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Hybrid whale optimization 
algorithm for enhanced routing 
of limited capacity vehicles 
in supply chain management
Vu Hong Son Pham , Van Nam Nguyen * & Nghiep Trinh Nguyen Dang 

The present study focuses on the problem of vehicle routing with limited capacity, with the objective 
of minimizing the transportation distance required to serve h clients with predetermined locations 
and needs. The aim is to create k trips that cover the shortest possible distance. To achieve this goal, a 
hybrid whale optimization algorithm (hGWOA) is proposed, which combines the whale optimization 
algorithm (WOA) with the grey wolf optimizer (GWO). The proposed hybrid model is comprised of two 
main steps. First step, the GWO’s hunting mechanism is integrated transitioning to the utilization 
phase of WOA, and a newly devised state is introduced that is linked to GWO. In the second step, a 
novel technique is incorporated into the exploration mission phase to enhance the resolve after per 
iteration. The algorithm’s performance is assessed and compared with other modern algorithms, 
including the GWO, WOA, ant lion optimizer (ALO), and dragonfly algorithm (DA) using 23 benchmark 
test functions and CEC2017 benchmark test function. The results indicate that the hybrid hGWOA 
method outperforms other algorithms in terms of delivery distance optimization for scenarios 
involving scale and complexity. These findings are corroborated through case studies related to 
cement delivery and a real-world scenario in Viet Nam.

The vehicle routing problem (VRP) with limited capacity serves as a complex extension of the classic trave-
ling salesman problem (TSP). In this context, the objective is to outline k routes, optimizing for minimal cost 
or distance, to cater to h clients, each with their predetermined locations and demands. It’s crucial that each 
vehicle starts and concludes its journey at a specified point, all while adhering to particular constraints. Numer-
ous methodologies have been proposed to tackle the VRP challenge. These include linear programming, the 
ant lion optimizer (ALO), particle swarm optimization (PSO), modified hybrid particle swarm optimization 
(MHPSO), double population genetic algorithm (DPGA), whale optimization algorithm (WOA), grey wolf 
optimizer (GWO), genetic algorithm (GA), and the dragonfly algorithm (DA).

In the realm of transportation and logistics, the VRP stands as a paradigmatic NP-hard challenge. Despite 
being the subject of extensive academic investigation, characterizing the VRP remains elusive due to its intricate 
array of constraints and stipulations. These include factors like Chronological Span, Length, Collection and 
Drop-off, and Capability, as outlined by  Laporte1. As a result, research endeavors addressing the VRP are tasked 
with focusing on pivotal parameters such as  length2,  cost3, and the intertwined factors of temporal duration and 
carbon  emissions4. Liu et al.5 differentiated the VRP from the TSP by highlighting the former’s provision for 
multiple routes. Each of these routes is constrained by a specific vehicle capacity and must traverse all nodes. 
Given the daunting complexity inherent to the VRP, research has chiefly gravitated towards heuristic and meta-
heuristic strategies as the primary methodologies to derive workable solutions.

The VRP has ascended as a key subject in academic research, chiefly due to its pivotal role in transportation 
and logistics. Given the necessity to ensure punctual deliveries of large volumes of goods, the task often exceeds 
the capabilities of individual vehicles. Taking into account each vehicle’s inherent capacity and load restric-
tions, devising astute delivery routes becomes essential to meet daily consumer demands. Researchers in this 
arena endeavor to calibrate the objective function, targeting an optimal solution that simultaneously minimizes 
costs, geographical span, time constraints, and carbon emissions. Such optimization efforts encompass a range 
of approaches, from tackling the VRP in contexts where goods are dispatched from a single  depot6,7 to more 
intricate setups originating from multiple  depots8,9.
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The significance of optimization is evident across a myriad of fields, leading to a marked increase in the focus 
on metaheuristic techniques. One of the salient features of metaheuristics is their adaptability. From a broader 
perspective, metaheuristics can be delineated based on the degree of randomness they introduce during each 
optimization iteration. They can also be characterized based on their foundational inspirations, many of which 
are derived from swarm intelligence. Examples include the whale optimization algorithm (WOA)10, the grey 
wolf optimizer (GWO)11, and the African wild dog optimization algorithm (AWDO)12. These metaheuristic 
techniques find applications in diverse domains, such as the time–cost trade-off in construction  projects13,14, 
dispatching of ready-mix concrete  trucks15, optimization of construction site  layouts16,  VRP17, reduction of 
construction material  costs18, logistics cost  optimization19, and the design optimization of water distribution 
 systems20.

The WOA, a metaheuristic optimization technique, was introduced by Mirjalili and  Lewis10 in 2016. Deriving 
its inspiration from the intricate hunting behaviors of humpback whales, this method employs a set of candi-
date solutions, each representing a potential optimum. The WOA unfolds through a three-pronged schema of 
search strategies: exploration, exploitation, and convergence. In the exploration phase, the algorithm adopts a 
stochastic approach, identifying promising regions within the vast search space. As it shifts to the exploitation 
stage, it mirrors the humpback’s bubble-net hunting tactics to close in on these pinpointed regions. Finally, in 
the convergence phase, the WOA concentrates on the fine-tuning of the best solution, progressively narrowing 
the search scope. Despite inherent limitations, such as sensitivity to parameter variations and a tendency towards 
premature convergence, the WOA is lauded for its versatility, user-friendly nature, and notable efficiency in 
diverse sectors, including engineering, electrical systems, and finance.

The WOA has garnered significant attention due to its wide applicability across diverse domains. Correspond-
ingly, there has been a surge in research initiatives aimed at refining its optimization capabilities. Chakraborty, 
 Saha21 unveiled a modified WOA (mWOAPR) to enhance the diagnosis of COVID-19 severity using chest 
X-ray images. Notably, their findings outperformed both the foundational and other advanced metaheuristic 
algorithms, especially in benchmarking and segmenting COVID-19 X-ray images. A subsequent study proposed 
an elite-based WOA variant (EBWOA)22, addressing certain limitations of the conventional WOA. This iteration 
demonstrated its efficacy across benchmark functions, IEEE CEC 2019 functions, design issues, and tangible 
cloud scheduling dilemmas. An additional WOA modification, optimized for high-dimensional problems, was 
 introduced23, addressing challenges like inadequate exploration, compromised accuracy, and premature conver-
gence. Building upon prior research, Chakraborty,  Saha24 enriched the WOA (designated WOAmM) by incorpo-
rating a revised mutualism phase from the Symbiotic Organisms Search (SOS) algorithm. This enhancement spe-
cifically targeted premature convergence pitfalls. In a distinct development, a novel WOA iteration (m-SDWOA) 
was put  forth25 amalgamating features from both the SOS and Differential Evolution (DE). This fusion harmo-
niously married exploration and exploitation, culminating in improved accuracy, diversity, and mitigation of 
early convergence. In another collaborative effort, Chakraborty,  Sharma26 rolled out an optimized WOA version 
(ImWOA) with aspirations to magnify diversity, exploration, and solution precision. Their evaluations rendered 
promising results across a spectrum of optimization tasks, including image segmentation, particularly when 
benchmarked against rudimentary algorithms and newer WOA iterations. Lastly, a fusion of success-history-
based adaptive differential evolution (SHADE) with a customized WOA was  presented27, culminating in the 
SHADE-WOA hybrid. This avant-garde optimization technique manifested exemplary results, both in standard 
benchmarks and practical engineering design tasks, as corroborated by comprehensive statistical examinations.

In 2014, Mirjalili et al.11 pioneered the GWO, a metaheuristic approach inspired by the behavioral dynamics 
of grey wolves. When compared to prevailing metaheuristic techniques like PSO, DE, GSA, and  FEP28, GWO 
stands out, particularly during its exploitation phase. The algorithm demonstrates an innate ability to deftly 
navigate the solution space, outperforming in avoiding local optima in a significant majority of the 29 functions 
 examined11. Nevertheless, the GWO, despite its astute update mechanism, is not devoid of challenges. Research-
ers have identified difficulties in balancing exploration and  exploitation29 and pointed out its limited success in 
tackling issues related to non-linear equation systems and unconstrained  optimization29. This underscores the 
pressing need to further refine and enhance GWO to overcome these intrinsic shortcomings. While attempts to 
diversify the population through random initialization of the grey wolves’ population have been made, such a 
strategy is not without pitfalls—a concern later  addressed30.

The main issues with WOA, as identified  in28–31, have motivated the authors of this paper to propose a 
hybridized approach using GWO. This hybrid method starts by initializing the initial population according to 
WOA, GWO to create population diversity and sort preliminary results. Next, the study proposes to use the 
leadership hierarchy inherent in GWO to apply WOA’s bubble attack strategy. In the mining phase, the proposed 
algorithm selected the top three alpha, beta, and delta wolves from the entire search agent, and the other search 
agents modified their positions according to the agent’s position. find the best of other search agents to improve 
the performance of the WOA algorithm through the p-factor. The performance goals of hGWOA are demon-
strated through unilateral and multimodal benchmark functions. This solved the local optimization problems, 
incomplete solution improvement after each iteration, and low performance in the exploitation phase of WOA.

The large-scale capacity vehicle routing problem (CVRP) stands at the crux of effective transportation and 
logistics management. Though myriad solutions have been proposed to address this problem, the performance 
of many such methodologies in confronting extensive CVRPs leaves much to be desired. Bridging this gap, we 
present the hGWOA, a state-of-the-art hybrid optimizer. By seamlessly fusing the strengths of the GWO and 
WOA, the hGWOA promises to deliver potent solutions specifically tailored for medium to large-scale CVRPs, 
and beyond this, for a diverse range of optimization challenges inherent in real-world transportation systems. 
The deployment of this innovative model not only accentuates optimization efficacy but also empowers decision-
makers, bestowing upon them the capability to derive astute, well-informed, and strategic solutions that address 
the complex nuances of transportation logistics.
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The remains of this study are structured as follow: section “Literature review” provides a comprehensive 
review of the existing literature on the vehicle routing problem. In section “Model development”, we present the 
specifics of our proposed hybrid grey wolf optimizer algorithm. Section “Computational experiments” evaluates 
the algorithm’s performance and effectiveness in comparison to existing models. Lastly, section “Conclusion” 
concludes our findings, highlighting the study’s contributions and suggesting potential areas for future research 
in the field.

Literature review
The VRP has been the subject of rigorous investigation for over six decades, with a plethora of strategies and 
objectives  proposed32–35. One prevalent approach for addressing the VRP factors is in both distance and customer 
demands. This strategy employs the “3-opt” framework in tandem with mixed-integer linear programming for 
uniformly sized vehicles, and binary linear programming when dealing with fleets of varied  sizes2. Additionally, 
research endeavors in this arena have delved into optimizing processes like the loading and unloading of  goods2, 
refining travel and service  intervals36, curtailing operational costs such as vehicular wear, fuel consumption, and 
refrigeration  expenses3, and emphasizing the reduction of carbon  footprints4,5.

