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A computational model of stem 
cells’ internal mechanism 
to recapitulate spatial patterning 
and maintain the self‑organized 
pattern in the homeostasis state
Najme Khorasani 1* & Mehdi Sadeghi 2

The complex functioning of multi‑cellular tissue development relies on proper cell production rates 
to replace dead or differentiated specialized cells. Stem cells are critical for tissue development 
and maintenance, as they produce specialized cells to meet the tissues’ demands. In this study, 
we propose a computational model to investigate the stem cell’s mechanism, which generates the 
appropriate proportion of specialized cells, and distributes them to their correct position to form and 
maintain the organized structure in the population through intercellular reactions. Our computational 
model focuses on early development, where the populations overall behavior is determined by stem 
cells and signaling molecules. The model does not include complicated factors such as movement 
of specialized cells or outside signaling sources. The results indicate that in our model, the stem 
cells can organize the population into a desired spatial pattern, which demonstrates their ability to 
self‑organize as long as the corresponding leading signal is present. We also investigate the impact 
of stochasticity, which provides desired non‑genetic diversity; however, it can also break the proper 
boundaries of the desired spatial pattern. We further examine the role of the death rate in maintaining 
the system’s steady state. Overall, our study sheds light on the strategies employed by stem cells 
to organize specialized cells and maintain proper functionality. Our findings provide insight into the 
complex mechanisms involved in tissue development and maintenance, which could lead to new 
approaches in regenerative medicine and tissue engineering.

Transition from unicellularity into multicellularity occurs through irreversible differentiation, and self-
organization. Multicellularity makes complex functionalities possible through inter-cellular communication, and 
cooperation between phenotypically different cell types of a tissue. Through differentiation the right proportion 
of genetically homogeneous specialized cells are produced, the required cells for proper functionality of a living 
tissue. Through self-organization, as one of the main multicellularity-specific processes, specialized cells are 
organized to form the desired structure of the tissue corresponding to its specific functionality. In a fully formed 
organism, the proper functioning of all developed tissues makes life possible.

Stem cells (SCs) play a leading role in both the development and maturation of tissue. It can be inferred that it 
is essential to study the internal mechanisms of stem cells. This is because they orchestrate their critical decisions 
in order to keep living systems alive. To fulfill this, we need to develop a mathematical model to recapitulate 
the stem cells’ internal mechanisms in order to: first, regulate the required non-genetic diversity in the tissue by 
orchestrating proliferation and differentiation in stem cells, second, organize the population of cells in a desired 
spatial arrangement, and third, maintain the structure of the population in the dynamic stochastic environment 
of a living  tissue1. This will help us to understand mechanistically the critical building blocks of living systems, 
stem cells, to identify components that can be modified through stem-cell-based therapies to control mysterious 
phenomena such as aging, and cancer, and generate spatially ordered tissues for therapeutic  purposes2,3.

Prior research underscores the importance of population heterogeneity arising from genetically similar 
stem  cells2,3. This heterogeneity is critical for maintaining a balance between proliferation and differentiation, 
ensuring the continued existence of the main source of population (SCs) as well as specialized cells with vital 
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role in preserving the tissue’s functionality. To address the first goal of regulating non-genetic diversity, we 
acknowledge the crucial role of controlled stochasticity in generating population  heterogeneity3–9. Therefore, our 
model systematically integrates stochasticity at every level, aiming to faithfully capture the intricate dynamics 
observed in living tissues. Besides, regulatory networks have been studied as the main decision-makers in a wide 
range of biological  systems10–22 and in the presence of  stochasticity4,6,11,17,23–27. Therefore, a multi-stable regulatory 
network in the form of a set of ordinary differential equations (ODEs) is considered as the decision-making unit 
for stem cells in our  model2,3,20,28. Traditionally, the Gillespie algorithm is considered to be a “golden standard” 
for describing the behavior of systems with a small number of determinants driven by inherent  fluctuations3,6,29 
without having to deal with complex mathematical equations. By considering probabilities as an integral part of 
any living system, here we used the Gillespie algorithm to simulate the time evolution of our designed stochastic 
system.

The regulatory networks orchestrate proliferation/differentiation balance to provide population heterogeneity, 
and maintain a homeostasis  state3. To address the second and third objectives, we acknowledge that intercellular 
communication stands out as the primary factor in establishing and maintaining the structure of the 
 population9,30. Consequently, our model is enriched with an intercellular communication mechanism. This 
means that the decision-making process of stem cells is influenced not only by intrinsic factors but also by 
extracellular signals capable of diffusing among population  cells3,31. To achieve this, a reaction-diffusion process 
is incorporated into the model, facilitating the formation of a spatial pattern within the population and its 
subsequent maintenance in a steady state.

Focusing on the impact of stochasticity, the proposed model is defined based on six basic principles discussed 
in previous  studies2,3,9 as follows: (i) stochasticity is an inevitable part of any living  cell2,8,9,26,32–36. (ii) two major 
sources of stochasticity, the non-deterministic position of the cell division plane and nonuniform distribution 
of determinants in the cell lead to the random distribution of the cytoplasmic molecules among daughter cells 
during cell  division2,9,37–43. (iii) cell fate is determined based on the number of determinants in the offspring upon 
the completion of cell division and assumed to be fixed during cell life  cycle2,9. (iv) cell determinants interact 
with each other via an internal  switch44,45. (v) the decision bias in the internal switch is determined by model 
parameters representing interactions between the switch  elements2,9. (vi) the switch parameters could also be 
affected by the cell location in its environment, and it is the key to the spatial pattern in the  population9.

In this project, we propose a computational model to describe the stem cells’ internal mechanism leading 
to self-organization by considering signal diffusion in cell-cell communication, and stochasticity at all levels of 
simulations. This project demonstrated the ability of our designed model to function as a stem cell mechanism 
underlying the formation and maintenance of desired spatial patterns in the population (fitted to population 
functioning). Besides, in the presence of controlled noise our model could easily reach the required population 
heterogeneity and homeostasis state. Our previous model was modified since it was able to manipulate cellular 
decision-making biases in order to allow daughter cells to be born in their destined territory, then defend it. 
Furthermore, we show that the desired spatial order of cells in the population could be determined by a “leading” 
initial signal corresponding to that desired pattern. In addition, we discuss the impact of the death rate as a key 
factor in our system. Finally, to further illustrate the strength of the model, we explore the behavior of the system 
in the absence of one of its constraints, the dish wall.

