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Federated clustered multi‑domain 
learning for health monitoring
Shiyi Jiang  1,4*, Yuan Li 1,2,4, Farshad Firouzi 1,3 & Krishnendu Chakrabarty 3

Wearable Internet of Things (WIoT) and Artificial Intelligence (AI) are rapidly emerging technologies 
for healthcare. These technologies enable seamless data collection and precise analysis toward 
fast, resource-abundant, and personalized patient care. However, conventional machine learning 
workflow requires data to be transferred to the remote cloud server, which leads to significant privacy 
concerns. To tackle this problem, researchers have proposed federated learning, where end-point 
users collaboratively learn a shared model without sharing local data. However, data heterogeneity, 
i.e., variations in data distributions within a client (intra-client) or across clients (inter-client), 
degrades the performance of federated learning. Existing state-of-the-art methods mainly consider 
inter-client data heterogeneity, whereas intra-client variations have not received much attention. To 
address intra-client variations in federated learning, we propose a federated clustered multi-domain 
learning algorithm based on ClusterGAN, multi-domain learning, and graph neural networks. We 
applied the proposed algorithm to a case study on stress-level prediction, and our proposed algorithm 
outperforms two state-of-the-art methods by 4.4% in accuracy and 0.06 in the F1 score. In addition, 
we demonstrate the effectiveness of the proposed algorithm by investigating variants of its different 
modules.

Wearable Internet of Things (WIoT) and Artificial Intelligence (AI) technology have revolutionized the healthcare 
sector in recent years1. WIoT devices provide seamless data collection, and AI techniques allow automated data 
analysis, expediting medical diagnosis and treatments, thus improving the quality of patient care2. Integration 
of the edge and cloud computing with healthcare enables remote health monitoring as a complement to the 
physician-centered healthcare model3. Although WIoT and AI technology significantly improved healthcare 
data collection and analysis, existing solutions are confronted with privacy concerns4. Healthcare data is highly 
sensitive and the process of accessing and analyzing the data is rigorously regulated by policies and regulations, 
such as the Health Insurance Portability and Accountability Act (HIPAA)5. Existing work involves data transmis-
sion to the remote cloud server for centralized machine learning, which poses high risks of private information 
leakage6. Privacy-Preserving Machine Learning (PPML) has thus emerged to address this problem. Within 
PPML, researchers have proposed to combine Machine Learning (ML) with techniques such as homomorphic 
encryption7, secure multi-party computation8, differential privacy9, and, particularly, Federated Learning (FL) 
to address privacy concerns.

FL enables collaborative learning of a shared model across multiple decentralized edge devices or servers 
(i.e., clients), holding local privacy-sensitive data samples without exchanging them10–12. The deployment of FL 
to healthcare promises to allow collaboration between institutions without exchanging sensitive data13,14. For 
instance, Lee et al. learned patient similarity across hospitals via FL15. Brisimi et al. created a prediction model 
for hospitalization due to cardiac diseases under the FL setting16. Huang et al. developed a community-based 
federated machine learning algorithm to predict mortality and ICU stay time using electronic medical records17.

Limitations of previous work
Conventional FL algorithms assume that local data from each client is independent and identically distributed 
(i.i.d)18. However, in practice, a dataset is typically composed of different domains (i.e., data distributions), which 
are non-independent and not identically distributed (non-i.i.d). For instance, different styles and backgrounds 
of the images and various languages used in texts are considered distinct domains. Such domain difference, i.e., 
data heterogeneity, adversely impacts the generalization ability of the global FL model across all data, resulting in 
degradation in task performance19. Data heterogeneity occurs in the following two scenarios in the FL scheme:
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•	 Inter-client data heterogeneity: It refers to the case when there exist domain differences across clients. For 
example, as illustrated in Fig. 1a, images from different clients have diverse backgrounds, viewpoints, and 
image resolutions, indicating that they belong to different domains. Inter-client data heterogeneity deterio-
rates the performance of the conventional one-size-fits-all FL algorithms such as FedAvg10 since the aggre-
gated models obscure individual differences.