Capacity limitations are frequently observed in various research studies, acting as a fundamental constraint 
in vehicle routing problems. The CVRP has been the subject of numerous methodologies developed to address 
its complexities. These methodologies are broadly classified into two categories: exact methods and heuristic 
methods, each possessing its own unique attributes and advantages. The ant colony algorithm (ACO) was first 
introduced by Dorigo et al.37 as a simulation-based optimization technique that mirrors the food-seeking behav-
ior of real-world ants. This algorithm has been widely employed to address the travelling salesman problem (TSP) 
and other intricate combinatorial challenges. The fundamental premise of the ACO is that the paths traversed by 
ants represent potential solutions to the optimization dilemma. As time progresses, there is a systematic increase 
in the concentration of pheromones on the more optimal paths. Consequently, a higher number of ants are 
inclined to select shorter routes, paving the way to pinpointing the optimal solution. To enhance the efficiency 
of the ACO, various adaptations have been suggested by researchers. Notably, Dorigo et al.37 proposed the ant 
colony system (ACS) as a refined version of the original algorithm. Moreover, Yu et al.38 presented an augmented 
ACO equipped with an intensified local search capability. Furthering the innovations in this field, Chen and  Shi39 
put forward a hybrid methodology that melds local search techniques with the foundational principles of the ant 
colony algorithm, specifically targeting the multi-compartment vehicle routing challenge.

The CVRP has captivated the attention of researchers aiming to augment the efficacy of transportation sys-
tems. A plethora of algorithms addressing this conundrum have been proposed, including contributions by 
Pham and  Nguyen17,  Azad40. Korayem et al. 41 introduced an inventive approach that amalgamates K-means 
clustering with grey wolf optimization, aiming for adept group formation and routing. On a similar note, Ng 
et al.42 unveiled the multiple-colonies artificial bee colony methodology, which employs a re-routing paradigm 
to optimize CVRP solutions. Another notable contribution is by Wei et al.43,44 who infused two-dimensional 
packing constraints into the Simulated Annealing framework for CVRP problem-solving. This adaptation not 
only modifies the neighborhood structure but also augments the solution’s quality. They further expanded on 
this by developing a method that accentuated CVRP optimization through the integration of two-dimensional 
packing constraints. Delving into more intricate challenges, Tao and  Wang45 tackled the three-dimensional 
loading CVRP (3L-CVRP) by embedding three-dimensional packing and loading capacity constraints within 
the tabu search algorithm. In a parallel stride, Zhang et al.46 devised a random local search technique focusing 
on the same constraints. Both research endeavors furnish competent solutions for the 3L-CVRP, underscoring 
distinct search strategies tailored to specific constraints.  Akpinar47 championed a hybrid approach, harnessing 
the strengths of both large-scale neighborhood search and ant colony algorithms to refine the optimization 
process. Furthermore, Sze et al.48 presented a two-phase hybrid approach with an adjustable locality mechanism, 
embedding a large neighborhood search to diversify the solution pool. In another noteworthy contribution, 
Akhand et al.49 integrated adaptive scanning and velocity speculation into the particle swarm optimization (PSO) 
technique, enhancing path optimization. They further honed the PSO method, tailoring it for the optimization of 
garbage collection routes. Collectively, these methodologies illuminate pathways for refining transport systems, 
providing robust solutions that bolster transportation operations’ efficiency.

Reed et al.50 employed ACS to devise routing strategies for vehicles in cyberspace. They further broadened 
its application by integrating multi-chambered vehicles designed for waste sorting. Remarkably, their method-
ology led to a significant cost reduction of 15% in a management science project undertaken at E. I. Du Pont, 
 Inc34. In another innovative approach, Narasimha et al.51 presented a VRP formulation centered on minimizing 
the journey time of the vehicle traversing the longest route. This perspective is especially pertinent in situations 
demanding rapid emergency responses. Furthermore, a subset of scholars has broadened the scope of VRP 
models to incorporate diverse parameters. These include customer satisfaction, environmental emissions, and 
cost  optimization7,8  and52;

Amidst rising apprehensions regarding global warming, the mitigation of carbon emissions has taken center 
stage in the discourse on the VRP. In response to these environmental challenges, many nations have instated 
taxes predicated on the carbon emissions produced by transport vehicles. This has underscored the imperative 
of cultivating efficient solutions to address these emission concerns. Consequently, there has been a marked 
surge in research endeavors over recent years, focusing on optimizing carbon emissions within the context of 
the  VRP5,53. Given the intricate nature and expansive scale of the VRP, the quest for optimal resolutions often 
relies on heuristic and meta-heuristic methodologies. Such strategies are pivotal in sculpting efficient and envi-
ronmentally sustainable transportation frameworks.
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Beyond the scope of the traditional VRP, the dynamic vehicle routing problem (DVRP) has emerged as a 
significant area of interest. In the DVRP, new orders surface while goods are in transit, necessitating real-time 
route  modifications54. To address this dynamic challenge, researchers have turned to strategies such as the PSO 
method and adaptive neighborhood search. Moreover, in a bid to minimize carbon emissions, the MDGVR 
problem has been introduced. This problem centers around eco-friendly vehicles that commence their routes 
from various depots but conclude at a singular, primary  warehouse9. A proposed resolution for this particular 
challenge hinges on the deployment of a two-stage ACS methodology.

This research presents a new methodology, denoted as hGWOA, crafted to tackle the distance optimization 
challenges inherent to CVRP, aiming to reduce associated logistics expenses. To ascertain the efficacy of hGWOA, 
it was juxtaposed with several established algorithms, namely GWO, independent WOA, DA, and ALO. This 
comparative analysis utilized both classical benchmark test functions and CEC2017 test functions. The results 
underscore that hGWOA’s performance is notably superior to its counterparts. Following this, the hGWOA 
algorithm was employed on two emblematic CVRP scenarios, further elucidated in section “Computational 
experiments”.

Model development
CVRP description and mathematical model
In the domain of operations research and logistics, the CVRP problem’s significance is widely  acknowledged55. 
This problem centers on crafting an optimal plan for transporting goods from a central warehouse to a set group 
of clients using a vehicle fleet, with the subsequent return of the fleet to the base. Shan and  Wang56 have clearly 
defined this challenge, emphasizing two key constraints: firstly, the strict carrying capacity of each cargo vehicle, 
ensuring the total goods volume or weight on any given route does not exceed the vehicle’s limits; and secondly, 
the requirement for each client to be visited only once, ensuring efficient and timely deliveries. The overarching 
goal of the CVRP is to minimize the entire journey distance of the fleet during its  operations17.

Consider:

Objective function:

where cij represents the cost from customer i to customer j. The symbol gi stands for the demand of the ith cli-
ent, with i taking values from 1 through k, where k is the total number of clients. The letter h represents the total 
number of units. Lastly, qt indicates the capacity of the tth unit, with t ranging from 1 to h.

Equation (1) defines the objective function for the VRP. Within this equation, xijt is a binary variable indi-
cating the route’s selection status. It is assigned a value of 1 if the route is chosen and 0 otherwise. The VRP’s 
primary goal is to minimize the cumulative distance traveled, epitomized by the sum of the distances covered 
by each unit. Equations (2) and (3) are constraints ensuring that there’s a unique path linking each unit to every 
client. Specifically, Eq. (2) mandates that each client is visited only once, whereas Eq. (3) stipulates that each 
unit must visit a minimum of one client. The unit capacity constraint is introduced in Eq. (4), restricting the 
volume of goods transported along a particular route. The sum of goods delivered to every client along a route 
must stay within the unit’s designated capacity. Lastly, Eq. (5) dictates that a singular unit exclusively services 
each client. In contrast, the warehouse receives attention from h units, where h denotes the specific number of 
units assigned to the warehouse.

D = total distance travelled by all units

xijt =

{

1, vehicle t depart from i to j
0, otherwise

; yit =

{

1, customer i is served by unit t
0, otherwise

(1)MinD =

k
∑

i=0

k
∑

j=0

h
∑

t=1

cijxijt

(2)
k

∑

i=0

xijt = yjt; j = 1, 2, . . . , k; t = 1, 2, . . . , h

(3)
k

∑

i=0

xijt = yit; j = 1, 2, . . . , k; t = 1, 2, . . . , h

(4)
k

∑

i=0

giyit ≤ qtyit; t = 1, 2, . . . , h

(5)
h

∑

t=1

yit =

{

1; i = 1, 2, 3, . . . , k
h; i = 0

}
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Hybrid whale optimization algorithm model for CVRP
Whale Optimization Algorithm_WOA
In 2016, Mirjalili and  Lewis10 unveiled the WOA, a pioneering metaheuristic optimization technique. Inspired by 
the intricate hunting behaviors of humpback whales, the WOA facilitates proficient exploration and exploitation 
of the search space to pinpoint optimal solutions. As illustrated in Fig. 1, the WOA operationalizes through three 
distinct phases: encircling the prey, navigating the spiral bubble trap, and the subsequent prey hunt.

Encircling prey. Humpback whales have a unique ability to detect and encircle their prey. However, given 
that the exact position of the optimal solution within the search space remains unknown a priori, the WOA 
algorithm predicates the notion that the current best candidate solution either signifies the target prey or is in 
proximity to the optimal solution. Upon the identification of the best-performing search agent, the other agents 
endeavor to recalibrate their positions in alignment with this top-scoring agent. This behavior is encapsulated 
mathematically in Eqs. (6) and (7):

In the Eqs. (8) and (9), the term t stands for the current iteration. �A and �C are known as coefficient vectors. 
X∗ indicates the position vector of the most optimal solution found until the present iteration, while X signifies 
the position vector of the current search agent. The || represent the concept of absolute value. It’s important to 
highlight that X∗ needs updating every iteration if a better solution emerges.

The calculation for the vectors �A and �C  is as follows:

where a undergoes a decremental variation, starting from an initial value of 2 and culminating at a value of 0 
as the iterations ensue. This decrement is manifest in both the exploration and exploitation phases. In addition, 
the variable r represents a vector whose elements are randomly generated, with values ranging between 0 and 1.

Figure 2a offers a graphical illustration of the application of Eq. (7) to a two-dimensional problem. It eluci-
dates the method by which a search agent’s position is updated in relation to the most recent solution’s position. 
Through modifications to the vectors �A and �C , the search agent can traverse various regions proximate to the 
highest-performing solution. Figure 2b extrapolates this notion to a three-dimensional context, highlighting 
the potential update trajectories of a search agent. Importantly, the random vector ( −→r  ) empowers the search 
agent to probe any location within the search domain, as delineated by the pivotal points in Fig. 2. As a result, 
Eq. (7) aids in refining a search agent’s position near the apex-performing solution, simulating the dynamics of 
encircling prey.

Bubble-net attacking method (exploitation phase). To formulate a mathematical representation of the bubble-
net foraging tactics observed in humpback whales, two distinct methodologies have been proposed:

• Constriction and Encompassing Strategy: This approach endeavors to emulate the behavior through modifi-
cations to the parameter and vectors in Eq. (8). Specifically, the magnitude of ‘a’ is diminished, which con-
sequently reduces the variation amplitude of −→A  . Here, −→A   is an unpredictable value confined to the interval 
[− a, a]. As the iterations progress, the value of a is systematically reduced from 2 to 0. By assigning random 
values to −→A  within the range of [− 1, 1], it becomes feasible to position a search agent anywhere between 

(6)�D =
∣

∣�C × �X∗(t)− �X(t)
∣

∣

(7)�X(t + 1) = �X∗(t)− �A× �D

(8)�A = 2�a× �r − �a

(9)�C = 2× �r

Figure 1.  Bubble-net feeding strategy of humpback whales.
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its originating position and the location of the best-performing agent. Figure 3a graphically illustrates the 
potential positions that can be achieved within a 2D plane, spanning from (X,Y) to (X∗,Y∗) , contingent on 
the constraint 0 ≤ A ≤ 1.