Methods
Mathematical model of the system
We consider building on our previously designed  model3 to study the capacity of that to imitate the behavior 
of human embryonic stem cells (hESCs) in early development. To be specific, we aim to model the production 
and rearrangement process through which a mass of homogeneous cells, as the initial state of the system, gives 
rise to a desired spatially ordered  sequence46 as the final state of the system. A spatially ordered population of 
cells determines the final state of a system, which consists of stem cells (S), two specialized cells (A, and B) and 
progenitor cells (P) as intermediate cells. It is worth mentioning that the presence of progenitor cells prevents the 
accumulation of mutations in the stem cells, by taking the responsibility of producing specialized cells through 
a large number of cell division  cycles3. The stem cells are capable of self-renewing and/or differentiating into 
progenitor cells, and they appear to be a bi-stable system. Progenitor cells, on the other hand, can self-renew 
and/or give rise to two non-dividing terminally-differentiated cells termed A, and B3,46. Like the previous version 
of the model, the progenitor cells are considered as a tri-stable dynamical system with a limited capacity of 
proliferation and restricted potential of  differentiation47. To be able to study the potential reactions in the model 
we should emphasize the existence of three phases in the system: the first phase which is demonstrated by a 
homogeneous mass of stem cells, the second phase which starts with the first division of stem cells and ends 
with a population of stem cells, progenitor cells, and differentiated cells in a desired spatially ordered pattern, 
and the third phase which begins with pattern formation, as the final state of the second phase, and terminates 
to the tissue homeostasis state.

Pattern formation could only happen in response to the signaling  pathways30. As BMP4 breaks symmetry in 
inner cell mass during development, our model also requires a signal, referred to as the “leading” signal, which 
performs the same function. As we prefer to challenge the model to be able to control the overall population 
behavior without any outside controller, we assume that in the first, and second phases of the simulation, 
population cells secrete the primary signal needed to form the desired ordered array of cells in the final state. 
We are aware of the fact that in early development, pattern formation is much more complex and occurs along a 
hierarchical path. A first signal establishes the foundation for initial symmetry breaking. This leads to the birth of 
distinct differentiated cells, and then the presence of distinct signaling pathways. These pathways also could lead 
to producing even more differentiated cells by breaking the symmetry in their corresponding territory. Finally in 
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three weeks the complex structure of Grastula emerges as a result of a finite loop of secreting a signal and breaking 
the existing  symmetry30,46. However, in this model, we skip the hierarchical aspect, and the final pattern is formed 
in one step. A model that can establish and maintain a desired population pattern in two phases could be utilized 
by the new-born cells in the population, in order to facilitate the above-mentioned hierarchical process.

In the first phase, stem cells do not divide. However, they are involved in the process of producing the 
required “leading” signal. When the division of the population is triggered in the second phase of the simula-
tion, progenitor cells (P) emerge from the population. Subsequently, differentiated cells (A and B) are born and 
finally formed in a spatial pattern corresponding to the “leading” signal. In the third phase, the system reaches 
its stable steady state and maintains it.

Because of the remarkable degree of flexibility that reversible transfer of cells could provide in the case of 
injury, and even under normal conditions, here, we believe that stem cells can transit to progenitor cells at a 
fixed rate and vice  versa3,48–58. Within the described system, the dynamics of the model are described as follows:

where η , ηs , and ηp represent the rates of three different division types of stem cells, ωp/s denote the transition 
rates of S/P and �p , �A , �B , µd , µA , and µB denote the rates of six different division types that progenitor cells can 
go through. In addition, γA and γB indicate at which rate A and B cells diminish from the population. Consider-
ing nS , nP , nA , and nB , as the average densities of cell types S, P, A, and B respectively ( nS,P,B,A are cell numbers 
normalized by volume), the time evolution of nS,P,B,A is given by

It was previously proven that this system can reach its stable steady state on (n∗A, n
∗
B, n

∗
P , n

∗) , as long as the fol-
lowing conditions are  satisfied3:

where n is the average total density of cells, computed as n = nS + nP + nA + nB , and ηS = ηS(n) . We set the 
parameters in the model in a way that these two essential conditions are satisfied.

Stem cells’ internal mechanism
The following set of ODEs used in several  projects2,20,28 to describe a two-element bi-stable regulatory network, 
here is employed as the stem cells’ internal mechanism:

It actually provides the regulatory mechanism which takes care of the part of the model dynamics in Eq. (1). 
The form of the above-mentioned ODEs is stand on some the fundamental assumptions of the model: first, Xs 
and Ys are the relative amount of two cell determinants, and as it is deducible from the phrase that their values 
determine the cell’s final fate, second, the mutual repression effect of the determinants (in the form of Hill func-
tions), and their degradation rate describe the dynamical behavior of SCs. Here, n, βs , ιXs , ιYs , and γ are set as the 
Hill coefficient, the effective rate of determinants synthesis, inhibition rates of Xs and Ys , and the degradation 
rate, respectively.

In general, the parameters are tuned (by try and error method) to build the SCs’ regulatory switch with two 
stable steady states corresponding to two main cell fates in the model, stem cell type (S) and progenitor cell type 
(P). In addition, to have the first condition in Eq. (6) be satisfied, as ιxs is the parameters which directly controls 
the rate of symmetric division of S−→ηs S+ S , we need to set ιxs as a function of n, where ιxs (n)′ < 03.

Progenitor cells’ internal mechanism
The regulatory mechanism of the progenitor cells is described by the following set of ordinary differential equa-
tions (ODEs) as a two-element tristable  system2,20,28:

(1)S
η

−→ S+ P, S
ηS
−→ S+ S, S

ηP
−→P+ P.

(2)S
wP
↼−−⇁
ws

P.

(3)
P

�P
−→P+ P, P

�A
−→A+ P, P

�B
−→B+ P,

P
µd
−→A+ B, P

µA
−→A+ A, P

µB
−→B+ B.

(4)A
γA
−→�, B

γB
−→�

(5)



















∂tnS = nSηS − nSηP + nPwS − nSwP ,

∂tnP = nSη + 2nSηP + nSwP − nPwS

−nP(−�P + µd + µA + µB),

∂tnA = nP(�A + µd + 2µA)− nAγA,
∂tnB = nP(�B + µd + 2µB)− nBγB.

(6)η′S(n) < 0, and �P < µd + µA + µB,

(7)











dxs
dt = ιxs

βn
s

βn
s +yns

− γ xs

dys
dt = ιys

βn
s

βn
s +xns

− γ ys
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Likewise, it is assumed that Xp and Yp are two cytoplasmic determinants whose values determine the final fate 
of progenitor cells’  offspring3. Here in this system, n, αxp/yp , βp , ιXs/Ys , and γ are studied as the Hill coefficient, 
activation rates, the effective rate of determinants synthesis, inhibition, and degradation rate, respectively. There 
are two more parameters, εs1 , and εs2 as “signaling effect coefficients” that will be discussed in this section. The 
parameters are set to build a tristable steady-state system with three fixed points corresponding to three cell 
fates, one progenitor (P), and two differentiated cell types (A and B). The phase plane of this tristable steady-state 
system represents the domains of the three cell fates. These domains indicate the decision boundaries governing 
the daughter cells’ final fate right after their  birth3.