•	 Intra-client data heterogeneity: It refers to the case when there exist domain differences within a client. As 
illustrated in Fig. 1b, data from a single client belongs to multiple domains, having different data distribu-
tions. Intra-client data heterogeneity is a common issue in the field of healthcare. Long et al.20 investigated 
cardiorespiratory activities and electrophysiological signals at different stages of sleep and found that the same 
patient’s body signals vary by stage. In addition, Karimian et al.21 indicate that the impact of the intra-client 
variation of electrocardiogram (ECG) signals cannot be neglected. The aforementioned examples illustrate 
how a single individual/client can encompass multiple data distributions (domains), stemming from the dif-
ferent patterns involved in a physiological event over time. Note that patterns of the physiological attributes 
(domains) for a disease of interest over time are usually unknown ahead of time22.

There exists literature on alleviating inter-client data heterogeneity in FL. For example, Ghosh et al.24 and 
Briggs et al.25 proposed to divide clients into clusters according to their underlying similarities and train a model 
for each cluster. Fallah et al.26 suggested that Model-Agnostic Meta-Learning (MAML)27 is a promising frame-
work for building a personalized model for each client. Smith et al.28 integrated multi-task learning into FL, which 
considers each client having a model for a different task and trains those correlated models simultaneously29. 
However, previous approaches on building customized models for a subset/an individual client fail to capture 
the data heterogeneity within each client.

Intra-client heterogeneity has not been studied much, and there is only a limited body of literature addressing 
this issue. In this context, Caldarola et al.30 proposed to model data heterogeneity by identifying domains for each 
client via a combination of knowledge distillation, domain-specific learning, and graph representation learning 
techniques. Shenaj et al.31 further extended the idea of learning across domains to tackle data heterogeneity via 
style transfer and server-side pre-training. However, their assumptions include prior knowledge of the domains 
and their relations, which is not applicable to our context. Consequently, we develop an algorithm that addresses 
intra-client data heterogeneity with unknown domains in FL.

Motivation and paper contributions
Our work is inspired by multi-domain learning. Multi-domain learning learns correlated domains simultaneously 
by training a set of models and then adapting them to specific domains32. There are two mainstream categories 
of methods for multi-domain learning. One set of approaches utilizes adaptors, which are small neural network 
modules attached to a large pre-trained neural network model33,34. The pre-trained portion of the model learns 
shared information across domains (i.e., domain-agnostic), and the model obtains domain-specific knowledge 
by training the adaptors. The other set of approaches utilizes model parameter sharing. Studies35,36 show that 
retraining later layers of the neural network models can effectively capture domain-specific information.

There is only a limited amount of prior work on incorporating multi-domain learning into the context of 
FL. Parekh et al.37 performed FL in the multi-domain, multi-task setting for medical image object detection and 
segmentation. Li et al.38 presented FedH2L, which utilizes mutual learning to tackle inter-client data and model 
architecture heterogeneity. Sun et al.39 utilized partial model parameter sharing of the global model to mitigate 
inter-client data heterogeneity due to the cross-domain effect. Elvebakken et al.40 suggested introducing adaptors 
in the federated learning system to reduce communication overhead. However, none of the existing federated 
multi-domain learning literature addresses the problem of intra-client data heterogeneity in FL.

We thus propose to integrate multi-domain learning into FL to identify domain differences within individual 
clients. We perform federated clustering to learn domain categories within each client. We then construct a neural 
network architecture shared across all domains. We enable parameters at selected layers of the client model to 

Figure 1.   Illustration of inter-client and intra-client data heterogeneity (object images adapted from the Office 
dataset23).
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be domain-specific and the rest of the parameters to be domain-agnostic. In addition, we introduce an auxiliary 
graph neural network to fine-tune the domain-agnostic and domain-specific knowledge. The key contributions 
of this paper are threefold:

•	 We identify a crucial source of data heterogeneity, i.e., within-client data heterogeneity, and propose a novel 
federated clustered multi-domain learning algorithm to overcome this problem.

•	 We employ a graph attention network as an auxiliary representation to connect and capture the implicit 
relationships between different domains.