• Spiral Updating Position Approach: As illustrated in Fig. 3b, this methodology commences by computing the 
Euclidean distance between the whale’s position (X,Y) and its prey’s position (X∗,Y∗) . The subsequent step 
involves devising a spiral equation, designed to mimic the helical trajectory often exhibited by humpback 
whales as they converge on their target. The derived equation is articulated as:

In Eqs. (10) and (11), the vectors �D  and the variable l denote the distance between the ith whale and the 
prey. These serve dual purposes: first, as indicators of the spatial proximity between the two entities, and second, 
as metrics to gauge the quality of the optimal solution acquired up to that point. The constant b emerges as a 
pivotal element, endowing the logarithmic spiral with its unique characteristics. Furthermore, the variable l is 
derived from a uniform distribution over the interval [− 1, 1], infusing the equation with a stochastic component.

The collective behavior of humpback whales, characterized by their tendency to encircle prey in a narrowing 
loop while also adopting a spiral trajectory, is emulated in the model. Within this framework, a balanced prob-
ability of 50% is designated to either the contraction-encircling mechanism or the spiral model. This probabilistic 
approach dictates how the whales’ positions are updated throughout the optimization procedure. The mathemati-
cal articulation of this model is presented as follows:

(10)�X(t + 1) = �D × ebl × cos (2π l)+ �X∗(t)

(11)�D =
∣

∣�X∗(t)− �X(t)
∣

∣

Figure 2.  2D and 3D position vectors and their possible subsequent placements  (X* is the top-performing 
solution obtained so far).

Figure 3.  Bubble-net search mechanism implemented in WOA (X *is the top-performing solution).
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A similar method, centered on the manipulation of vector �A , finds application in the pursuit of prey during 
the exploration phase. In this context, humpback whales engage in stochastic search behaviors influenced by the 
relative positions of their peers. Consequently, vector 

−→
A  is endowed with random values exceeding 1 or descend-

ing below − 1, serving to compel a search agent to undertake substantial displacements from a reference whale. 
Diverging from the exploitation phase, where a search agent’s position is updated based on the most successful 
agent discovered thus far, the exploration phase employs a different strategy. Here, the updating of a search agent’s 
position hinges on the random selection of another search agent, rather than relying on the best-found agent. 
This mechanism, when coupled with |A| > 1 , underscores the significance of exploration, thereby empowering 
the WOA to conduct an extensive global search. The mathematical formulation is presented as follows:

where �Xrand denotes a stochastic position vector, which is selected from the existing population of whales.

Grey Wolf Optimizer (GWO)
The GWO algorithm was introduced by Mirjalili et al.11 in 2014, drawing inspiration from the hunting and hier-
archical leadership behavior of wild wolves. The algorithm comprises four levels, denoted as alpha, beta, delta, 
and omega. In this hierarchy, the first three wolves represent the best variants within the population, while omega 
(ω) symbolizes the variation within the population, as illustrated in Fig. 4. Additionally, the algorithm models 
the two distinct stages of the wolf population: the siege stage and the hunt for prey stage.

The siege phase is displayed as follows:

where �xt is the wolf ’s position in iteration t, �d is the prey’s position vector, �a and �c represents coefficient vectors, 
which are computed as follows:

During the hunting phase, Mirjalili models the hunting behavior by assuming that alpha, beta, and delta have 
knowledge of the potential position of the prey based on their experience. This is expressed mathematically as 
follows:

(12)�X(t + 1) =

{

�X∗(t)− �A× �D if p < 0.5

�D × ebl × cos (2π l)+ �X∗(t) if p ≥ 0.5

(13)�D =
∣

∣�C × �Xrand − �X
∣

∣

(14)�X(t + 1) = �Xrand − �A× �D

(15)�d =
∣

∣

∣
�c × �ctp − �xt

∣

∣

∣

(16)�x(t+1) = �xt − �a× �d

(17)�a = 2l × r1

(18)�c = 2× r2

(19)�dα = |�c1 × �xα − �x|; �dβ =
∣

∣�c2 × �xβ − �x
∣

∣; �dδ = |�c3 × �xδ − �x|

(20)�x1 = �xα − �a1 × �dα; �x2 = �xβ − �a2 × �dβ ; �x3 = �xδ − �a3 × �dδ

Figure 4.  Grey wolf population organization chart.
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During the search and attack phase, a vector �a is randomly generated within the range of [-2a, 2a]. If |�a| < 1 , 
the wolves will attack a randomly selected prey, referred to as the mining stage. However, if |�a| > 1 , the wolves 
may abandon their current target and search for better  prey57. Another parameter that influences the decoy 
search is the variable c, which takes a value within the range  of2. A vector �c is randomly and abruptly updated to 
prevent local optimization. If c > 1 , the solution will converge towards the prey, whereas if c < 1 , the solution 
will move away from the prey in search of new targets.

Hybrid whale optimization algorithm model for CVRP
This section introduces a proposed methodology that combines the WOA and the GWO to enhance the efficiency 
of the WOA during its exploitation phase. This aims to attain superior solutions, drawing upon the insights 
discussed in the preceding sections regarding both WOA and GWO.

Despite the standard version of the WOA exhibiting a notable proficiency in identifying optimal solutions, its 
capability to consistently refine these solutions in subsequent iterations might be limited. To address this limita-
tion and bolster the WOA’s performance, an amalgamation with the GWO was proposed, leading to the genesis 
of a novel algorithm termed hGWOA. This innovative hybridization introduces two pivotal modifications to the 
conventional WOA. Foremost, a conditional constraint is embedded within WOA’s exploitation phase, aiming to 
augment its hunting efficacy.As illustrated by Eq. (21), the parameters �x1 , �x2 , and �x3 are pivotal to the exploitation 
performance of the GWO. To circumvent the challenges of local optima, particularly when each ‘a’ is either less 
than 1 or greater than − 1, a novel condition has been incorporated into hGWOA’s standard exploitation phase. 
Furthermore, modifications have been made to Eqs. (19), (20), and (21) to facilitate their use within this newly 
introduced condition, focusing expressly on the parameters �x1 , �x2 , and �x3 . In addition, a supplementary criterion 
has been introduced during the exploration phase of hGWOA to guide the current solution more effectively 
towards the most propitious outcome, while concurrently forestalling the whale from advancing to a position 
inferior to its preceding location.

hGWOA initiates by establishing a population comprising search agents, encompassing both whales and 
wolves. This population is subsequently subjected to a procedure designed to rectify agent positions that surpass 
the defined boundaries of the search space. Following this positional adjustment, the fitness function is meticu-
lously computed for each agent. In instances where an agent’s fitness falls below the alpha_score (best_score), the 
alpha_score is updated to align with the agent’s computed fitness. Consequently, pivotal algorithmic variables, 
including a, A, C, L and p are subject to updates, and a random p number is stochastically generated.When the 
generated random number p falls below the threshold of 0.5, it triggers an evaluation of an additional conditional 
statement, which inquires whether |A| does not equal 1. If this condition is met, a new position for the agent is 
computed utilizing Eq. (6). Subsequent to this calculation, if the fitness of the newly derived position surpasses 
that of the current position, the algorithm updates the agent’s position accordingly. However, if the condition 
|A|≥ 1 holds true, then the new position is determined utilizing Eq. (7). Analogous to the prior condition, the 
algorithm scrutinizes the fitness of the new position relative to the old, and if superiority is established, the agent’s 
position undergoes a corresponding update. In an alternative scenario, if the randomly generated variable p is 
greater than or equal to 0.5, and all the variables a1, a2 and a3 fall within the range of − 1 to 1, then the algorithm 
proceeds to update the current solution’s position utilizing Eq. (21).

Following these steps, the algorithm checks if any newly computed positions exceed the defined search space 
limits. If they do, corrective actions are taken to bring them within bounds. This process results in the calculation 
of updated fitness values for the agents, ultimately leading to the identification and reporting of the algorithm’s 
optimal fitness achievement.

The fundamental distinction between WOA and hGWOA is observed in the incorporation of Eqs. (19), (20), 
and (21) during the exploitation phase of WOA. This is further complemented by an innovative strategy intro-
duced in the exploration stage to enhance the solution quality. The integration of these equations, coupled with 
this new strategy, amplifies the foraging efficiency of WOA. As a result, the optimal solution undergoes refine-
ment in each iteration, bolstering the algorithm’s resilience against local optima. Additionally, the introduction 
of this specific condition during the exploration phase augments the algorithm’s search capability, reinforcing 
the robustness of existing solutions. Table 1 summarizes the parameters used, demonstrating an appropriate 
blend for the hGWOA, WOA, and GWO algorithms. Concurrently, Table 2 and Fig. 5 present the pseudo-code 
and flowchart for the hGWOA approach, respectively.

The hGWOA algorithm showcases significant advancements in integrating both global and local search 
strategies within the search space. This hybrid approach generates a succession of stochastic solutions during 
its initial phase, optimizing the quest for the ideal solution. Additionally, the hGWOA methodology utilizes an 
iterative framework, enabling the effective pinpointing and harnessing of unexplored regions within the search 
domain. Consequently, this leads to the revelation of novel and promising solutions.

Computational experiments
Convergence behaviours on classical benchmark function
A detailed evaluation of the hGWOA’s optimization prowess was executed, using classical benchmark test 
functions that are widely acknowledged in the field. Comparative analyses pitted hGWOA against four prom-
inent optimization methodologies: GWO, WOA, DA, and ALO. The benchmark test functions deployed in 
this study were categorized based on their distinctive traits into three groups: uni-modal, multi-modal, and 

(21)�x(t+1) =
�x1 + �x2 + �x3

3
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fixed-dimensional composite functions with multiple local optima. Comprehensive depictions of these functions 
can be found in Tables 3, 4 and 5.

For a rigorous and impartial comparative analysis, each algorithm was run 30 times for every benchmark 
function. Following this, statistical evaluations were conducted to determine both the central tendency and vari-
ability of data from these 30 runs. The research framework utilized 60 search agents, each limited to a maximum 
of 500 iterations. Tables 6, 7 and 8 present the statistical results, encompassing mean values (ave) and standard 
deviations (std), of the hGWOA approach, comparing its performance to other notable algorithms, including 
DA, ALO, GWO, and WOA.

It is imperative to highlight that uni-modal functions are characterized by a singular global extremum, 
making them an ideal benchmark for evaluating an algorithm’s capability in exploiting the search space. Upon 
examination of the results presented in Table 6, it is discernible that hGWOA surpasses other nature-inspired 
algorithms, namely ALO, DA, WOA, and GWO, in the domain of uni-modal mathematical functions. This 
superiority is evidenced by its consistent performance across all seven instances for GWO, WOA, and DA, and 
in six of the seven cases for ALO.

In contrast to uni-modal functions, multi-modal functions are distinguished by the presence of a singular 
optimal global point accompanied by multiple local optima. These characteristics make multi-modal functions 
particularly apt benchmarks for assessing the search space exploration competence of hGWOA. A close examina-
tion of the outcomes from the multi-modal test functions, as presented in Table 7, underscores hGWOA’s superior 
performance relative to WOA, GWO, ALO and DA. Notably, hGWOA’s efficacy surpasses that of DA across all 
six instances, outperforms WOA in four of the six, eclipses ALO in five of the six, and bests GWO in three of the 
six scenarios. Such outcomes attest to hGWOA’s skill in adeptly navigating around local optima and its thorough 
probing of the search space. This exceptional performance accentuates the algorithm’s potential significance in 
academic research, particularly in the domain of exhaustive search space exploration.