As discussed before, in the first and second phases of the simulation, a “leading” signal, coined as Sl , is pro-
duced to organize differentiated cells in order to form the desired pattern in the population. Besides, to maintain 
the population pattern in steady states, it is essential for each differentiated cell, A/B, to secrete their distinct 
signaling molecules, S1 , S2 to conquer their  territory3. As shown in Eq. (8), the impact of the signals Sl , S1 , and 
S2 is performed on progenitor cells’ internal switch via αxp , and αyp through εs1andεs2 parameters. The former’s 
impact arranges the population’s cells, while the latter maintains/fixes them in their territory.

The “signalling effect coefficient”, εsi = f (Sl)+ g(Si) , where i ∈ 1, 2 . The model primarily relies on Sl to estab-
lish a spatial pattern in the population. This implies that it is unnecessary to retain it in the model once the pattern 
has been established. Therefore, here, f (Sl) =

a S12l
1+S12l

 , in the absence of Si , and f (Sl) = 0 , otherwise. Furthermore, 
it is biologically reliable, since that is observed during development, and it minimizes the energy costs of the 
system. g(Si) = aSi

b  , if Si ≤ b , and g(Si) = a ,  otherwise3. Finally, to have the second condition in Eq. (6) be satis-
fied, the parameter βp is tuned (by try and error method) in such a way that the rate of symmetric division, 
P

�P
−→P+ P is much less than divisions in the forms of P

µd
−→A+ B , P

µA
−→A+ A , and P

µB
−→B+ B (see [Kho-

rasani, and Sadeghi  2022]3 for details).

Signalling dynamics
Here, the “leading” signal, Sl , has been studied in three ways. A fixed deterministic pattern is first considered. 
Second, the dynamic of the Sl signal is described as follows:

where D, αsl , and k are defined as diffusion, production and degradation rates. Third, to generate Sl signal, a 
Turing system is used as  follows59:

It is the general model of a Turing system that promises to generate spatially heterogeneous patterns with 
two diffusive chemicals ( sl and sa ) from uniformly distributed sources. Here, Sl demonstrates the number of the 
“leading” signal, and Sa is the number of its associated substance which differs in diffusivity. The parameters, dl/a , 
and γsl are diffusion coefficients and a common factor multiplied by the reaction terms. In Eq. (10), it is assumed 
that f (sl , sa) = A sl − sa + C , and g(sl , sa) = B sl − sa − 1 as the linear reaction terms, where A, B, and C are 
constants. To observe the formation of stable patterns in a system with linear reaction terms, it is necessary to 
constrain the Sl value within a finite  range59. To be specific, it is assumed that slower ≤ Sl ≤ supper , where slower 
supper are constants. Since the presence of stochasticity is inevitable in our model, the Gillespie algorithm is used to 
create Turing patterns. Therefore, the model’s parameters had to be tuned (by try and error method), compared to 
the ones set in Shoji’s  model59. Figure 1 shows the effect of parameters, supper , and du/a on the Turing patterns gen-
erated by Gillespie’s algorithm. In Fig. 1, from right to left, (dl , da) = (5e3, 1e5), (1e4, 2e5), (2.5e5, 5e6), (1e6, 2e7) , 
and from top to bottom, supper = 5, 10, 30 ( slower = 0 ). Patterns in the first, second, and third rows of Fig. 1 
coined as reversed-spot, stripe, and spot patterns  respectively59. A set of reaction-diffusion equations describe 
the dynamics of the signaling molecules, S1 , and S2 as  follows3:

Here D, k, αsi ( i ∈ 1, 2 ) represent the diffusion coefficient, the decay, and the production rate of the signaling 
molecules, respectively. Besides, n is the Hill coefficient, and β is the effective rate of signaling molecules’ synthe-
sis. The parameters are set to describe the dynamics of signaling molecules, S1 , and S2 , in the form of a bi-stable 
 system3. In this model, for generating reversed-spot, stripe and spot signalling patterns, (dl , da) is set equal to 
(2.5e5, 5e6), (1e4, 2e5), (1e4, 2e5) and supper = 5, 10, 30 ( slower = 0 ), respectively.

(8)















dxp
dt = (αxp + εs1)

xnp
βn
p+xnp

+ ιxp
βn
p

βn
p+ynp

− γ xp

dyp
dt = (αyp + εs2)

ynp
βn
p+ynp

+ ιyp
βn
p

βn
p+xnp

− γ yp.

(9)
dsl

dt
= D∇2sl + αsl − ksl ,

(10)







dsl
dt = dl∇

2sl + γsl f (sl , sa)

dsa
dt = da∇

2sa + γsl g(sl , sa).

(11)











ds1
dt = D∇2s1 + αs1

βn

βn+sn2
− ks1

ds2
dt = D∇2s2 + αs2

βn

βn+sn1
− ks2
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Here it is critical to address one fundamental question: How can A (B) cells maintain their territory? Promptly 
after the birth of A (B) cells in the population, the secreting of S1 (S2) signaling molecules is triggered. They 
defend the A (B) territory by first, preventing the production of S2 (S1) (based on the second term in Eq. (11)), 
and second, by increasing the birth rate of A (B) cells through the εs1 ( εs2 ) in Eq. (8).

Gillespie algorithm
The Gillespie algorithm is used to capture the time evolution of the  system2,3,9,29,60. Table 1 illustrates 28 potential 
reactions that can occur in each time step, as well as their corresponding propensity functions and parameters’ 
values. As the introduced propensity functions represent high-order reactions, they are used as an approxima-
tion to the Gillespie  algorithm61. The endpoint of the simulation is when the stem cells have gone through 50 
divisions on average.