•	 We validate the effectiveness of the proposed algorithm using a case study on stress-level prediction. The 
proposed method improves the overall accuracy and the F1 score by over 4.41% and over 7.8%, respectively, 
compared to two state-of-the-art methods. The performance of our model is also robust for all individual 
clients.

The organization of the rest of the paper is as follows: We introduce the proposed method in the Method section. 
In the Results section, we specify the dataset and experimental setup used for the case study; we demonstrate the 
effectiveness of the proposed algorithm by comparing it with state-of-the-art approaches and analyzing different 
modules of the proposed method. Finally, we conclude the paper in the Conclusion section.

Method
As explained in the Introduction, existing literature alleviates only inter-client data heterogeneity; it fails to 
capture intra-client data heterogeneity. This section presents a clustered multi-domain FL algorithm to mitigate 
the ill effects of intra-client data heterogeneity. As depicted in Fig. 2, the proposed algorithm comprises three 
modules: a federated clustering module, a multi-domain learning module, and a graph-based domain fine-tuning 
module. The federated clustering module assigns domain labels to data samples at each client in a shared domain 
space. The multi-domain learning module enables the learning of domain-specific knowledge across all clients. 
A graph attention network is utilized at each client to facilitate fine-tuning of the domain-agnostic and domain-
specific knowledge in the graph-based domain fine-tuning module.

Specifically, given a dataset D = {(Xi ,Yi), i = 1, . . . ,N} where Xi is the set of images from Client i, Yi is 
the set of corresponding labels for Xi , and N is the number of clients, the objective of the proposed algo-
rithm is to learn a function F(w; θ;φ;ω) = {f (w), g(θ;φ), h(ω)} : Xi → Yi . The federated clustering module 
f (w) : Xi → Di = {d, d ∈ {1, . . . ,K}} assigns domain labels Di to images Xi , where w is the module param-
eter, d is the domain label for a single image sample in Xi , and K is the number of domains obtained from the 
estimation algorithm from our prior work41. The multi-domain learning module g(θ;φ) : Xd

i → Yi maps the 
data labeled with domain tags Xd

i  to the set of labels Yi , where θ is the domain-agnostic parameter and φ is the 
domain-specific parameter. In the last module, we fine-tune parameter φ by applying a graph attention network 
h(ω) : φ → φ′ . We update g(θ;φ′) with the fine-tuned φ′ and obtain the final classification output Yi . We next 
explain each module in detail.

Federated ClusterGAN
The federated ClusterGAN groups each set of Xi into K domains, where these domains are shared across all cli-
ents. It is known that clustering in the latent space utilizing ClusterGAN provides more stable clustering results 
compared to clustering in the data space42. Unlike conventional Generative Adversarial Networks, ClusterGAN 
is composed of three deep neural networks: a generator G , a discriminator D , and an encoder E , as shown in 
Fig.3 parameterized by �G , �D , and �E , respectively.

The generator G maps the latent space to the data space. It samples from the latent space z, which consists of a 
continuous normal distribution zn and a discrete one-hot vector zc , and generates artificial sample xg . Formally, 
z = (zn, zc), zn ∼ N(0, σ 2I), zc = ek , k ∈ {1, . . . ,K} , where ek is the kth one-hot vector, and K is the number 
of clusters. The discriminator D projects the artificial sample xg and the real sample xr in the data space to a 
real value that indicates the probability of the sample being real. The encoder E generates the discriminative 
latent space variables ẑn and ẑc) using xg . The objective of ClusterGAN training is to minimize the loss function 

Figure 2.   Overall framework of the proposed federated clustered multi-domain learning algorithm.
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presented in Eq. (1)42, where Pr
x is the distribution of real data samples, Pz is the prior distribution in the latent 

space. q(·) is the quality function which is log(x) for conventional GAN and x for Wasserstein GAN. L (·) is the 
cross-entropy loss, and βn and βc are regularization coefficients.