Composite benchmark test functions represent an integration of various monomodal and multi-modal func-
tions, subjected to transformations and perturbations, including rotation, translation, and bias. These composite 
benchmark evaluation functions share a consistent actual search domain replete with numerous local optima. 
This makes them particularly beneficial for assessing the balance between exploration and exploitation within 
the search space. Table 8 showcases the results of evaluating the efficacy of the hGWOA algorithm in addressing 
synthesized benchmark evaluation challenges (F14–F23). Based on the empirical findings, it can be inferred 
that the hGWOA algorithm surpasses other population-based optimization techniques in efficiency, underlin-
ing its prowess in striking an equilibrium between search space exploration and exploitation. This competency 
is further illuminated by the algorithm’s aptitude to consistently demonstrate superior mean values, illustrating 
its balanced approach to the tradE−off between discovering and harnessing the search space.

Table 1.  Parameter settings of the hGWO, GWO and WOA.

Algorithm Parameter Value

hGWOA

Population size 60

Number of Iterations 500

Time taken by each function to complete 30

GWO

Population size 60

Number of Iterations 500

Time taken by each function to complete 30

WOA

Population size 60

Number of Iterations 500

Time taken by each function to complete 30

Table 2.  Pseudo-code of the proposed hGWOA method.

Step 1: Generate a population of hGWOA population by Xi (i = 1, 2, 3, 4 …, n)
Step 2: Evaluate the fitness of each solution
Step 3: Set X* as the solution with the highest fitness
Step 4: Repeat the following steps while the number of iterations is less than the maximum:
Step 5: For each solution , update the variables a, A, C, l, and p
Step 6: If p is less than 0.5:
a. If the absolute value of A is less than 1, update the position of the current whale using Eq. (6)
b. If the current fitness is better than the previous fitness, set the position to the new position
Step 7: Else if the absolute value of A is greater than or equal to 1, select a random whale and update the position using Eq. (13)
a. If the current fitness is better than the previous fitness, set the position to the new position
Step 8: Else if p is greater than or equal to 0.5 and all variables a1, a2, and a3 are between -1 and 1, update the location of the current whale using Eq. (21)
Step 9: Check if any whale has gone beyond the search space and adjust its position if necessary
Step 10: Evaluate the fitness of each whale
Step 11: If there is a whale with better fitness than X*, update X*
Step 12: Increase the iteration counter t by 1
Step 13: Return X*
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The convergence analysis, which evaluates the efficacy of the hGWOA algorithm, is juxtaposed against other 
prominent algorithms, namely DA, ALO, WOA, and GWO. This comparative evaluation is visually represented 
in Figs. 6, 7, and 8. In this study, 30 exploration strategies were employed across 150 iterations, resulting in 
convergence diagrams. These diagrams vividly underscore the superior convergence aptitudes of hGWOA for a 
majority of the standard functions. Notably, the data suggests that hGWOA possesses a heightened probability 
of attaining optimal convergence compared to the other algorithms under examination.

Figure 5.  Flowchart of the proposed hGWOA method.

Table 3.  Uni-modal test functions.

Function Dim Range fmin

f 1(x) =
n
∑

i=1

x2i 10 [− 100, 100] 0

f 2(x) =
n
∑

i=1

|xi | +
n
∏

i=1

|xi | 10 [− 10, 10] 0

f 3(x) =
n
∑

i=1

(

i
∑

j−1

xj

)2

10 [− 100, 100] 0

f 4(x) = max{|xi |, 1 ≤ i ≤ n} 10 [− 100, 100] 0

f 5(x) =
n−1
∑

i=1

[

100
(

xi+1 − x2i
)2

+ (xi − 1)2
]

10 [-30,30] 0

f 6(x) =
n
∑

i=1

(|xi + 0.5|)2 10 [− 100, 100] 0

f 7(x) =
n
∑

i=1

ix4i + random[0, 1) 10 [− 1.28, 1.28] 0
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Table 4.  Multi-modal test functions.

Function Dim Range fmin

f 8(x) =
n
∑

i=1

−xisin
(√

|xi |
)

10 [− 500, 500] − 2820.8

f 9(x) =
n
∑

i=1

[

x2i − 10 cos (2πxi)+ 10
]

10 [− 5.12, 5.12] 0

f 10(x) = −20 exp

(

−0.2

√

1
n

n
∑

i=1

x2i

)

− exp

(

1
n

n
∑

i=1

cos (2πxi)

)

+ 20+ e 10 [− 32, 32] 0

f 11(x) = 1
4000

n
∑

i=1

x2i −
n
∏

i=1

cos

(

xi√
i

)

+ 1 10 [− 600, 600] 0

f 12(x) = π
n

{

10 sin2
(

πy1
)

+
n
∑

i=1

(

yi − 1
)2[

1+ 10 sin2
(

πyi+1

)]

+
(

yn − 1
)2

+
n
∑

i=1

u(xi , 10, 100, 4)

}

yi = 1+ xi+1

4

u(xi , a, k,m) =

{

k(xi − a)mxi > a
0− a < xi < a

k(−xi − a)mxi < −a

10 [− 50, 50] 0

f 13(x) = 0.1

{

sin2 (3πx1)+
n
∑

i=1

(xi − 1)2
[

1+ sin2 (3πxi + 1)
]

+ (xn − 1)2[1+ sin2 (2πxn)]

}

+
n
∑

i=1

u(xi , 5, 100, 4) 10 [− 50, 50] 0

Table 5.  Fixed functions with multiple local optima.

Function Dim Range fmin

f 14(x) =

(

1
500

+
25
∑

j=1

1

j+
∑2

i=1 (xi−aij)
6

)−1

2 [− 65, 65] 1

f 15(x) =
11
∑

i=1

[

ai −
x1
(

b2i +bix2
)

b2i +bix3+x4

]2

4 [− 5, 5] 0.0003

f 16(x) = 4x21 − 2.1x41 +
1
3
x61 + x1x2 − 4x22 + 4x42 2 [− 5, 5] − 1.0316

f 17(x) =
(

x2 −
5.1

4π2 x
2
1 +

5
π
x1 − 6

)2

+ 10
(

1− 1
8π

)

cosx1 + 10 2 [− 5, 5] 0.398

f 18(x) =
[

1+ (x1 + x2 + 1)2
(

19− 14x1 + 3x21 − 14x2 + 6x1x2 + 3x22
)]

×
[

30+ (2x1 − 3x2)
2 ×

(

18− 32x1 + 12x21 + 48x2 − 36x1x2 + 27x22
)]

2 [− 2, 2] 3

f 19(x) = −
4
∑

i=1

ciexp

(

−
3
∑

j=1

aij
(

xj − pij
)2

)

3 [0, 1] − 3.86

f 20(x) = −
4
∑

i=1

ciexp

(

−
6
∑

j=1

aij
(

xj − pij
)2

)

6 [0, 1] − 3.32

f 21(x) = −
5
∑

i=1

[

(X − ai)(X − ai)
T + ci

]−1
4 [0, 10] − 10.1532

f 22(x) = −
7
∑

i=1

[

(X − ai)(X − ai)
T + ci

]−1
4 [0, 10] − 10.4028

f 23(x) = −
10
∑

i=1

[

(X − ai)(X − ai)
T + ci

]−1
4 [0, 10] − 10.5363

Table 6.  Results of different algorithms on uni-modal functions.

F

hGWOA GWO WOA DA ALO

Ave Std Ave Std Ave Std Ave Std Ave Std

F1 7.81E−61 1.37E−60 1.64E−57 5.11E−57 1.42E−57 7.57E−57 1.07E+01 2.01E+01 3.39E−08 4.33E−08

F2 9.87E−43 1.75E−42 1.05E−40 2.43E−40 1.45E−40 5.48E−40 1.72E+00 1.26E+00 6.27E−05 3.55E−05

F3 1.37E−28 1.41E−28 4.85E+04 1.46E+04 4.98E+04 1.53E+04 1.65E+02 1.60E+02 4.59E+00 1.55E+01

F4 3.33E+01 2.95E+01 4.83E+01 3.09E+01 5.86E+01 2.02E+01 3.00E+00 1.70E+00 7.09E−02 3.29E−01

F5 6.09E+00 2.94E−01 2.82E+01 4.07E−01 2.82E+01 3.51E−01 9.49E+02 1.24E+03 1.73E+02 4.05E+02

F6 2.17E−06 5.25E−07 5.80E−01 2.57E−01 7.04E−01 3.27E−01 1.01E+01 2.28E+01 4.93E−08 7.41E−08

F7 2.33E−04 8.19E−05 4.40E−03 5.92E−03 5.55E−03 5.64E−03 3.60E−02 3.41E−02 3.63E−02 2.30E−02
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Convergence behaviours on CEC2017 benchmark function
The CEC2017 test functions form a suite of benchmark functions introduced during the 2017 IEEE Congress 
on Evolutionary Computation (CEC) competition, with an emphasis on real-parameter optimization. These 
benchmarks are highly esteemed within the evolutionary computation community and related fields. They serve 
as pivotal tools for evaluating and comparing the performance of optimization algorithms. Evolving from the 
benchmark collections of prior years, the CEC2017 suite has been rigorously designed to offer a wide array of 
challenges to optimization techniques.

Contrasted with the 23 traditional benchmark functions, the CEC2017 functions are viewed as more repre-
sentative of realistic optimization scenarios. Their expansive coverage encompasses both unimodal and multi-
modal landscapes, and they span separable as well as non-separable functions. Moreover, these functions feature 
shifted and rotated variants, providing an exhaustive testbed for algorithmic evaluations. Such a versatile set of 
testing scenarios allows researchers to evaluate the merits and limitations of various optimization algorithms 
across diverse contexts.

In this context, the efficacy of hGWOA has been assessed using the IEEE CEC2017 test suites, as referenced 
 in58. These suites are broadly classified into four distinct categories: unimodal, multimodal, hybrid, and composi-
tion. Table 9 offers detailed definitions of the CEC2017 benchmark problems. To enhance the level of complexity 
and thoroughly evaluate the proposed method’s aptitude in addressing intricate optimization challenges, all 
functions within the CEC2017 suite have been configured to be 30-dimensional.

For a comprehensive and unbiased evaluation, each algorithm was executed 30 times for every benchmark 
function. Following these runs, statistical analyses were carried out to evaluate both the central tendency and 
the dispersion of the data from these 30 trials. In the context of this study, 60 search agents were utilized, with 
each restricted to a maximum of 500 iterations. The results of the hGWOA approach are presented in Tables 10, 
juxtaposing its performance with that of other prominent algorithms such as DA, ALO, GWO, and WOA. A 
detailed examination of the data in Table 10 demonstrates that hGWOA consistently surpasses its nature-inspired 
peers, namely ALO, DA, WOA, and GWO, in the unimodal, multimodal, hybrid, and composition domains.

Different versions of the CVRP.
For the TSP as delineated in  references55,59, the computational complexity is recognized to escalate exponentially 
with the augmentation in the number of cities. To elucidate, a TSP encompassing n cities entails considering 
1/2*(n−1)! feasible routes. Taking an illustrative example where n = 16, the total number of potential routes 
amounts to an overwhelming 6.54 ×  1011. This vast array of route permutations renders the TSP exceptionally 
computation-intensive. In light of this, when considering the VRP, which essentially comprises multiple inter-
twined TSPs, the computational complexity is magnified substantially.

Table 7.  Results of different algorithms on multi-model functions.