The simulation starts with an initial population of stem cells distributed randomly in a hypothetical dish. 
Each individual mesh of the dish can be potentially occupied with one of the four cell types, S, P, A, or B with 
or without the presence of signals Sl , S1 or S2 . The number of determinants is chosen randomly from the stem 
cells’ territory in the phase plane describing its  dymanics3. In the first phase of the simulation, a mesh occupied 
with a stem cell can be the scene for eight (11 in the third scenario) potential reactions: production/degradation 
of determinants XS , and YS , production/degradation/diffusion of Sl signal (plus those of Sa signal in the third 
scenario), and stem cells’ movement. As shown in rows 1 to 4 in Table 1, the propensity function of produc-
tion/degradation reaction of determinant XS ( YS ) is determined based on the positive/negative term in the first 
(second) ODE in Eq. (7). The movement is provided in the model to prevent the system from being blocked (see 
Khorasani, and  Sadeghi3 for details). As it is depicted in rows 7, and 14, the movement can occur at a constant 
rate ( ms , and mp for stem cells and progenitor cells, respectively), and this involves randomly selecting an empty 
mesh, and then placing the cell from the current mesh into that empty space. Rows 23 to 25 illustrate the pro-
pensity functions of production/degradation/diffusion of Sl signal in the second and third scenario captured by 
Eqs. (9), and (10), respectively. In the same manner, rows 26 to 28 show the propensity functions of production/
degradation/diffusion of Sa signal in the third scenario. At each time step of the Gillespie algorithm, one of the 
above-mentioned reactions is chosen and based on that in the current mesh, one of the determinants XS , and 
YS , or signal Sl ( Sa in the third scenario) decreases/increases in value or in one of the neighboring meshes, the 
value of signal Sl ( Sa in the third scenario) decreases/increases. It is necessary to mention that all these reactions 
also occur in the second and third phases of the simulation. However, they are the only ones with a chance to 
happen in the first phase.

Figure 1.  The Turing signal patterns of Sl , generated by Gillespie algorithm. From right to left, 
(dl , da) = (5e3, 1e5), (1e4, 2e5), (2.5e5, 5e6), (1e6, 2e7) , and from top to bottom, supper = 5, 10, 30 , and 
slower = 0.
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The second phase of the simulation starts when the Sl signal is organized in the desired pattern. In this model, 
it is triggered after a certain number of iterations from the start point. As we move into the second phase, two 
reactions with prominent roles are revealed: the division of SCs and the transformation of the SCs with constant 
rates of rs , and wp , respectively. With these two reactions, progenitor cells and as a result, specialized cells (A and 
B cells) and their corresponding signal molecules emerge in the population. In other words, all the reactions 
listed in Table 1 can play a role in the system’s scene from now on.

When a stem cell divides into a progenitor cell, the number of determinants XP and YP in a new-born cell 
is initiated randomly from the middle domain of it’s corresponding phase  plane3. The propensity functions of 
production/degradation reaction of these two determinants are captured based on Eq. 8 (see rows 8 to 11)3. 
A progenitor cell can be divided with a constant rate of rp (row 12) to P, A, and B cells. With A and B cells in 
the population, S1 and S2 signaling molecules can set foot in the system, and in a mesh occupied with S1 , and 
S2 , five reactions, production/degradation of S1 , and S2 , and diffusion got the chance to happen. Rows 17 to 22 
demonstrate their corresponding propensity functions based on Eq. (11) (see   [Khorasani, and Sadeghi  2022]3 
for details).

For the rest of the reactions, the propensity functions are chosen as constant  rates3. In the model, death is 
defined as the omission of the chosen cell from the population. During the division, two offsprings are located 
in the current mesh and one of the empty neighboring meshes. The number of determinants X1 , and X2 ( Y1 , 
and Y2 ) in two new-born cells are set as X1 ∼ B(#X, 1/2) , and X2 = #X − X1 ( Y1 ∼ B(#Y , 1/2) , Y2 = #Y − Y1 ), 
where #X ( #Y  ) is the number of determinant in the mother  cell3. The transition from a stem cell to a progenitor 
cell occurs with the constant rates of wp , where during that the S cell in the current mesh is replaced with a P 
cell. The number of determinants XP and YP in transformed cell is initiated randomly from its specific domain 
of it’s corresponding phase  plane3. The transition from a P cell to a S cell occurs with the constant rates of ws 
with the same manner.

Scoring algorithm
To evaluate the maintenance of the spatial patterns in the population, we used the “scoring algorithm”3. To 
implement this algorithm, we need to construct two filter matrices corresponding to the “leading” signaling 
pattern, namely template and penalty. For each initial “leading” signaling matrix, if a mesh value is greater than 
250/2 (250 is the maximum value of leading signaling molecules in each mesh) the corresponding mesh’s values 
of the template matrix are equal to 1, and it is equal to −1 , otherwise. The values of the outer-dish meshes are 
set to 0. The values of the penalty matrix are equal to 1 in out-of-dish meshes and are equal to 0 otherwise. Each 
simulation starts with an initial state with a desired spatial pattern and continues until all progenitor cells have 
undergone an average of 50(100) divisions. Out of all the states encountered during the simulation, we select 
500(1000) snapshots with dimensions of d × d . For each snapshot of the system state a corresponding 2d × 2d
-dimensional matrix is created as follows: In each snapshot, meshes corresponding to yellow/red pixels (A/B 

Table 1.  The potential reactions of the system together with their corresponding propensity functions.

no Reactions Propensity Func. no Reactions Propensity Func.

1 Production of Xs
ιxs

βn
s

βn
s +yns

ιxs = 85,βs = 45, n = 4
15, 16 A/B cell death γA/B

γA = 0.003, γB = 0.0034

2 Production of Ys
ιys

βn
s

βn
s +xns

ιys = 100,βs = 45, n = 4
17 Production of S1

αs1
βn

βn+sn2
αs1 = 220,β = 2, n = 4

3, 4 Degradation of Xs/Ys
γ x ;   x ∈ {xs , ys}
γ = 1

18 Production of S2
αs2

βn

βn+sn1
αs2 = 220,β = 2, n = 4

5 SC. Division rs
rs = 56.4

19, 20 Degradation of S1/2
ksi;  i ∈ {1, 2}

k = 0.5

6 SC. Transformation wp

wp = 0.329
21, 22 Diffusion of of S1/2

D
h2

D = 110, h = 1

7 SC. Movement ms
ms = 2.82

23 Production of Sl in
2nd, and 3rd Scenario

αSl , and γSl (ASl + C)
αSl = 1e4,A = .9,C = .2

8 Production of Xp
(αxp + εs1 )

xnp
βn
p+xnp

+ ιxp
βn
p

βn
p+ynp

αxp = 30, ιxp = 30,βp = 47.5, n = 4

24 Degradation of Sl in
2nd, and 3rd Scenario

kSl , and γSl sa
k = 0, γSl = 1e4

9 Production of Yp
(αyp + εs2 )

ynp
βn
p+ynp

+ ιyp
βn
p

βn
p+xnp

αyp = 30, ιyp = 30,βp = 47.5, n = 4
25 Diffusion of Sl in

2nd, and 3rd Scenario
DSl , and dl
DSl = 2.5e5

10, 11 Degradation of Xp/Yp
γ x;  x ∈ {xp , yp}
γ = 0.38

26 Production of Sa
γsa BSl
γsa = 1e4,B = 1.2

12 Prg. Cell Division rp
rp = 32.9

27 Degradation of Sa γsa (sa + 1)

13 Prg. Cell Transformation ws
ws = 0.1645

28 Diffusion of Sa da

14 Prg. Cell Movement mp
mp = 0.94
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cells) are set to 1/− 1 , and the rest of the elements are set equal to 0. This d × d matrix makes the middle part 
of the corresponding 2d × 2d-dimensional matrix. The rest of the values are set equal to 0.