We first train ClusterGAN at each client. The central server aggregates local model parameters and updates the 
ClusterGAN from each client with the global model. Once the ClusterGAN converges during this iterative pro-
cess, we apply K-Means clustering to the latent space data encoded by the global encoder to identify the cluster 
(domain) membership for each data sample based on Euclidean distance. As mentioned earlier in this section, 
ClusterGAN provides a better cluster separation in the latent space than in the original data space. Therefore, we 
apply K-Means to the latent space data. Since we have no prior knowledge of the number of domains K, we adapt 
an iterative search algorithm from our prior work41: We search for the optimum number of clusters (domains) 
incrementally. Given a specific domain number NumDomain, we evaluate the clustering quality by computing 
the average Silhouette score scoreavg across all N clients. We record the optimal domain number BestNum based 
on the highest average Silhouette score MaxScore. If the current score does not improve MaxScore, we increase 
NumDomain and proceed to the next round of clustering and cluster quality evaluation. In addition, an early 
stopping criterion is applied such that the algorithm stops when scoreavg does not improve for a number of rounds 
controlled by the variable Patience. The process described above is shown in Algorithm 1. After determining 
the optimal domain number K, we apply federated ClusterGAN again to obtain the final domain labels Di for 
Xi in each client.

(1)
min�G ,�E

max�D Ex∼Prx
q(D(x))+ Ez∼Pz q(1−D(G(z)))+ βn Ez∼Pz ||zn − E(G(zn))||

2
2 + βc Ez∼Pz L (zc ,E(G(zc)))

Figure 3.   ClusterGAN architecture.
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Algorithm 1.   Data-driven Domain Number Estimation

Federated multi‑domain learning
After obtaining the domain labels Di for each Xi from federated ClusterGAN, we learn customized classification 
models for all the domains. A previously reported study indicates that data from different domains can still share 
a large amount of low and mid-level visual information such that establishing individual domain-specific mod-
els will lead to loss of shared information across domains34. To preserve the shared information while learning 
domain-specific knowledge, we apply federated multi-domain learning by developing a Convolutional Neural 
Network (CNN) g that is composed of domain-agnostic layers with a set of parameters θ for obtaining shared 
information across domains and domain-specific layers with a set of parameters φ . We define the nth layer of 
the CNN as the domain-specific layer and the rest of the layers to be domain-agnostic layers. We know from 
prior research that the end layer of a CNN has lower representation capacity compared to other layers in the 
architecture and is thus more sensitive to domain-specific information43. We, therefore, choose n to be the last 
fully connected layer of the CNN architecture shown in Fig. 4.

Graph‑based domain knowledge fine‑tuning
We obtain customized classification models for data from different domains via federated multi-domain learning. 
To further fine-tune the domain-specific parameter φ , we adopt a Graph Attention Network (GAT)44 to model 
relationships between domains. We fine-tune φ by treating each domain-specific φ as a node in a graph. Due to 
the intrinsic nature of the graph architecture, a Graph Neural Network (GNN) can effectively learn relationships 
between the nodes. This makes GNNs an excellent choice for modeling domain relationships. GAT overcomes 

Figure 4.   Federated multi-domain learning architecture.
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several limitations of prior GNNs, such as the GCN: it allows different weightings to different neighboring ver-
tices (domains) in the graph, thereby enhancing the interpretability of domain relationships45. Moreover, it does 
not make any assumptions on edge connections between the nodes (domains)46, aligning well with our scenario 
where domain relationships are unknown. Additionally, GAT is computationally efficient44.

We define the GAT as h = (V,E) , where V is the set of vertices that represent domains and E is the set of edges 
that connects domains. As shown in Fig. 5, V = {vd , vd ∈ R

M , d = 1, . . . ,K} , where vd is the set of parameters 
from the domain-specific layer of the classification model that belongs to domain d, M = |vd | represents the num-
ber of vd , and K is the number of vertices (domains). We denote the output of the GAT as V̂ = {v̂d , d = 1, . . . ,K} . 
Each output v̂d is a linear combination of its neighboring vertices Nd = {vj , j ∈ V \ d} weighted by normalized 
self-attention coefficients edj , as presented in Eq. (2)44, where ⊕ represents the concatenation operation, W is a 
learnable weight matrix applied to each vertex vd , and α is a self-attention mapping that computes self-attention 
coefficients. We use scaled cosine similarity instead of the conventional dot product to avoid small gradients 
during model training for the case study47.

