordinate is obtained from sampling a Gaussian distribution, i.e. 
rT ∼ N (0, I). The coordinates can be denoised using Eq. (7), and the predicted atomic types are updated in each 
reversed time step by argmax(Aθ ).

(10)Lsimple = �ǫ − ǫθ (rct , ft)�2.

(11)Ldiff = Lsimple + �LCE(A,Aθ (rct , ft)),

, , ,

, , , ,

∙

VAE

DP

Figure 1.  The schematic summarizing the architecture for training the DP-CDVAE model. Multiple sub-
networks are trained to minimize the total loss function. The encoder ( Gφ(Lrf ,Z,Na) ) compresses input 
pristine crystal structures into the latent feature ( z ). The predicted lattice parameters ( Lz ), the predicted number 
of atoms ( Nz ), and Az are decoded from z . Here, Az enables the sampling of atomic types ( Zt ), and all the 
decoded features enable the reconstruction of crystal structures. The input fractional coordinates rf  undergo 
perturbation (dash-dotted line) at time step t and then are transformed by π(·) to satisfy the periodic boundary 
condition (dotted line), serving as the coordinates for the reconstructed crystal structures. These reconstructed 
structures, 

(

Lzrft ,Zt , z, t
)

 , are subsequently fed into the diffusion network ( Dθ (Lzrft , ft) ), where ft is a node 
feature composing of Zt , z , and t. The diffusion network predicts the noise added to the fractional coordinates 
( ǫθ ) as well as the one-hot vector of atomic types ( Aθ ). Dashed-line boxes represent the unit cells of the crystal 
structures.

Table 1.  Reconstruction performance. Significant values are in [bold].

Models

Match rate (%) ↑ 〈δrms〉 ↓

Perov-5 Carbon-24 MP-20 Perov-5 Carbon-24 MP-20

FTCP9 99.34 62.28 69.89 0.0259 0.2563 0.1593

CDVAE9 97.52 55.22 45.43 0.0156 0.1251 0.0356

DP-CDVAE 90.04 45.57 32.42 0.0212 0.1513 0.0383

DP-CDVAE+Na 91.86 50.99 36.17 0.0149 0.1612 0.0560

DP-CDVAE+GINE 80.50 49.02 34.08 0.0214 0.1599 0.0455

DP-CDVAE+Na+GINE 88.30 38.28 37.44 0.0180 0.1921 0.0525
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Table 2.  Generation performance. Significant values are in [bold].

Datasets Models

Validity (%) ↑ COV (%) ↑ Property statistics ↓

Struc. Comp. R. P. ρ Eform # elem.

Perov-5

G-SchNet9 99.92 98.79 0.18 0.23 1.625 4.746 0.0368

P-G-SchNet9 79.63 99.13 0.37 0.25 0.2755 1.388 0.4552

CDVAE9 100 98.59 99.45 98.46 0.1258 0.0264 0.0628

DP-CDVAE 100 98.07 99.52 98.39 0.1807 0.0713 0.0767

DP-CDVAE+Na 99.99 97.34 99.55 97.22 0.1027 0.0287 0.0437

DP-CDVAE+GINE 100 96.11 98.94 95.63 0.2114 0.0832 0.0498

DP-CDVAE+Na+GINE 100 97.09 99.52 96.73 0.1368 0.0425 0.0210

Carbon-24

G-SchNet9 99.94 – 0.00 0.00 0.9427 1.320 –

P-G-SchNet9 48.39 – 0.00 0.00 1.533 134.7 –

CDVAE9 100 – 99.80 83.08 0.1407 0.2850 –

DP-CDVAE 99.92 – 99.56 77.98 0.1109 0.2596 –

DP-CDVAE+Na 99.73 – 99.61 72.29 0.1080 0.3030 –

DP-CDVAE+GINE 99.50 – 100 68.13 0.0977 0.3623 –

DP-CDVAE+Na+GINE 98.61 – 99.21 65.13 0.1267 0.4136 –

MP-20

G-SchNet9 99.65 75.96 38.33 99.57 3.034 42.09 0.6411

P-G-SchNet9 77.51 76.40 41.93 99.74 4.04 2.448 0.6234

CDVAE9 100 86.70 99.15 99.49 0.6875 0.2778 1.432

DP-CDVAE 99.59 85.44 98.93 98.96 0.4037 0.1547 0.9179

DP-CDVAE+Na 99.81 84.95 99.36 99.33 0.4889 0.1800 1.053

DP-CDVAE+GINE 99.82 81.92 99.48 99.00 0.2785 0.0603 0.5679

DP-CDVAE+Na+GINE 99.90 83.89 95.51 99.27 0.1790 0.0522 0.6909

Table 3.  Ground-state performance. Significant values are in [bold].

Model Match rate (%) ↑ 〈δrms〉 ↓ �Vrms (Å3/atom) ↓ �Erms (meV/atom) ↓

CDVAE 63 0.0321 0.0227 468.8

CDVAE+Fourier 62 0.0216 0.0157 494.4

DP-CDVAE 64 0.0141 0.0158 400.7

~ 0,
=

0 ~ 0| 1

0 = 0

~ | +1

=
−1~ −1|

−1 = −1

Figure 2.  The schematic depicting the reverse diffusion process of the DP-CDVAE model. Initially, atomic 
coordinates are sampled from a normal distribution and subsequently mapped into the unit cell (dashed-line 
box) using the periodic boundary-imposing function π(·) . White circles outside the unit cell depict the atomic 
coordinates prior to the periodic boundary condition is imposed, while colored circles represent atoms that are 
inside the unit cell of interest. The action of π(·) on the atoms outside the unit cell is represented by an arrow 
that translates the white circles into colored circles in the unit cell. Left to right show the reverse direction of the 
arrow of time, depicting the reverse diffusion process.
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DFT calculations
The Vienna ab initio Simulation Package (VASP) was employed for structural relaxations and energy calculations 
based on  DFT47,48. The calculations were conducted under the generalized gradient approximation (GGA), which 
is Perdew-Burke-Ernzerhof (PBE) exchange-correlation functional, and the project augmented wave (PAW) 
 method49,50. The thresholds for energy and force convergence were set to 10−5 eV and 10−5 eV/Å, respectively. 
The plane-wave energy cutoff was set to 800 eV, and the Brillouin zone integration was carried out on a k-point 
mesh of 5× 5× 5 created by the Monkhorst-Pack  method51,52.

Data availability
The code and datasets generated and/or analysed during the current study are available at https:// github. com/ 
trach ote/ dp- cdvae.

Received: 27 August 2023; Accepted: 4 January 2024
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