To measure the score values for each snapshot, we slide the template, and penalty filters over each of the 
500(1000) 2d × 2d-dimensional matrices, from top-left to bottom-right (mesh by mesh), multiply their cor-
responding values one by one and compute the summations. Each time the filters are moved over the snapshot 
matrix (one mesh at a time), two values are computed-one for the template filter and another for the penalty filter. 
The subtraction of these values is calculated, and the resulting score assigned to each snapshot is determined 
as the maximum among all subtracted values obtained by filters’ sliding over the snapshot’s matrix. Finally, we 
normalize the score values in the range of [0,1] by dividing to the maximum score value (where the system state 
perfectly matches the template and penalty matrices).

Results
No “leading” signal
The computational model of SCs’ mechanism designed by Khorasani et al.3 can maintain the initial spatial 
pattern in the population. What if there is no initial pattern, and the initial state of the system is a population of 
randomly distributed stem cells? Two potential scenarios could happen: first, the four types of cells, S, P, A, and 
B, are randomly distributed in the population, second, in some parts of the dish, P cells divide into more A/B 
cells, certainly by chance, and then they maintain their territory by secreting S1/S2 signaling molecules to the end 
of system time. To address this question, the first simulation starts with a population of stem cells in the dish as 
shown in Fig. 2A, in which the S cells are shown in cyan and the blue and gray pixels represents the empty and 
out of dish positions as indicated in the colorbar. By implementing Gilespie algorithm and the reactions described 
in Table 1, we let the system be updated to the point that all the P cells have been through at least 50 divisions. 
Figure 2B illustrates the final state of the system containing all four cell types S, P, A, and B in cyan, green, yellow 
and red, respectively. The results support the second scenario as we expected. The specialized cells (A, and B) are 
randomly born in an area and defend that as their territory. It is worth-mentioning here that the initial state of 
all simulations are represented the same as the population of S cells randomly distributed in the dish.

Fixed “leading” signal
At the beginning of the development process, in the presence of BMP4, hESCs are manipulated to produce 
an ordered array of specialized cells. Finally, they generate spatial patterns in the  population30. It is evidently 
concluded that the presence of a “leading” signal, imitating BMP4’s role, is essential for the formation of patterns 
in the population. Here, the second experiment is designed to demonstrate that starting with a population of 
stem cells, our designed system has the potential to generate an ordered array of differentiated cells in response 
to an initial “leading” signal. In the second experiment, fixed patterns of Sl signals are assumed as the “leading” 
signal as shown in the first and third columns of Fig. 3 in which the “Red” and “Magenta” colors represent the 
maximum and zero values of signalling molecule in the corresponding mesh. The results in the second and fourth 
columns show that the model can effectively self-organize in response to the “leading” signal. Spot and reversed-
spot patterns could not be perfectly formed in the population. Although it is  expected3,31, since the territory of 
one side is  dominant3,31, which makes it easier for dominant cells to invade the apposite side.

Dynamic “leading” signal
In the third experiment, we challenge our model with dynamic, biologically reliable “leading” signals. Besides, in 
this experiment, the “leading” signal does not last to the end point of the simulation but for a limited duration to 
initiate pattern formation in the population (at the end of phase #2 ). It is in agreement with biological experiments 
done previously to recapitulate spatial patterning in early  development30. For this purpose, here we used four 
dynamic patterns, Gaussian, Spot, reversed-Spot, and Stripe, as the “leading” signal, shown in the first row of 
Fig. 459 in which the colorbar indicates the number of signalling molecule is each grid.

To study the capability of the model in initiating and maintaining the desired spatial pattern in the popula-
tion and in the presence of dynamic “leading” signaling molecules, the medium is populated with randomly 
distributed SCs. The dish radius is initially set to 100 in the sense that any cell would be restricted to a maximum 

Figure 2.  The initial and final state of the system in the absence of “leading” signal. Each pixel indicates one 
individual cell, S in cyan, P in green, (A) in yellow, and (B) in red, an empty position (EP) in blue, or an out-of-
dish space (OD) in gray.
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distance of 100 pixels from the center point. To compute the time evolution of the cell populations, a stochastic 
simulation using the Gillespie algorithm is applied. Simulation is terminated when the progenitor cells have gone 
through 50 divisions on average. A total of four simulations were run corresponding to four different types of 
“S” signals, Gaussian, Spot, reversed-spot, and Stripe. In the first phase of each simulation, SCs do not divide. 
Though, they are involved in producing the required“leading” signal based on Eq. (9) for Gaussian pattern and 
Eq. (10) for Turing patterns. The first row in Fig. 4 demonstrates the state of the “leading” signal, Sl , at the end 
of phase #1 . Until the end of phase #1 , the state of SCs in the dish remains unchanged and the same as the dish 
state in Fig. 2A. In the second phase, it is different. By triggering division in the second phase of the simulation, 
progenitor cells, and subsequently differentiated cells, A and B, emerge.

Figure 3.  The presentation of static “leading” signal ( Sl ) (first, and third columns) and their corresponding 
patterns formation (second, and fourth columns) in the population. In the leading signal patterns, “Red” 
represents the value of 250, while “Magenta” represents the 0 value. In the second and fourth columns, as it is 
shown in the colorbar, each pixel indicates one individual cell, one individual cell, S in cyan, P in green, A in 
yellow, and B in red, an empty position (EP) in blue, or an out-of-dish space (OD) in gray.

Figure 4.  The system behavior in the face of dynamic “leading” signals.The first row represents the Gaussian, 
spot, stripe, and reversed-spot patterns as the “leading” signals, Sl . The values of the signaling molecules 
are scaled in the range of [0, 250] to be in agreement with the values of static leading signals. The second 
row demonstrates the system state after 50 divisions (of progenitor cells). Each pixel in the second row can 
potentially demonstrates S, P, A, B cell types, an empty position or an out-of-dish space as shown by the 
colorbar in the second row. The third row shows the abundance of four cell types in the population through the 
simulation.
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A and B cells in our model are self-organized to generate the desired spatial pattern in the population. The 
internal mechanism of P cells is designed to achieve this (Eq. 8). Based on Eq. (8), in the parts of the dish with 
maximum/minimum value of “leading” Sl signal, the number of XP/YP determinants exceeds the number of YP

/XP ones in P cells, and as a result with a great probability, A/B cells are born in these domains. Therefore, a 
pattern corresponding to the initial Sl signal is generated in the population. The state of the system at which all 
progenitor cells have been through at least 50 divisions is shown in the second row of Fig. 4. In all four simula-
tions, specialized cells, A, and B properly self-organize to create the desired pattern. The subplots in the third 
row of Fig. 4 show the diagrams of the abundance of four types of cells from the beginning to the end of the 
simulation. All diagrams have saturated so fast, and it indicates that the system can easily reach its stable, steady 
state on (n∗A, n

∗
B, n

∗
P , n

∗) as proved and promised in Section “Mathematical model of the system”.