We obtain V̂ = {v̂d , d = 1, . . . ,K} based on Eq. (3)44, where σ is a nonlinear function, L is the number of 
multi-head attention mechanisms utilized to stabilize the learning process, eldj is the normalized self-attention 
coefficients computed from the lth attention mechanism, and Wl is the corresponding weight matrix.

Results
Dataset
In this study, we used the Wearable Stress and Affect Detection (WESAD) dataset48. The data was collected from 
15 participants using two devices, i.e., a chest-worn device (RespiBAN) and a wrist-worn device (Empatica E4). 
The RespiBAN measures accelerometer data, electrocardiogram (ECG), electrodermal activities (EDA), electro-
myogram (EMG), respiratory signal, and temperature at a sampling rate of 700 Hz. Empatica E4 records acceler-
ometer data, blood volume pressure, EDA, and temperature at different sampling rates. All signals were labeled 
with baseline, stress, and amusement tags49. Following the prior work50, we utilized the ECG signal sampled from 
RespiBAN with baseline and stress tags only. Note that we consider each subject with the individual’s data as a 
client for federated learning with non-i.i.d data due to intrinsic physiological differences between individuals.

Experimental setup
Evaluation metrics
We evaluated our proposed framework using the following criteria for all the experiments:

•	 Overall accuracy/F1 score: the accuracy/F1 score across all clients in the test dataset.
•	 Client accuracy/F1 score: the accuracy/F1 score of the individual client in the test dataset.

(2)edj =
exp(LeakyReLU(α

[

Wvd ⊕Wvj
]

))
∑

k∈Nd
exp(LeakyReLU(α[Wvd ⊕Wvk]))

(3)v̂d = σ(
1

L

L
∑

l=1

∑

j∈Nd

eldjW
lvj)

Figure 5.   Illustration of GAT architecture. v1, v2, . . . , vd , . . . , vK−1, vK are the vertices that represent sets of 
domain-specific parameter φd for each domain d, and e represents the edge in between vertices. For example, e12 
is the edge between v1 and v2 , and e1K is the edge between v1 and vK . The number of vertices in the GAT equals 
the number of domains K.
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Implementation details
To preprocess the raw ECG signals, we used an R-peak detection algorithm51 to detect ECG cycles according to 
the locations of R peaks and then converted each ECG cycle to an image of size 128 × 128. Since the WESAD 
dataset contains valid data from 15 clients, we randomly selected data from 11 clients for training and the rest 
of the four clients for testing. We fixed the train/test data split for all the experiments.

Following our prior work41, we utilized Stochastic Gradient Descent (SGD) as the training optimizer with a 
weight decay of 10−4 and a momentum of 0.9. The maximum communication round is 50, with an early stopping 
criterion of stopping training after having five consecutive epochs without improved accuracy. We implemented 
the federated clustering module using the model from our prior work41. We trained the ClusterGAN at each 
client with a batch size of 32 and a learning rate of 5× 10−4 for five epochs. We chose the standard ResNet5052 
as the CNN backbone architecture for multi-domain learning due to its remarkable performance on image 
classification tasks and training efficiency. We froze domain-agnostic parameters from all convolutional layers 
of the pre-trained ResNet50 and enabled parameters from its last fully connected layer to be adaptable to each 
domain. We trained the multi-domain learning module using a batch size of 32 and a learning rate of 10−3 for 
20 epochs. Random search is employed to optimize the hyperparameters. We applied a five-layer GAT model 
with all layers having K = 5 attention heads followed by an Exponential Linear Unit (ELU) activation layer. We 
applied a dropout rate of 0.2 to avoid overfitting. The GAT was initialized using Xavier initialization53 and trained 
to minimize the cross-entropy loss with a learning rate of 5× 10−4 for five epochs. For all the experiments, we 
set the seed to 42, repeated each experiment 10 times, and reported the average values.