F

hGWOA GWO WOA DA ALO

Ave Std Ave Std Ave Std Ave Std Ave Std

F8 − 1.04E+04 1.89E+03 − 1.04E+04 1.67E+03 − 1.00E+04 1.78E+03 − 2.82E+03 3.59E+02 − 2.26E+03 4.83E+02

F9 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 2.49E+01 1.19E+01 2.04E+01 1.03E+01

F10 3.61E−15 1.50E−15 5.63E−15 2.95E−15 4.68E−15 3.03E−15 3.22E+00 1.18E+00 5.97E−01 8.45E−01

F11 3.14E−03 4.83E−03 7.82E−03 4.21E−02 1.40E−02 5.31E−02 5.65E−01 3.76E−01 2.18E−01 1.03E−01

F12 3.78E−02 1.78E−02 3.49E−02 1.76E−02 1.80E−01 8.18E−01 1.77E+00 1.56E+00 3.41E+00 3.31E+00

F13 1.34E−02 4.27E−02 6.84E−01 3.05E−01 6.89E−01 2.50E−01 2.12E+00 2.81E+00 3.56E−03 7.34E−03

Table 8.  Results of different algorithms on fixed functions.

F

hGWOA GWO WOA DA ALO

ave std ave std ave std ave std ave std

F14 9.98E−01 1.08E−10 3.36E+00 3.09E+00 2.96E+00 3.21E+00 1.26E+00 6.74E−01 3.78E+00 3.09E+00

F15 4.02E−04 3.64E−05 7.86E−04 4.80E−04 7.94E−04 5.41E−04 4.06E−03 6.39E−03 4.00E−03 6.51E−03

F16 -1.03E+00 1.03E−08 − 1.03E+00 5.64E−09 − 1.03E+00 2.46E−09 − 1.03E+00 1.10E−06 − 1.03E+00 1.85E−13

F17 3.98E−01 7.95E−08 3.98E−01 3.39E−05 3.98E−01 2.46E−05 3.98E−01 1.80E−08 3.98E−01 1.14E−13

F18 3.00E+00 6.42E−07 3.00E+00 1.04E−04 3.00E+00 1.10E−03 3.00E+00 1.68E−05 3.00E+00 5.83E−13

F19 − 3.86E+00 4.86E−06 − 3.85E+00 2.59E−02 − 3.85E+00 1.03E−02 − 3.86E+00 9.95E−04 − 3.86E+00 1.27E−12

F20 − 3.32E+00 4.04E−06 − 3.26E+00 9.58E−02 − 3.22E+00 1.60E−01 − 3.22E+00 8.84E−02 − 3.28E+00 5.68E−02

F21 − 8.28E+00 2.43E+00 − 8.18E+00 2.80E+00 − 7.53E+00 2.88E+00 − 6.94E+00 2.43E+00 − 5.97E+00 3.31E+00

F22 − 8.43E+00 2.55E+00 − 7.32E+00 3.12E+00 − 7.26E+00 3.22E+00 − 7.79E+00 2.80E+00 − 5.52E+00 3.10E+00

F23 − 7.99E+00 2.88E+00 − 6.89E+00 3.25E+00 − 6.13E+00 3.21E+00 − 7.06E+00 3.16E+00 − 5.74E+00 3.28E+00
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Case study 1
In the first case study addressing the CVRP challenge, the setting encompasses a central warehouse tasked with 
catering to eight distinct customers. This operation is facilitated by two delivery trucks, each possessing a capacity 
to transport eight vehicles. The Euclidean distances, along with the specific delivery requirements pertinent to 
each customer, are tabulated in Table 11. The primary objective of this case study revolves around minimizing 
the cumulative distance traversed by the two delivery trucks, ensuring that all constraints intrinsic to the VRP 
are met in the process.

Table 12 delineates the results derived from a diverse array of algorithms applied to the given problem. This 
includes methodologies as proposed in  reference60, complemented by outcomes from distinct algorithms like DA, 
GWO, ALO, and WOA. Notably, the mean percentage deviation (%dev) for the hGWOA stands out as superior. It 
registers a more favorable performance than WOA (0.44%), DA (1.51%), ALO (2.14%), GWO (1.44%), MHPSO 
(1.74%), DPGA (2.73%), and SGA (4.03%).

While all considered algorithms yielded commendable results, the average outcomes from hGWOA sur-
passed the rest, underscoring its superior stability in both the mining and exploration phases. Complementing 
these observations, Fig. 9 visually portrays hGWOA’s advantageous data distribution relative to its counterparts. 
Among the results, the pinnacle solution achieved a commendable total distance of 67.5 units. Leveraging the 
hGWOA algorithm, the navigation routes for the two vehicles were computed, the details of which are tabulated 
in Table 13. A more granular graphical representation of these routes can be viewed in Fig. 10.

For implementation, the chosen algorithms were rendered in Java. Subsequent integrations and tests were con-
ducted on a personal computer equipped with an Intel(R) Core(TM) Processor I7-1165G7 clocked at 2.80 GHz. 

Figure 6.  Convergence behavior of GWO, WOA, ALO, DA, and hGWOA for unimodal test functions.
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Each algorithm underwent 20 runs, employing 20 distinct exploration strategies and encapsulating 50 iterations 
for all the CVRP scenarios.

Case study 2
In the second case study addressing the CVRP problem, the intrinsic complexity of the TSP issue is addressed by 
leveraging data from Azad’s40 study. This research focuses on a hub-and-spoke delivery system serving 25 cement 
customers. A pioneering approach to the CVRP is proposed, implementing a genetic algorithm technique and 
deploying a fleet of five delivery trucks, each having a capacity of 1500 bags. Using the coordinate data provided 
in Table 14, we derive matrices that represent distances among customers and their specific demands. These 
matrices are presented in Tables 15 and 16, respectively. The primary aim is to optimize delivery routes for the 
25 customers with a fleet of five trucks, thereby minimizing the total distance traveled while still adhering to the 
fundamental constraints inherent in the CVRP.

Table 17 presents the results from various algorithm implementations. Notably, the %dev best solution 
achieved by the hGWOA algorithm surpasses that of other optimization techniques. It outperforms WOA by 
6%, DA by 16%, ALO by 26%, GWO by 4%, and GA by 31%. Moreover, Fig. 11 provides a visual representation 
that highlights the superior data distribution of hGWOA compared to other algorithms. This study’s findings 
accentuate the efficacy of the hGWOA algorithm in obtaining the optimal solution, with a total distance of 
571.24 units. Table 18 details the delivery routes for the five trucks as determined by hGWOA, and a graphical 
representation is provided in Fig. 12.

For experimental implementation, the algorithms were coded in Java and executed on a personal computer 
powered by an Intel(R) Core(TM) i7-1165G7 processor with a clock speed of 2.80 GHz. Each algorithm was 
tested over 20 runs, employing 60 search agents, for a total of 200 iterations in all CVRP scenarios.

Real CVRP in Viet Nam
In the real case study addressing the CVRP issue, authentic delivery data from a cement supplier servicing 30 
customers was scrutinized within a shaft-and-spokes distribution framework. This data was pivotal in tackling the 
intricacies associated with the TSP challenge. The supplier operated with a fleet of six delivery trucks, each with 
a capacity of 700 bags. Utilizing the given distance coordinates, we derived a distance matrix for each customer, 
outlining their specific demands, as illustrated in Tables 19 and 20. The primary goal was to efficiently cater to 
all 30 customers using the six trucks, minimizing the total travel distance, all while adhering to the parameters 
set by the CVRP.

Figure 7.  Convergence behavior of GWO, WOA, ALO, DA, and hGWOA for multi-modal functions.
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Table 21 consolidates the performance metrics of the different algorithms tested. Significantly, the hGWOA 
algorithm emerged as the frontrunner, with its best %dev solution outperforming other optimization techniques: 
WOA by 20.2%, DA by 31.8%, ALO by 36.6%, and GWO by 19.5%. Figure 13 provides a visual comparison, 
highlighting the superior data distribution of hGWOA compared to other algorithms. This analysis reaffirmed 
the effectiveness of the hGWOA algorithm in optimizing delivery routes, achieving a cumulative distance of 
791.24 units. The delivery routes for the six trucks, as determined by hGWOA, are delineated in Table 22 and 
further illustrated in Fig. 14.

Figure 8.  Convergence behavior of hGWOA, GWO, DA, ALO, WOA for composite functions.
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For the computational studies, algorithms were developed in Java and executed on a personal computer 
powered by an Intel(R) Core(TM) i7-1165G7 processor operating at 2.80 GHz. Each algorithm was subjected to 
20 runs, using 60 search agents, and covered 200 iterations for every CVRP test scenario.

Conclusion
This study unveils a novel approach to global optimization by merging the WOA method with GWO techniques. 
This strategic combination aims to seamlessly merge the exploratory capabilities of WOA with the search space 
exploitation proficiencies inherent to GWO, targeting optimal outcomes. The resulting hybrid algorithm, termed 
hGWOA, has been meticulously assessed using both classical test functions and CEC2017 benchmark test func-
tions. The empirical results underscore hGWOA’s marked advantage over both GWO and WOA in achieving 
global optimization.

Additionally, this research employs the innovative hGWOA algorithm to tackle the Routing Logistics Chal-
lenge faced by limited-capacity cement trucks, referred to as the CVRP. Through computational evaluations across 
various contexts—namely, two unique case studies and a practical project—it is evident that hGWOA excels 
in crafting high-quality solutions to CVRP optimization issues. Based on these findings, hGWOA emerges as a 
promising meta-heuristic approach, suitable not only for the CVRP dilemma but also for a spectrum of related 
optimization challenges.

Directions for future research
This study emphasizes the application of the hGWOA method specifically to address CVRP issues. However, 
in real-world materials transportation scenarios, VRP challenges often encompass a myriad of factors, includ-
ing delivery timelines, carbon emissions, fuel consumption metrics, and prevailing road traffic conditions. It is 
therefore anticipated that subsequent research endeavors will deploy the hGWOA methodology to grapple with 
intricate and multifaceted VRP conundrums that simultaneously align with customer stipulations.

Upon comparative evaluation with established swarm-based optimization algorithms, specifically DA, ALO, 
WOA, and GWO, the hGWOA paradigm manifests a commendable balance between exploration and exploita-
tion capacities. Moreover, it showcases competitive prowess across diverse magnitudes of the CVRP. A limita-
tion, however, arises when scaling to larger problem sets, wherein hGWOA occasionally grapples with local 

Table 9.  CEC2017 benchmark functions.

Type Function Name n Range fmin

Unimodal F1 Shifted and Rotated Bent Cigar Function 30 [− 100, 100] 100

Unimodal F2 Shifted and Rotated Zakharov Function 30 [− 100, 100] 200

Multimodal F3 Shifted and Rotated Rosenbrock’s Function 30 [− 100, 100] 300

Multimodal F4 Shifted and Rotated Rastrigin’s Function 30 [− 100, 100] 400

Multimodal F5 Shifted and Rotated Expanded Scaffer’s F7 Function 30 [− 100, 100] 500

Multimodal F6 Shifted and Rotated Lunacek Bi_Rastrigin Function 30 [− 100, 100] 600

Multimodal F7 Shifted and Rotated Non-Continuous Rastrigin’s Function 30 [− 100, 100] 700

Multimodal F8 Shifted and Rotated Levy Function 30 [− 100, 100] 800

Multimodal F9 Shifted and Rotated Schwefel’s Function 30 [− 100, 100] 900

Hybrid F10 Hybrid Function 1 (N = 3) 30 [− 100, 100] 1000

Hybrid F11 Hybrid Function 2 (N = 3) 30 [− 100, 100] 1100

Hybrid F12 Hybrid Function 3 (N = 3) 30 [− 100, 100] 1200

Hybrid F13 Hybrid Function 4 (N = 4) 30 [− 100, 100] 1300

Hybrid F14 Hybrid Function 5 (N = 4) 30 [− 100, 100] 1400

Hybrid F15 Hybrid Function 6 (N = 4) 30 [− 100, 100] 1500

Hybrid F16 Hybrid Function 7 (N = 5) 30 [− 100, 100] 1600

Hybrid F17 Hybrid Function 8 (N = 5) 30 [− 100, 100] 1700

Hybrid F18 Hybrid Function 9 (N = 5) 30 [− 100, 100] 1800

Hybrid F19 Hybrid Function 10 (N = 6) 30 [− 100, 100] 1900

Composition F20 Composition Function 1 (N = 3) 30 [− 100, 100] 2000

Composition F21 Composition Function 2 (N = 3) 30 [− 100, 100] 2100

Composition F22 Composition Function 3 (N = 4) 30 [− 100, 100] 2200

Composition F23 Composition Function 4 (N = 4) 30 [− 100, 100] 2300

Composition F24 Composition Function 5 (N = 5) 30 [− 100, 100] 2400

Composition F25 Composition Function 6 (N = 5) 30 [− 100, 100] 2500

Composition F26 Composition Function 7 (N = 6) 30 [− 100, 100] 2600

Composition F27 Composition Function 8 (N = 6) 30 [− 100, 100] 2700

Composition F28 Composition Function 9 (N = 3) 30 [− 100, 100] 2800

Composition F29 Composition Function 10 (N = 3) 30 [− 100, 100] 2900
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optimization pitfalls. As a forward-looking initiative, forthcoming research aims to concoct a composite model 
wherein hGWOA operates synergistically with ancillary techniques. These might encompass adaptive weighting 
customizations, Yin-Yang-centric learning mechanisms, mutation procedures, and crosstalk interventions. Such 
an integrative approach aims to bolster hGWOA’s effectiveness in navigating optimization challenges, particularly 
within transportation management, and extending to broader technical spheres.