Death rate
Here, we study the death rate values of A and B cells ( γA and γB ). In this model, we have tuned more than 40 
parameters (by try and error method), where all of them except one ( γA/B) orchestrate the production rates in 
the population. The balance between production and death rates determines the abundance of cells in the tissue. 
The parameter γA/B is the only parameter to control cells’ removal from the system. Therefore, the γA/B value is 
critical in determining the n value in our system.

On the other hand, it was previously proven that this system could reach its stable, steady state on 
(n∗A, n

∗
B, n

∗
P , n

∗) , as long as the conditions in Eq. (6) are  satisfied3. The parameters in the model are set in a way 
that both of these essential conditions are satisfied. However, the satisfaction of these conditions is independ-
ent of the γA/B value. In other words, different values of the γA/B cannot affect the system’s stability. Therefore, 
theoretically any positive value for the γA/B is acceptable. However, the γA/B value directly impacts the abundance 
of different cell types in steady state, i.e., n∗A , n∗B , n∗P , and n∗ values. As to form a desired pattern, a specific num-
ber of n∗A , n∗B , n∗P , and n∗ is certainly needed, one could easily conclude that the formation of a desired pattern 
directly depends on the γA/B value in our model (keeping in mind that the rest of the parameters, with a key 
role in the production rate, are fixed). On the other hand, based on the time evolution of nA , and nB in Eq. (5), 
γA = (n∗P(�A + µd + 2µA))/nA and γB = (n∗P(�B + µd + 2µB))/nB . It makes it clear that γA/B , and n∗P values 
are both mutually dependent. However, at the beginning of the simulation, we do not have access to the value of 
any of them to fix the other one. Even knowing one of these values, we cannot determine the exact value of the 
other one. To be specific, due to the stochastic nature of the system, it is impossible to obtain the exact values of 
�A/B , µd , and 2 µA/B through simulation.

Looking on the bright side, we can approximate the n∗A and n∗B values based on the initial pattern of Sl , the 
“leading” signal. Assume that in an initial pattern (the first row of Fig. 4) p percent ( (1− p) percent) of the total 
positions are red/yellow (green/cyan/blue/magenta), the expected territory of A (B) cells. By utilizing trial and 
error method, to get a correct pattern in the populating corresponding to the initial Sl pattern, the number of stem 
cells and progenitor cells with empty positions can not exceed 15 percent of the total dish’s positions. It is instantly 
concluded that the desired pattern occurs in the presence of p ∗ 0.85 ∗ (N) ( (1− p) ∗ .0.85 ∗ (N) ) number of 
A (B) cells in homeostasis state. In other words, n∗A = p ∗ 0.85 ∗ (N) ( n∗B = (1− p) ∗ .0.85 ∗ (N) ), where N is 
the number of all pixels in the dish. With this approximated value of n∗A , and n∗B we set the γA/B value as follows:

where i ∈ A, B . It is worth mentioning here that the γA , γB values reported in Table 1 are the average values 
computed through the whole simulation. The results shown in Fig. 4 indicate that with this method of 
determining γA/B value, the formation of the desired pattern as well as reaching and maintaining the stable, 
steady state on (n∗A, n

∗
B, n

∗
P , n

∗) are guaranteed in our model.
As the stability of the system was proved previously, one can instantly conclude that if we could calculate the 

average value of γA/B , accurately, based on Eq. (12), and substitute it for the death rate of A/B cells in the model, 
we would reach the same steady state of our system on (n∗A, n

∗
B, n

∗
P , n

∗) . However, the dynamics of the system 
would certainly differ. Aiming to find a suitable solution to determine γA/B value, we studied two equations of 
γA = n∗P(�A + µd + 2µA)/nA , and γB = nP(�B + µd + 2µB)/nB . According to these equations, γA/B can be 
determined based on the ratio of nA/B (calculated by multiplication of nP , and production rate of A cells in the 
population), to n∗A . To imitate the behavior of this dynamic, in the fourth simulation, we set the γi = ni

n∗i
∗ vg , 

where i ∈ A, B , and vg = 0.0125 (Running different simulations, we reached the vg value. Using this vg value, the 
system reaches almost 15 percent of total dish pixels occupied by stem cells, progenitor cells, and empty positions. 
The rest of the fourth experiment is designed and run similarly to the third one. Figure 5A, the first column from 
top to bottom, shows the states of the system after (almost) 30, and 100 divisions, and the abundance of four cell 
types (through time) respectively. Here, the “leading” signal is spot pattern and the γA/B value is set based on the 
ratio of nA/B , and n∗A/B.

The result shows that although the desired pattern is formed, it is not maintained properly in the system. The 
narrow regions of each domain (A/B domains) are merged. The reason is that in this last method of determining 
γA/B value, there is a meaningful delay between the detection of a change in the number of cells, and the corre-
sponding regulation of γA/B value. In other words, a great difference between nA/B , and n∗A/B is needed to regulate 
the γA/B value. Therefore, there is always this chance that the cells on one side grow in number and capture the 
other side’s domain before the cells on the other side get the chance to defend their territory. For this reason, we 
modified the γA/B equations to increase the sensitivity of the system: γi = 3

√

ni
n∗i

∗ vg , where i ∈ A, B . We repeated 

(12)γi =

{

0.05 if ni < n∗i
0.1 o.w.
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the experiment with this new formulation of γA/B value for spot pattern as the “leading” signal in the population. 
The results are shown in the second column of Fig. 5A where the first, and second subplots show the state of the 
system after (almost) 30, and 100 divisions and the third subplot demonstrates the abundance of four cell types 
through the simulation. The results illustrate that this modification affects the formation of more proper Spot 
patterns in the population compared to the former one (first column in Fig. 5A). It is also worth mentioning 
here that the traces of the cell types’ abundance (third row in Fig. 5A) are saturated and it confirms the stability 
in the model which was promised in Section “Mathematical model of the system”.