Baselines
To demonstrate the effectiveness of our proposed method, we compare our model with the following two 
baselines:

•	 Dynamic-Fusion Federated Learning ( DF_FL)54: A modified version of the FedAvg algorithm that dynami-
cally selects the participating clients based on local model performance and performs model fusion according 
to participating clients’ training time. It yields excellent model performance with non-i.i.d health data.

•	 Cluster-driven Graph Federated Learning (FedCG)30: A state-of-the-art federated learning algorithm that 
addresses intra-client data heterogeneity by utilizing a teacher-student model, cluster-specific models, and 
a Graph Convolutional Network (GCN) that connects the cluster-specific models.

Effect of intra‑client data heterogeneity
As described in the Introduction, there exist two types of data heterogeneity, i.e., inter-client and intra-client 
data heterogeneity. In this section, we demonstrate the effect of data heterogeneity on the client classification 
model performance by comparing our proposed method with FedAvg10 and cluster-based FL. We present the 
corresponding accuracy and F1 score in Fig. 6. FedAvg aggregates all client models to form a global model and 
sends back the shared global model to each client without considering inter-client/intra-client data heterogene-
ity. We observe that FedAvg yields a prediction accuracy of 53.63% and an F1 score of 0.5891, indicating that 
the global model fails to provide a good generalization across all clients when there exists data heterogeneity.

Cluster-based FL aims at reducing inter-client data heterogeneity by grouping similar patients such that clients 
within a cluster share similar data distributions and those across different clusters have distinct data distribu-
tions. Following our prior work41, we performed cluster number estimation, trained federated ClusterGAN, and 
assigned a cluster id to each client based on the latent embedding from the ClusterGAN. We then applied FedAvg 
for clients in the same cluster. The cluster-based FL achieves an accuracy of 76.45% and an F1 score of 0.7224, 
which is approximately 12% lower in accuracy and 0.12 lower in the F1 score compared to our proposed model. 

Figure 6.   Overall accuracy and F1 score comparison with FedAvg, cluster-based FL, and the proposed 
algorithm on stress-level prediction.
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The result suggests that considering inter-client data heterogeneity in the algorithm helps improve classification 
performance. However, the performance is adversely affected by the effect of intra-client data heterogeneity. 
Our proposed algorithm considers intra-client data heterogeneity and thus significantly improves the accuracy 
and the F1 score.

Note that identifying outliers, i.e., clients with data distributions significantly diverging from other clients, is 
beyond the scope of this paper. Prior work on mitigating FL data heterogeneity has not addressed the problem 
of outliers. This is an area we aim to explore in future research. Additionally, outlier clients in federated learning 
are often considered malicious attackers, and there exists literature that utilizes anomaly detection techniques 
to identify and remove such attackers55–57. Techniques for detecting outliers to improve the privacy of the FL 
will be investigated in future work.

Comparison with baselines
We present the performance comparison between the proposed federated clustered multi-domain learning 
algorithm and the selected baselines. As shown in Table 1, our proposed approach achieves an overall accuracy 
of 88.56% and an overall F1 score of 0.8386, outperforming the DF_FL and FedCG baselines. Since the DF_FL 
model does not differentiate heterogeneous data distributions within each client, its mediocre performance 
demonstrates that the one-size-fits-all federated learning model does not generalize well. The knowledge learned 
from other clients does not apply to new clients with different data distributions. Our approach is significantly 
superior since it identifies intra-client heterogeneous data distributions (i.e., domains).

The proposed method obtains around a 4.4% increase in accuracy and an increase of 0.06 in F1 score com-
pared to FedCG. The FedCG utilizes a GCN that defines an adjacency matrix based on pre-determined parameter 
similarity between vertices/domains. The GAT does not make assumptions about the connections between verti-
ces/domains and assigns different weights to the connecting edges via the attention mechanism44. Our results sug-
gest the GAT is a better graph representation learning model with learnable weight coefficients between domains.