The hybrid model hGWOA may converge slowly, especially when dealing with high-dimensional or complex 
optimization problems. Employ techniques such as adaptive parameter settings, dynamic population sizing, or 
hybridization with other optimization algorithms to accelerate convergence and improve efficiency. In addition, 
the performance of this model may deteriorate when applied to extremely large-scale optimization problems. 

Table 10.  Results of different algorithms on classical benchmark test functions.

Alg./Func.

hGWOA GWO WOA DA ALO

Ave Std Ave Std Ave Std Ave Std Ave Std

f1 1.515E+08 6.713E+07 1.720E+09 8.722E+08 1.475E+10 5.256E+09 3.144E+10 3.144E+10 8.175E+03 5.323E+03

f2 1.097E+03 4.208E+02 3.880E+03 3.985E+03 3.864E+04 1.097E+03 6.167E+04 6.167E+04 5.627E+03 3.830E+03

f3 3.922E+02 2.526E+01 4.336E+02 5.024E+01 1.593E+03 3.922E+02 5.151E+03 5.151E+03 4.486E+02 5.209E+01

f4 9.315E+02 1.090E+02 1.499E+03 6.969E+02 2.492E+04 9.315E+02 3.856E+04 3.856E+04 7.350E+02 1.290E+02

f5 5.000E+02 1.288E−05 5.000E+02 7.565E−03 5.000E+02 5.000E+02 5.000E+02 5.000E+02 5.000E+02 1.762E−03

f6 8.457E+03 2.256E+03 1.898E+04 1.034E+04 1.171E+04 8.457E+03 1.840E+04 1.840E+04 5.323E+03 4.152E+03

f7 7.000E+02 2.291E−02 7.008E+02 6.523E−01 7.006E+02 7.000E+02 7.009E+02 7.009E+02 7.002E+02 1.663E−01

f8 8.011E+02 3.374E−01 8.029E+02 1.490E+00 8.241E+02 8.011E+02 8.262E+02 8.262E+02 8.091E+02 4.710E+00

f9 3.570E+03 3.551E+02 5.833E+03 2.075E+03 6.236E+03 3.570E+03 6.439E+03 6.439E+03 5.129E+03 6.655E+02

f10 9.568E+04 1.273E+04 1.271E+05 2.909E+04 2.295E+05 9.568E+04 1.901E+05 1.901E+05 1.141E+05 4.112E+04

f11 9.078E+06 4.968E+06 3.155E+07 2.287E+07 3.010E+08 9.078E+06 9.471E+08 9.471E+08 2.347E+07 1.887E+07

f12 9.239E+05 4.007E+05 3.497E+06 6.772E+06 1.181E+08 9.239E+05 1.427E+09 1.427E+09 1.577E+06 5.732E+05

f13 1.605E+05 3.738E+04 4.137E+05 3.760E+05 1.738E+06 1.605E+05 2.910E+05 2.910E+05 1.462E+06 1.562E+06

f14 1.622E+05 3.704E+04 4.534E+05 4.122E+05 3.363E+07 1.622E+05 1.492E+08 1.492E+08 3.904E+05 1.022E+05

f15 4.441E+04 1.133E+04 9.209E+05 1.349E+06 1.925E+06 4.441E+04 4.886E+05 4.886E+05 7.246E+04 5.953E+04

f16 4.149E+04 8.825E+03 6.391E+04 2.271E+04 7.823E+04 4.149E+04 5.645E+04 5.645E+04 4.391E+04 2.319E+04

f17 7.275E+04 1.301E+04 2.106E+05 3.155E+05 1.022E+05 7.275E+04 7.601E+04 7.601E+04 1.329E+05 4.026E+04

f18 7.048E+04 2.013E+04 1.714E+08 8.640E+08 1.293E+09 7.048E+04 7.308E+09 7.308E+09 7.753E+04 2.345E+04

f19 2.221E+03 1.296E+02 2.490E+03 2.389E+02 9.686E + 03 2.221E+03 7.480E+03 7.480E+03 5.070E+03 1.213E+03

f20 2.690E+03 1.600E+02 3.393E+03 6.967E+02 1.358E+04 2.690E+03 2.706E+04 2.706E+04 2.506E+03 3.148E+02

f21 2.279E+03 5.657E+00 2.291E+03 1.172E+01 3.610E+03 2.279E+03 3.857E+03 3.857E+03 2.440E+03 5.320E+01

f22 3.411E+03 3.658E+02 5.009E+03 1.623E+03 2.220E+04 3.411E+03 3.568E+04 3.568E+04 2.849E+03 9.544E+02

f23 2.872E+03 1.669E+02 3.794E+03 1.137E+03 1.795E+04 2.872E+03 2.434E+04 2.434E+04 2.517E+03 8.165E+01

f24 2.861E+03 1.255E+01 2.907E+03 3.988E+01 3.351E+03 2.861E+03 4.526E+03 4.526E+03 2.949E+03 5.562E+01

f25 3.355E+03 8.253E+00 3.388E+03 3.446E+01 4.213E+03 3.355E+03 4.085E+03 4.085E+03 3.439E+03 6.695E+01

f26 3.121E+03 5.662E+00 3.133E+03 1.672E+01 3.713E+03 3.121E+03 3.418E+03 3.418E+03 3.294E+03 7.807E+01

f27 3.092E+03 5.654E+01 3.144E+03 6.524E+01 3.498E+03 3.092E+03 4.296E+03 4.296E+03 3.152E+03 7.216E+01

f28 1.653E+05 9.541E+04 1.642E+07 2.428E+07 3.969E+08 1.653E+05 4.643E+08 4.643E+08 2.785E+06 6.781E+06

f29 4.587E+05 2.153E+05 2.016E+07 3.351E+07 5.015E+08 4.587E+05 2.829E+09 2.829E+09 3.876E+07 7.734E+07

Table 11.  Customer Euclidean distance and delivery requirements of 8-customer  problem60.

Node 0 1 2 3 4 5 6 7 8 Demand

0 0 4 6 7.5 9 20 10 16 8

1 4 0 6.5 4 10 5 7.5 11 10 1

2 6 6.5 0 7.5 10 10 7.5 7.5 7.5 2

3 7.5 4 7.5 0 10 5 9 9 15 1

4 9 10 10 10 0 10 7.5 7.5 10 2

5 20 5 10 5 10 0 7 9 7.5 1

6 10 7.5 7.5 9 7.5 7 0 7 10 4

7 16 11 7.5 6 7.5 9 7 0 10 2

8 8 10 7.5 15 10 7.5 10 10 0 2
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Table 12.  Results of different algorithms on 8-customer problem.

Algorithm Scattering of optimal solutions Max Min Mean Deviation ratio of the mean best solution

hGWOA

67.5 68 67.5 67.5 67.5

68 67.5 67.700 0.00%
68 67.5 67.5 67.5 67.5

68 68 68 68 68

68 67.5 67.5 67.5 67.5

WOA

68.5 68 69 68 68

69 67.5 68.000 0.44%
68 67.5 67.5 67.5 68

69 68 67.5 68.5 67.5

68 68.5 68 67.5 67.5

DA

71.5 67.5 71.5 68 67.5

71.5 67.5 68.725 1.51%
69 70 70.5 68 69

70 67.5 67.5 69 68

67.5 68 68 67.5 69

ALO

71.5 68 71.5 68 67.5

71.5 67.5 69.150 2.14%
69 70 70.5 68 69

70 68 71 69 68

71.5 68 68 67.5 69

MHPSO60

69.5 67.5 69 69 70

70 67.5 68.875 1.74%
69.5 70 69 67.5 67.5

69 69.5 69 70 67.5

70 69 67.5 70 67.5

GWO

70 68.5 69 69 69

70 67.5 68.675 1.44%
68 69 67.5 70 68.5

68.5 68.5 67.5 68 69.5

68 67.5 69.5 68.5 69.5

DPGA60

70 69 67.5 71 69

72 67.5 69.550 2.73%
70.5 72 67.5 71.5 69

67.5 69 71 70 67.5

70.5 69 69.5 71 69

SGA60

69 72 73.5 69 70

75.5 67.5 70.425 4.03%
71 67.5 69 69 75.5

70 69.5 69 73 69

74 70 69.5 69 70

Figure 9.  Boxplot of hGWOA, WOA, DA, ALO, MHPSO, DPGA, SGA and GWO on 8-customer problem.
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Table 13.  Routing of vehicles and distance using hGWOA algorithm on 8-customer problem.

Routes of the vehicles on 8-customer problem Distance

Route 1 0- > Customer 6- > Customer 7- > Customer 4- > 0 33.5

Route 2 0- > Customer 1- > Customer 3- > Customer 5- > Customer 8- > Customer 2- > 0 34

Total distance: 67.5 units

Figure 10.  Best solution for the CVRP of 8-customer problem.

Table 14.  The coordinates of 25 customers and their respective demands per  customer40.

Customer no. X Y Demand

1 0.00 0.00 0.00

2 24.830 21.72 1000.0

3 32.610 15.00 400.0

4 53.120 21.720 150.0

5 26.190 − 17.850 50.0

6 3.002540 − 9.852650 300.0

7 9.9800730 13.76220 100.0

8 13.4230 12.5850 200.0

9 14.2290 15.44455 50

10 2.343654 15.92851 250

11 8.081236 14.50013 75

12 12.45585 − 11.2311 250

13 5.425 14.412 500

14 25.312 46.223 150

15 21.312 46.223 50

16 5.6 10.044 200

17 32.01 − 38.67 300

18 − 0.131 − 38.67 150

19 20.02 6.315 250

20 − 39.5217 − 38.67 300

21 19.49 23.456 350

22 56 -43.97 150

23 36 45 180

24 39 26.408 350

25 26.905 26.4082 250

26 15 15.95 275



20

Vol:.(1234567890)

Scientific Reports |          (2024) 14:793  | https://doi.org/10.1038/s41598-024-51359-2

www.nature.com/scientificreports/

Hence, future research could consider implementing problem-specific adaptations, parallel processing, or divide-
and-conquer strategies to make hGWOA more suitable for handling larger problem instances.