Maintenance of the Spatial Pattern in the population in addition to the cells’ abundance
To evaluate our model’s capacity for pattern maintenance by numbers, we leveraged the scoring method 
introduced by Khorasani et al.3. Figure 5B shows the template and penalty matrices for the spot pattern. For both 
experiments in Fig. 5A, during the simulation, we captured 500 snapshots of the model’s state. Then for all the 
selected snapshots, we slide the template and penalty matrices on the snapshot matrices and the corresponding 
scores (discussed in section 1.6) are calculated. Fig. 5C indicates the scoring traces of the first and second 
simulations in Fig. 5A in blue and magenta. In other words, the scoring algorithm compares each snapshot with 
the filter chosen corresponding to the final state of the Sl signal in phase #1 , and the scoring traces demonstrated 
in Fig. 5C indicate how much the structural pattern in the population differs from the “leading” signal’s pattern 
through the simulation. Comparing two traces in this subplot also indicates that with the second formulation of 
gamma, the spatial pattern is maintained more properly in the population.

To evaluate the maintenance of the Spatial Pattern in the population with Gaussian, reversed spot and stripe 
signaling patterns, three more sets of simulations was run. In Fig. 6, from top to bottom, the template matrices 
(for the scoring algorithm), the final state of the system after almost 100 divisions, the abundance of four cell 
types, and the score traces through the simulation are shown. For reversed-spot and Gaussian patterns, the 
scoring traces are saturated (Fig. 6D,H). It can be interpreted as the proper maintenance of the established pattern 
in the population. The interpretation is also confirmed by the results shown in the Fig. 6B,F. The scoring trace 
for stripe patterns decreases rapidly after pattern formation (Fig. 6L). This behavior matches the system’s state 
shown in the Fig. 6J. In other words, in the face of the stripe pattern, pattern formation could occur however, 
it cannot be maintained in the population. As shown in Fig. 5C, the system behavior in the case of spot pattern 

Figure 5.  The system behaviour in the face of dynamic “leading” signals, Sl with spot pattern. A. The first and 
second rows represent the system state after the 50 and 100 divisions (of progenitor cells), respectively. The first 
and second columns represent two different formulations of death rate: γi = ni

n∗i
∗ vg , and γi = 3

√

ni
n∗i

∗ vg , where 
i ∈ A, B . As it is shown in the colorbar, each pixel can indicate one individual cell, S in cyan, P in green, A in 
yellow, and B in red, an empty position (EP) in blue, or an out-of-dish space (OD) in gray. The third row shows 
the abundance of four cell types through the simulation. B. The template and penalty filters of spot signal 
pattern. C. The scoring traces corresponding to the first and second columns in panel A. It indicates how the 
pattern in population in different states of the system through time is aligned with the desired initial signalling 
pattern.



11

Vol.:(0123456789)

Scientific Reports |         (2024) 14:1528  | https://doi.org/10.1038/s41598-024-51386-z

www.nature.com/scientificreports/

differs from three other cases (after pattern formation). The spot pattern scoring diagram is not saturated like 
reversed-spot and Gaussian patterns, and it also does not decline rapidly like stripe patterns. It decreases so 
slightly. So slightly in the sense that even after 100 divisions, the loss of pattern in the population cannot be 
visually detected (Fig. 5A, second column). The scoring traces for the second and third experiments are also 
calculated and show in Supplementary Figures S1, and S2.

Self‑organization in the absence of fixed border
Our goal in this section is to test the model’s capabilities by studying system behaviour without a dish wall as 
a model’s constraint. Dish walls act like a template in the simulations. Biological cells, however, do not require 
templates to create structures. More precisely, in this experiment, the cells are not restricted within the boundaries 
of the dish. In this simulation, it is assumed that the physical boundary of the medium is infinite. In a part of the 
medium, stem cells are planted in a circle, then the first phase of the simulation begins.

To perform this simulation, we equipped the model with a pseudo-adhesion factor. In biological experiments, 
adhesion is a factor to ensure both cell and cell, and cell, and tissue cohesion (through cell-cell adhesion, and 
cell-matrix adhesion). Cadherins are trans-membrane proteins that mediate cell-cell adhesion. Multi-protein 
structures mediate cell-matrix adhesion. These protein-based macromolecules are mainly produced locally by 
cells. With mediating attachment they can control proliferation, division, apoptosis, and travel, and through 
these processes facilitate tissue homeostasis.

For simplicity, we do not consider an additional factor as a multi-protein structure responsible for adhesion 
in the model. Rather, we assume that the signaling molecules produced in the model also plays the role of these 

Figure 6.  The system behaviour in the face of dynamic “leading” signals, Sl with Gaussian, reversed-spot and 
stripe patterns. The first and second rows represent the template matrices and the system state after 100 divisions 
(of progenitor cells), respectively. As it is shown in the colorbar, each pixel can indicate one individual cell, S in 
cyan, P in green, A in yellow, and B in red, an empty position (EP) in blue, or an out-of-dish space (OD) in gray. 
Here, γi = 3

√

ni
n∗i

∗ vg , where i ∈ A, B . The third row shows the abundance of four cell types through the 
simulation. The fourth row demonstrates the scoring traces to evaluate the pattern maintenance in the 
population. It indicates how the pattern in population in different states of the system through time is aligned 
with the desired initial signalling pattern.
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proteins. The simulation is mainly similar to what was discussed in Section “Dynamic “leading” signal” with 
some minor changes:

• Cells can move and be born outside the hypothetical borders of the initial population,
• It is assumed that initial cells in the population make an extracellular matrix,
• The cell-matrix adhesion is mediated by signaling molecules,
• With no cell-matrix adhesion division is inhibited, apoptosis is triggered, and migration is restricted (cells 

cannot easily move outside the matrix).

The result is shown in Fig. 7. Here, the “leading” signal, Sl , is considered in a Gaussiann pattern. Although the 
outer border is crooked and a limited number of cells are observed outside the borders, the initial desired pattern 
in the population is clearly observed. These results show the capability of the introduced model in formation of 
the desired pattern, even in the absence of a template.

Discussion
Here, in this project the overall behaviour of the population is orchestrated by the internal decision-maker of 
stem cells, in the presence of stochasticity at the entire levels of the system, and without using any template or 
considering any movement process. An organism’s life depends on the precise functionality of its organs. Besides, 
a proportionally organized structure is essential to the organs’ proper  functioning3. There is still much to be done 
to develop a comprehensive model that controls a stem cell’s decisions in starting from one cell, and ultimately 
generating and maintaining a proper structure in the final developed tissue. In our last project, we took a step 
toward this tempting big picture and introduced a simple model that could properly maintain the pattern in 
the tissue. Here, we took another step to imitate the early development processes of production and rearrange-
ment. Through these two main processes a mass of homogeneous cells gives rise to a desired spatially ordered 
 sequence46 as the final state of the system. In this model the initial mass of homogeneous cells is presented as a 
population of stem cells (S).