We next compare the client accuracy and F1 score obtained from the proposed method and the baselines 
shown in Fig. 7a and b, correspondingly. The results manifest the robustness of our approach since it outper-
forms DF_FL and FedCG on three out of the four clients in the test dataset. The DF_FL yields low accuracy 
and F1 score on all clients. This low performance can be attributed to significant inter-client domain differences 
between clients in the training and test datasets. By comparing the proposed method with FedCG, we observe 
an increase of at least over 4% in accuracy and an increase of at least 0.03 in the F1 score in Client 1, 2, and 4, 
while FedCG achieves slightly better accuracy and F1 score in Client 3. Both methods did not perform well in 
Client 2, indicating that Client 2 may contain different data distributions from the other three clients in the test 
dataset. To conclude, our model outperforms FedCG in terms of both client accuracy and F1 score.

We further provide the client training time with a breakdown of the time consumed by each module of the 
proposed method shown in Table 2. Note that we assume all clients to be trained in parallel. We observe that the 
CNN for multi-domain learning requires a longer training time compared to the ClusterGAN. This difference is 
due to the longer training epochs of the CNN compared to the ClusterGAN since they have a similar model size.

Table 1.   Overall prediction accuracy and F1 score of the proposed model and baselines.

Method Overall accuracy (%) Overall F1 score

DF_FL54 48.04 0.6479

FedCG30 84.15 0.7776

Proposed method 88.56 0.8386

(a) Accuracy of individual clients (b) F1 score of individual clients

Figure 7.   Client accuracy and F1 score on stress-level prediction.
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To better quantify the impact of the number of unknown domains on the overall training time, we express 
the time complexity of the proposed method as O(K · TNN (GAN)+ K · TNN (CNN)+ K · P2) , where K is the 
number of unknown domains, TNN (·) represents the time complexity of a given neural network architecture 
that can be computed based on the work of He and Sun58, and P is the number of domain-specific parameters. 
Each term in the expression of the overall time complexity corresponds to the time complexity of each module 
in the proposed algorithm. The last term is derived based on the work of GAT​44. We notice that as the number 
of unknown domains K increases, the time complexity of each module of the proposed method will increase, 
resulting in increased overall training time. Methods that reduce the amount of training time associated with 
the increase in unknown domain numbers are to be investigated in future work.

Additionally, to ensure a more comprehensive comparison between the proposed method and the baselines, 
we determine their model size by computing the number of model parameters (assuming all of them are 32-bit 
floats), computation cost in terms of Mega floating point operations per second (MFLOPS), and communica-
tion cost in terms of latency in minutes; the results are shown in Table 3. Note that we provide a breakdown 
of the proposed method by each module. Upon observation, we find that the proposed method significantly 
outperforms DF_FL , featuring both a smaller model size and lower computation and communication costs. The 
proposed method exhibits a similar model size, computation cost, and communication cost to FedCG, yet it 
achieves higher accuracy and F1 score. We thus conclude that the improvement in prediction results is attributed 
to the proposed algorithm itself, rather than other factors, such as increased model size.

Effect of federated ClusterGAN
In this section, we further demonstrate the effectiveness of our federated ClusterGAN module in identifying 
domains across all clients. To illustrate the superiority of latent space clustering via ClusterGAN, we replace the 
federated ClusterGAN module in the proposed algorithm with a teacher-student model30, which is effective for 
domain adaptation, and compare it with the algorithm without replacement. The teacher-student model consists 
of a teacher network and a student network, where the teacher classifier provides domain pseudo-labels as targets 
to guide student network training. Note that the work of Caldarola et al.30, which minimizes the cross-entropy 
loss between the domain labels obtained from the teacher and the student model, is inspired by the work of 
Asano et al59. In their research, they proposed an alternating minimization algorithm for self-labeling. We used 
the same number of clusters as the hyperparameter for a fair comparison. Table 4 presents the accuracy and the 
F1 score using the ClusterGAN and the teacher-student model. Results show that our federated ClusterGAN 
outperforms the teacher-student model by 4.34% in accuracy and 0.0293 in F1 score, highlighting the advantage 
of utilizing the federated ClusterGAN.

Effect of graph attention layer
We next investigate the effectiveness of the auxiliary GAT in the graph-based domain fine-tuning module. To 
demonstrate that the auxiliary network enhances classification model performance, we conducted an ablation 

Table 2.   Client training time of each module of the proposed method.