Table 15.  Customer Euclidean distance and delivery requirements of 25-customer problem.

Node 1 2 3 4 5 6 7 8 9 10 11 12 Demand

1 0 33.0 35.9 57.4 31.7 10.3 17.0 18.4 21.0 16.1 16.6 16.8 1000

2 33.0 0 10.3 28.3 39.6 38.4 16.8 14.6 12.3 23.2 18.2 35.2 400

3 35.9 10.3 0 21.6 33.5 38.7 22.7 19.3 18.4 30.3 24.5 33.1 150

4 57.4 28.3 21.6 0 47.9 59.2 43.9 40.7 39.4 51.1 45.6 52.3 50

5 31.7 39.6 33.5 47.9 0 24.5 35.5 33.0 35.4 41.3 37.1 15.2 300

6 10.3 38.4 38.7 59.2 24.5 0 24.6 24.7 27.7 25.8 24.9 9.6 100

7 17.0 16.8 22.7 43.9 35.5 24.6 0 3.6 4.6 7.9 2.0 25.1 200

8 18.4 14.6 19.3 40.7 33.0 24.7 3.6 0 3.0 11.6 5.7 23.8 50

9 21.0 12.3 18.4 39.4 35.4 27.7 4.6 3.0 0 11.9 6.2 26.7 250

10 16.1 23.2 30.3 51.1 41.3 25.8 7.9 11.6 11.9 0 5.9 29.0 75

11 16.6 18.2 24.5 45.6 37.1 24.9 2.0 5.7 6.2 5.9 0 26.1 250

12 16.8 35.2 33.1 52.3 15.2 9.6 25.1 23.8 26.7 29.0 26.1 0 500

13 15.4 20.7 27.2 48.3 38.4 24.4 4.6 8.2 8.9 3.4 2.7 26.6 150

14 52.7 24.5 32.1 37.1 64.1 60.4 35.9 35.7 32.7 38.0 36.1 58.9 50

15 50.9 24.8 33.2 40.2 64.3 59.0 34.4 34.6 31.6 35.7 34.4 58.1 200

16 11.5 22.5 27.5 48.9 34.7 20.1 5.8 8.2 10.2 6.7 5.1 22.4 300

17 50.2 60.8 53.7 64.0 21.6 40.9 56.9 54.5 57.0 62.1 58.3 33.7 150

18 38.7 65.3 62.9 80.5 33.6 29.0 53.4 53.0 56.0 54.7 53.8 30.2 250

19 21.0 16.1 15.3 36.5 24.9 23.5 12.5 9.1 10.8 20.1 14.5 19.1 300

20 55.3 88.3 89.9 111.0 68.9 51.4 72.1 73.7 76.3 68.8 71.4 58.8 350

21 30.5 5.6 15.6 33.7 41.8 37.2 13.6 12.4 9.6 18.7 14.5 35.4 150

22 71.2 72.7 63.4 65.8 39.6 63.0 73.8 70.8 72.6 80.4 75.6 54.5 180

23 57.6 25.8 30.2 28.9 63.6 64.0 40.7 39.5 36.7 44.5 41.3 61.0 350

24 47.1 14.9 13.1 14.9 46.1 51.1 31.7 29.1 27.1 38.1 33.1 46.1 250

25 37.7 5.1 12.8 26.6 44.3 43.4 21.1 19.3 16.8 26.7 22.3 40.3 275

26 21.9 11.4 17.6 38.6 35.6 28.5 5.5 3.7 0.9 12.7 7.1 27.3 1000
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Table 16.  Customer Euclidean distance and delivery requirements of 25-customer problem (continued).

Node 13 14 15 16 17 18 19 20 21 22 23 24 25 26 Demand

1 15.4 52.7 50.9 11.5 50.2 38.7 21.0 55.3 30.5 71.2 57.6 47.1 37.7 21.9 1000

2 20.7 24.5 24.8 22.5 60.8 65.3 16.1 88.3 5.6 72.7 25.8 14.9 5.1 11.4 400

3 27.2 32.1 33.2 27.5 53.7 62.9 15.3 89.9 15.6 63.4 30.2 13.1 12.8 17.6 150

4 48.3 37.1 40.2 48.9 64.0 80.5 36.5 111.0 33.7 65.8 28.9 14.9 26.6 38.6 50

5 38.4 64.1 64.3 34.7 21.6 33.6 24.9 68.9 41.8 39.6 63.6 46.1 44.3 35.6 300

6 24.4 60.4 59.0 20.1 40.9 29.0 23.5 51.4 37.2 63.0 64.0 51.1 43.4 28.5 100

7 4.6 35.9 34.4 5.8 56.9 53.4 12.5 72.1 13.6 73.8 40.7 31.7 21.1 5.5 200

8 8.2 35.7 34.6 8.2 54.5 53.0 9.1 73.7 12.4 70.8 39.5 29.1 19.3 3.7 50

9 8.9 32.7 31.6 10.2 57.0 56.0 10.8 76.3 9.6 72.6 36.7 27.1 16.8 0.9 250

10 3.4 38.0 35.7 6.7 62.1 54.7 20.1 68.8 18.7 80.4 44.5 38.1 26.7 12.7 75

11 2.7 36.1 34.4 5.1 58.3 53.8 14.5 71.4 14.5 75.6 41.3 33.1 22.3 7.1 250

12 26.6 58.9 58.1 22.4 33.7 30.2 19.1 58.8 35.4 54.5 61.0 46.1 40.3 27.3 500

13 0 37.5 35.6 4.4 59.4 53.4 16.7 69.6 16.7 77.2 43.2 35.7 24.6 9.7 150

14 37.5 0 4.0 41.2 85.2 88.6 40.3 107.0 23.5 95.3 10.8 24.1 19.9 32.0 50

15 35.6 4.0 0 39.4 85.6 87.6 39.9 104.0 22.8 96.6 14.7 26.6 20.6 30.9 200

16 4.4 41.2 39.4 0 55.4 49.0 14.9 66.4 19.3 73.9 46.3 37.2 26.9 11.1 300

17 59.4 85.2 85.6 55.4 0 32.1 46.6 71.5 63.4 24.6 83.8 65.5 65.3 57.2 150

18 53.4 88.6 87.6 49.0 32.1 0 49.3 39.4 65.2 56.4 91.1 75.9 70.5 56.7 250

19 16.7 40.3 39.9 14.9 46.6 49.3 0 74.6 17.1 61.8 41.9 27.6 21.2 10.9 300

20 69.6 107.0 104.0 66.4 71.5 39.4 74.6 0 85.7 95.7 113.0 102.0 93.0 77.2 350

21 16.7 23.5 22.8 19.3 63.4 65.2 17.1 85.7 0 76.7 27.1 19.7 8.0 8.8 150

22 77.2 95.3 96.6 73.9 24.6 56.4 61.8 95.7 76.7 0 91.2 72.4 76.2 72.6 180

23 43.2 10.8 14.7 46.3 83.8 91.1 41.9 113.0 27.1 91.2 0 18.8 20.7 35.8 350

24 35.7 24.1 26.6 37.2 65.5 75.9 27.6 102.0 19.7 72.4 18.8 0 12.1 26.2 250

25 24.6 19.9 20.6 26.9 65.3 70.5 21.2 93.0 8.0 76.2 20.7 12.1 0 15.8 275

26 9.7 32.0 30.9 11.1 57.2 56.7 10.9 77.2 8.8 72.6 35.8 26.2 15.8 0 1000

Table 17.  Results of different algorithms on 25-customer problem.

Algorithm Scattering of optimal solutions Max Min Mean Deviation ratio of the best solution

hGWOA

594.17 574.85 628.94 611.93 613.86

632.01 571.24 596.62 0%
578.03 574.85 613.37 631.29 579.05

579.81 594.89 594.66 571.24 600.56

586.41 602.19 632.01 598.34 604.63

WOA

658.15 612.47 673.42 649.31 657.48

733.84 603.02 657.82 6%
656.99 606.54 615.09 683.35 603.02

700.35 733.84 636.72 622.83 697.92

687.39 689.73 706.03 606.32 669.25

DA

796.06 672.63 748.23 826.09 704.53

826.09 663.92 761.16 16%
802.63 788.09 663.92 762.49 735.05

784.75 785.36 760.21 740.96 787.83

708.49 796.06 762.10 743.28 688.35

ALO

743.07 768.87 752.43 725.64 796.06

826.37 719.77 778.24 26%
746.15 784.73 795.13 719.77 754.84

786.55 826.37 750.95 819.91 772.41

816.34 784.41 798.52 749.69 784.07

GWO

743.07 679.59 630.99 712.28 638.03

743.07 595.48 677.07 4%
648.24 689.98 663.92 640.05 674.55

656.40 684.28 639.23 684.51 651.81

721.52 702.27 714.97 595.48 694.11

GA40 NA NA NA NA NA 892.47 747.70 NA 31%
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Figure 11.  Boxplot of hGWOA, WOA, DA, ALO and GWO on 25-customer problem.

Table 18.  Routing of vehicles and distance using hGWOA algorithm on 25-customer problem.

Routes of the vehicles on 25-customer problem Distance

Route 1 0- > Customer 24- > Customer 23- > Customer 3- > Customer 22- > Customer 13- > Customer 14- > Customer 7- > 0 161.28

Route 2 0- > Customer 18- > Customer 2- > Customer 25- > Customer 8- > Customer 6- > Customer 10- > Customer 9- > 0 83.46

Route 3 0- > Customer 12- > Customer 15- > 0 31.27

Route 4 0- > Customer 1- > Customer 20- > 0 69.1

Route 5 0- > Customer 19- > Customer 17- > Customer 16- > Customer 21- > Customer 4- > Customer 11- > Customer 5- > 0 226.13

Total distance: 571.24 units



23

Vol.:(0123456789)

Scientific Reports |          (2024) 14:793  | https://doi.org/10.1038/s41598-024-51359-2

www.nature.com/scientificreports/

Figure 12.  Best solution for the CVRP of 25-customer problem.
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Table 19.  Customer Euclidean distance and delivery requirements of 30-customer problem.