The model is described in Eqs. (1, 2, 3, 4), in details, and is simulated in four phases. The computation in the 
rest of the section 1.1 proves that in the second phase of the simulation, the described system could reach, and 
maintain the homeostatic state on (n∗A, n

∗
B, n

∗
P , n

∗) under some reachable conditions. Besides, Eq. (5) indicates 
that theses four values are determined by the set of parameters in the model. By beginning with a population 
containing source cells, and choosing the right set of parameters, it proves that any desired spatial pattern can 
be organized using the right ratio of stem cells, specialized cells, and progenitor cells ( n∗A, n

∗
B, n

∗
S , n

∗
P ). However, 

achieving this desired pattern in the population requires a corresponding signal pattern to break the symmetry 
in the population. The Turing patterns were used as “leading” signals for this purpose. We also equipped the 
model with a factor to receive this “leading” signal and translate it into the intended pattern. The results reflect 
the capacity of our model to describe the behaviour of hESCs in pattern formation during early development.

In this model, two sets of ordinary differential equations are defined to describe the internal regulatory 
mechanism of stem cells (Eq. 7), and progenitor cells (Eq. 8)3. Previous  studies3 reported that regulatory net-
works can provide a balance between proliferation and differentiation, as well as heterogeneity in populations. 
However, pattern formation could only happen in response to a “leading”  signal30 to break the symmetry in the 
initial cell mass, and direct the population toward the desired pattern. The results support this fact. The results 
indicate that first, with no “leading” signal a random pattern is formed in the population (Fig. 2), and second, 
the formation of any desired pattern in the population is possible in the presence of its corresponding “leading” 
signal (Fig. 3). Although the “leading” signals in Fig. 3 prove the capability of the model in pattern formation, the 
signalling patterns are not biologically reliable. Studying the system behaviour in Fig. 4, indicates the capability 
of the designed model in pattern formation, as well as reaching and maintaining the stable steady state of the 
system on (n∗A, n

∗
B, n

∗
P , n

∗) even in the face of stochastic, and dynamic “leading” signals.
In the scene of multi-cellular organisms, the production of cells is not the only key role in the development, 

and maintenance of the organizes  tissues46. The process of apoptosis (programmed cell death) contributes greatly 
to this task by carefully balancing production and elimination in each tissue (with specific size, and shape). 

Figure 7.  The system behabior in the face of Gaussian “leading” signal pattern, and in the absence of physical 
dish borders. As it is shown in the colorbar, each pixel can indicate one individual cell, S in cyan, P in green, A in 
yellow, and B in red, an empty position (EP) in blue, or an out-of-dish space (OD) in gray.
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Multicellular organisms need apoptosis to reach homeostasis, and an excessive or insufficient apoptosis rate may 
cause dysfunctional tissues or  tumorigenesis46. Therefore, in this project, we assigned a critical role to cell death 
rate as a control parameter. The first, and second rows of Fig. 5A show the corresponding states of the designed 
system (after 50, and 100 divisions, respectively) that approve this prominent role. Regarding the stability of the 
stripe pattern within our model, upon studying the results, it becomes evident that while our model is successful 
in pattern formation, it encounters challenges in maintaining the stripe pattern. This deficiency arises from the 
inherent vulnerability of narrow cell territories, where cells struggle to defend their domains, providing oppor-
tunities for rival cells to penetrate. Notably, due to the same diffusion rates of signaling molecules in the borders 
between the domains of cell types A and B, there is a facile interpenetration of territories, as visually depicted in 
the figures. In the context of the stripe pattern, wherein both cell types exhibit narrow territories, these territories 
essentially act as borders. Consequently, under certain conditions, A cells encroach upon the territory of B cells, 
and vice versa. This incursion disrupts the proper maintenance of patterns within the population.

In the third row of Figs. 5A, and 6 the abundance of all four cell types from the beginning to the end of the 
simulation is shown (and also in the last row of Fig. 4). In all cases, the cell types diagrams are saturated, which 
confirms the stability in the model which was proved and promised in the section 1.1.

The last row of Figs. 5A and 6 (as well as sumlementary Figures 1, and 2) shows scoring diagrams based on 
the borrowed algorithm introduced by Khorasani, et al. 3. The diagrams of Gaussian, and reversed-spot patterns 
are saturated (after pattern formation) which indicates the capacity of our designed model in maintenance of 
the organized pattern in the population (in addition to pattern formation, and reaching and maintenance of 
demanded cell abundance). However, the diagrams of both spot and stripe patterns decline over time. As dis-
cussed earlier in this section, the territory corresponding to these patterns is not wide enough to be maintained.

It is worth mentioning here that the magenta scoring trace of the spot pattern declines slightly in a way that 
it cannot be visually detected in the Fig. 5C. From the stability point of view, we need to facilitate the model to a 
different reaction-diffusion equation to describe the S1 , and S2 behaviour in order to provide a great “defensive 
shield” for narrow territories (i.e. to provide saturated scoring diagrams). Biologically, this slight decline indicates 
that the pattern is not perfectly maintained but still satisfactory (in a spot pattern). Satisfactory in the sense that 
it maintains the pattern to the degree that the tissue can faithfully maintain its functionality. This interpretation 
is biologically reliable because the form of organs is constantly changing in living organisms. There is no organ 
in your body that remains completely similar. However, until some point it remains satifactorily the same and 
fulfills its functioning and not afterwards.

Lastly, a noteworthy point pertains to Fig. 7. Our model’s distinctiveness lies in its ability to coordinate the 
entire system’s behavior without relying on external control parameters. In our latest experiment, we examined 
the system’s behavior in the absence of a dish wall. In multicellular organisms, direct interactions and the extracel-
lular matrix are pivotal in holding cells together, fostering cohesion. This cohesion, mediated by proteins secreted 
in the extracellular matrix, governs the formation of organized multicellular structures. In the absence of a dish 
wall, our model considers the simplest form of cohesion, as detailed in Section 2.6. The outcome illustrated in 
Fig. 7 highlights that even without the constraint of a dish border, we can effectively regulate the overall behavior 
of the system.

In order to ensure the proper functionality of a tissue, it’s fascinating to design a model that can form and 
maintain a well-organized structural pattern in the tissue. This will guarantee life. We are aware of the fact that 
here, we designed a simplified replica of two main processes of production, and rearrangement during early 
development. Pattern formation is much more complex and it occurs along a hierarchical path starting from 
one totipotent cell. Thus, in future work, it is essential to investigate stem cells’ strategies to reach a developed, 
organized structure along a hierarchical path. This strategy should provide a finite number of cycles with the fol-
lowing instructions: first, producing the demanded abundance of cells, second, secreting a signal third, breaking 
the existing symmetry in the population and fourth, producing the differentiated cells as the source of the next 
level of development in a spatially ordered sequence. It could be a promising step toward the big picture of this 
project: generating organoids starting from one stem cell.

Data availability
The software used to run all simulations was Python. The scripts and the data that support the findings of this 
study are available from the corresponding author upon request.
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