Node 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 Demand

0 0 67.2 53.9 33.5 15.0 50.3 51.0 46.0 40.5 12.5 47.9 61.1 24.6 52.5 42.0 43.4 45.2 0

1 67.2 0 121.1 34.6 64.5 115.8 95.9 73.6 48.0 57.6 50.0 84.9 91.0 70.4 31.4 110.3 55.4 170

2 53.9 121.1 0 87.0 60.2 17.4 61.2 76.8 87.6 64.2 92.7 85.8 31.1 86.1 94.2 12.9 87.6 40

3 33.5 34.6 87.0 0 34.7 81.2 65.2 46.6 34.1 23.1 30.4 61.0 56.6 47.2 11.3 75.9 32.6 50

4 15.0 64.5 60.2 34.7 0 60.5 66.0 59.6 28.1 22.4 57.1 75.1 35.3 65.2 45.4 52.0 55.7 100

5 50.3 115.8 17.4 81.2 60.5 0 44.8 62.9 88.6 58.2 81.5 70.2 25.7 72.2 86.7 10.5 75.9 20

6 51.0 96.0 61.2 65.2 66.0 44.8 0 24.8 88.9 48.5 49.3 26.2 42.0 32.7 64.6 49.3 43.1 130

7 46.0 73.6 76.8 46.6 59.6 62.9 24.8 0 76.2 37.8 24.9 15.6 49.8 9.3 43.0 64.0 18.8 190

8 40.5 48.0 87.6 34.1 28.1 88.6 88.9 76.2 0 40.5 64.3 91.6 63.3 79.0 44.5 80.0 65.6 170

9 12.5 57.6 64.2 23.1 22.4 58.2 48.5 37.8 40.5 0 35.8 53.3 33.5 42.8 30.2 52.9 33.6 50

10 47.9 50.0 92.7 30.4 57.1 81.5 49.3 24.9 64.3 35.8 0 34.9 62.3 20.4 22.2 80.0 6.3 120

11 61.1 84.9 85.8 61.0 75.1 70.2 26.2 15.6 91.6 53.3 34.9 0 61.8 14.5 55.8 73.3 29.8 70

12 24.6 91.0 31.1 56.6 35.3 25.7 42.0 49.8 63.3 33.5 62.3 61.8 0 58.6 63.2 19.3 57.7 140

13 52.5 70.4 86.1 47.2 65.2 72.2 32.7 9.3 79.0 42.8 20.4 14.5 58.6 0 41.4 73.3 15.4 70

14 42.0 31.4 94.2 11.3 45.4 86.7 64.6 43.0 44.5 30.2 22.2 55.8 63.2 41.4 0 82.4 26.1 90

15 43.4 110.3 12.9 75.9 52.0 10.5 49.3 64.0 80.0 52.9 80.0 73.3 19.3 73.3 82.4 0 74.8 100

16 45.2 55.4 87.6 32.6 55.7 75.9 43.1 18.8 65.6 33.6 6.3 29.8 57.7 15.4 26.1 74.8 0 170

17 56.9 10.4 110.7 24.6 54.1 105.7 87.8 66.5 39.4 47.5 44.3 78.9 80.8 64.3 23.5 100.0 49.0 200

18 54.0 43.4 101.0 30.7 61.5 90.3 58.4 33.9 64.6 41.5 9.2 42.3 70.3 28.3 20.3 88.4 15.5 180

19 36.1 35.3 88.8 17.1 29.8 86.3 78.2 62.2 17.6 30.7 47.5 77.1 60.6 63.7 27.0 79.2 49.5 140

20 29.0 47.5 78.7 15.9 37.0 70.3 49.5 30.9 46.5 16.5 20.2 45.7 47.6 32.6 16.6 66.6 19.6 80

21 53.0 26.7 104.8 21.7 56.3 96.5 70.9 47.6 52.5 41.0 23.4 58.3 73.7 43.8 11.1 92.8 29.0 200

22 33.6 64.0 72.3 34.1 46.5 60.6 32.0 13.7 62.6 24.3 20.9 29.3 42.6 18.9 32.6 59.5 15.4 120

23 44.5 70.9 78.3 53.1 29.5 83.7 95.5 88.2 22.9 50.5 81.5 103.8 61.1 92.9 64.3 73.8 81.5 80

24 34.1 86.4 51.8 59.0 24.5 59.1 80.0 79.6 42.0 45.2 80.9 94.4 40.0 86.5 69.9 48.8 78.8 190

25 36.6 94.1 43.6 65.0 30.4 52.5 78.0 80.5 50.9 48.7 84.5 94.6 36.4 88.0 75.5 41.9 81.8 170

26 3.6 69.5 51.7 35.3 18.4 47.3 47.7 43.7 44.0 13.1 47.4 58.7 21.7 50.7 43.2 40.9 44.3 80

27 57.6 84.6 81.6 59.3 71.8 66.1 22.4 12.9 89.2 50.3 34.7 4.2 57.6 14.4 54.9 69.1 29.2 130

28 46.0 110.4 23.2 75.9 57.4 6.9 38.2 56.0 85.4 53.0 74.9 63.4 22.1 65.4 80.8 13.0 69.3 170

29 15.7 82.4 39.2 49.0 21.9 38.7 53.0 55.0 50.0 27.7 61.8 68.9 14.4 62.8 57.6 30.2 58.2 60

30 43.2 87.3 62.2 63.5 31.0 70.5 91.1 89.2 40.2 53.2 88.1 104.2 51.6 95.5 74.7 60.1 86.7 160
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Table 20.  Customer Euclidean distance and delivery requirements of 30-customer problem (continued).

Node 17 18 19 20 21 22 23 24 25 26 27 28 29 30 Demand

0 56.9 54.0 36.1 29.0 53.0 33.6 44.5 34.1 36.6 3.6 57.6 46.0 15.7 43.2 0

1 10.4 43.4 35.3 47.5 26.7 64.0 70.9 86.4 94.1 69.5 84.6 110.4 82.4 87.3 170

2 110.7 101.0 88.8 78.7 104.8 72.3 78.3 51.8 43.6 51.7 81.6 23.2 39.2 62.2 40

3 24.6 30.7 17.1 15.9 21.7 34.1 53.1 59.0 65.0 35.3 59.3 75.9 49.0 63.5 50

4 54.1 61.5 29.8 37.0 56.3 46.5 29.5 24.5 30.4 18.4 71.8 57.4 21.9 31.0 100

5 105.7 90.3 86.3 70.3 96.5 60.6 83.7 59.1 52.5 47.3 66.1 6.9 38.7 70.5 20

6 87.8 58.4 78.2 49.5 70.9 32.0 95.5 80.0 78.0 47.7 22.4 38.2 53.0 91.1 130

7 66.5 33.9 62.2 30.9 47.6 13.7 88.2 79.6 80.5 43.7 12.9 56.0 55.0 89.2 190

8 39.4 64.6 17.6 46.5 52.5 62.6 22.9 42.0 50.9 44.0 89.2 85.4 50.0 40.2 170

9 47.5 41.5 30.7 16.5 41.0 24.3 50.5 45.2 48.7 13.1 50.3 53.0 27.7 53.2 50

10 44.3 9.2 47.5 20.2 23.4 20.9 81.5 80.9 84.5 47.4 34.7 74.9 61.8 88.1 120

11 78.9 42.3 77.1 45.7 58.3 29.3 103.8 94.4 94.6 58.7 4.2 63.4 68.9 104.2 70

12 80.8 70.3 60.6 47.6 73.7 42.6 61.1 40.0 36.4 21.7 57.6 22.1 14.4 51.6 140

13 64.3 28.3 63.7 32.6 43.8 18.9 92.9 86.5 88.0 50.7 14.4 65.4 62.8 95.5 70

14 23.5 20.3 27.0 16.6 11.1 32.6 64.3 69.9 75.5 43.2 54.9 80.8 57.6 74.7 90

15 100.0 88.4 79.2 66.6 92.8 59.5 73.8 48.8 41.9 40.9 69.1 13.0 30.2 60.1 100

16 49.0 15.5 49.5 19.6 29.0 15.4 81.5 78.8 81.8 44.3 29.2 69.3 58.2 86.7 170

17 0 39.1 25.3 38.6 22.1 55.8 62.3 76.4 83.9 59.2 78.1 100.5 72.0 77.8 200

18 39.1 0 47.2 25.1 17.1 29.9 83.6 85.7 90.1 54.0 42.7 83.8 68.6 92.1 180

19 25.3 47.2 0 31.4 35.0 48.9 38.8 51.2 58.8 39.1 75.1 81.9 49.7 52.8 140

20 38.6 25.1 31.4 0 26.2 18.1 61.9 61.0 65.0 29.3 43.7 64.4 44.0 67.9 80

21 22.1 17.1 35.0 26.2 0 39.5 73.5 80.7 86.5 54.1 58.1 90.5 68.6 85.1 200

22 55.8 29.9 48.9 18.1 39.5 0 74.7 67.7 69.4 31.9 26.6 54.0 44.7 76.7 120

23 62.3 83.6 38.8 61.9 73.5 74.7 0 26.9 36.0 47.8 100.7 82.2 46.7 20.1 80

24 76.4 85.7 51.2 61.0 80.7 67.7 26.9 0 9.2 35.9 90.6 58.8 27.1 11.7 190

25 83.9 90.1 58.8 65.0 86.5 69.4 36.0 9.2 0 37.6 90.7 53.0 25.7 18.6 170

26 59.2 54.0 39.1 29.3 54.1 31.9 47.8 35.9 37.6 0 55.1 42.8 14.7 45.6 80

27 78.1 42.7 75.1 43.7 58.1 26.6 100.7 90.6 90.7 55.1 0 59.3 64.9 100.6 130

28 100.5 83.8 81.9 64.4 90.5 54.0 82.2 58.8 53.0 42.8 59.3 0 36.1 70.4 170

29 72.0 68.6 49.7 44.0 68.6 44.7 46.7 27.1 25.7 14.7 64.9 36.1 0 38.3 60

30 77.8 92.1 52.8 67.9 85.1 76.7 20.1 11.7 18.6 45.6 100.6 70.4 38.3 0 160
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Table 21.  Results of different algorithms on 30-customer problem.

Algorithm Scattering of optimal solutions Max Min Mean
Deviation ratio of the best 
solution

hGWOA

816.86 792.34 889.81 816.86 791.24

974.48 791.24 852.92 0.0%
896.85 841.10 909.75 911.02 864.35

832.85 898.49 974.48 814.37 795.57

824.74 901.12 791.24 895.56 799.85

WOA

973.10 950.88 1023.60 1031.80 1027.80

1092.80 950.88 1024.84 20.2%
1082.20 1086.10 1008.10 959.50 1033.37

1007.78 1064.80 1061.40 1038.20 1092.80

996.51 962.57 993.40 1049.90 1053.00

DA

1146.70 1151.60 1160.70 1190.70 1155.50

1300.90 1042.49 1192.33 31.8%
1202.50 1255.97 1263.80 1193.67 1079.10

1226.60 1288.90 1264.90 1160.60 1130.00

1250.10 1042.49 1177.80 1300.90 1204.10

ALO

1166.60 1280.20 1080.60 1225.00 1167.80

1303.20 1080.60 1184.07 36.6%
1170.41 1138.40 1214.80 1215.40 1131.40

1227.20 1303.20 1098.90 1112.30 1243.70

1197.00 1178.80 1151.80 1158.90 1218.90

GWO

1157.40 1046.10 1119.50 1103.60 945.47

1159.95 945.47 1061.99 19.5%
816.86 1128.40 1030.20 1054.40 1064.70

896.85 1141.70 1107.70 1012.10 993.68

832.85 1104.00 1041.20 1035.70 1159.95

Figure 13.  Box plot of hGWOA, WOA, DA, ALO and GWO on 30-customer problem.

Table 22.  Routing of vehicles and distance using hGWOA algorithm on 30-customer problem.

Routes of the vehicles on 30-customer problem Distance

Route 1 0- > Customer 19- > Customer 8- > Customer 23- > Customer 30- > Customer 4- > 0 142.6

Route 2 0- > Customer 24- > Customer 25- > Customer 2- > Customer 15- > Customer 5- > Customer 28- > 0 163.2

Route 3 0- > Customer 22- > Customer 16- > Customer 10- > Customer 18- > Customer 26- > 0 122.05

Route 4 0- > Customer 7- > Customer 13- > Customer 11- > Customer 27- > Customer 6- > 0 147.44

Route 5 0- > Customer 12- > Customer 29- > 0 54.64

Route 6 0- > Customer 3- > Customer 21- > Customer 1- > Customer 17- > Customer 14- > Customer 20- > Customer 9- > 0 161.31

Total distance: 791.24 units



27

Vol.:(0123456789)

Scientific Reports |          (2024) 14:793  | https://doi.org/10.1038/s41598-024-51359-2

www.nature.com/scientificreports/
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Some or all data, models, or code that support the findings of this study are available from the corresponding 
author upon reasonable request.
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