Module Client training time (s)

ClusterGAN 145.4

CNN for multi-domain learning 527.34

GAT​ 69.68

Table 3.   Computation and communication cost comparison with baselines.

Method Model size (MB) Computation cost (MFLOPS) Communication cost (min)

DF_FL54 1212 977.47 120

FedCG30 175.15 144.72 51.4

Proposed method

Total: 172.88 147.21 50.87

ClusterGAN: 81.18 68.54

CNN for multi-domain learning: 89.67 78.46

GAT: 2.03 0.21

Table 4.   Comparison of overall accuracy and F1 score on federated clustering methods.

Federated Clustering module Overall Accuracy (%) Overall F1 score

Teacher-student 84.22 0.8093

ClusterGAN 88.56 0.8386
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study by removing the GAT. We also compare the GAT with GCN, which has no attention mechanism. We 
present the overall accuracy and F1 score in Table 5. We observe that the model without a graph neural network 
yields an overall accuracy of 84.73% and an F1 score of 0.8109, and using a graph-based auxiliary network 
improves the classification performance. The model with GAT as the auxiliary network outperforms the model 
with GCN by a 0.67% increase in accuracy and a 0.0066 increase in the F1 score. This increase may be due to the 
fact that the GAT learns the weights between vertices via the attention mechanism rather than using pre-defined 
weights as in GCN. Based on the results in Table 5, we conclude that the GAT as an auxiliary domain fine-tuning 
module improves overall classification performance.

Conclusion
In this work, we have introduced a novel federated clustered multi-domain learning algorithm to overcome 
intra-client data heterogeneity while preserving privacy. We have also incorporated a graph attention network 
as an auxiliary domain fine-tuning module to capture the information between domains. We applied our model 
to the stress-level prediction task using electrocardiogram signals as a case study. The proposed model outper-
forms selected state-of-the-art methods by over 4% in accuracy and 0.06 in F1 score. However, our approach is 
still vulnerable to outliers when a client’s domains exhibit significantly different data distributions from other 
clients. As part of future work, we plan to explore personalized federated learning to develop customized models 
for each domain of the clients.

Data availibility
The dataset analyzed during this work is publicly available at https://​archi​ve.​ics.​uci.​edu/​ml/​datas​ets/​WESAD+%​
28Wea​rable+​Stress+​and+​Affect+​Detec​tion%​29.

Received: 30 May 2023; Accepted: 3 January 2024

References
	 1.	 Alshehri, F. & Muhammad, G. A comprehensive survey of the Internet of Things (IoT) and AI-based smart healthcare. IEEE Access 

9, 3660–3678 (2021).
	 2.	 Mansour, R. F. et al. Artificial intelligence and internet of things enabled disease diagnosis model for smart healthcare systems. 

IEEE Access 9, 45137–45146 (2021).
	 3.	 Greco, L., Percannella, G., Ritrovato, P., Tortorella, F. & Vento, M. Trends in IoT based solutions for health care: Moving AI to the 

edge. Pattern Recogn. Lett. 135, 346–353 (2020).
	 4.	 Abouelmehdi, K., Beni-Hessane, A. & Khaloufi, H. Big healthcare data: Preserving security and privacy. J. Big Data 5, 1–18 (2018).
	 5.	 Health Insurance Portability and Accountability Act of 1996. Pub. L. (1996). Available:https://www.govinfo.gov/app/details/

PLAW-104publ191.
	 6.	 Yang, Q., Liu, Y., Chen, T. & Tong, Y. Federated machine learning: Concept and applications. ACM Trans. Intell. Syst. Technol. 10, 

1–19 (2019).
	 7.	 Erkin, Z., Veugen, T., Toft, T. & Lagendijk, R. L. Generating private recommendations efficiently using homomorphic encryption 

and data packing. IEEE Trans. Inf. Forensics Secur. 7, 1053–1066 (2012).
	 8.	 Knott, B. et al. CrypTen: Secure Multi-party computation meets machine learning. In Neural Information Processing Systems (2021).
	 9.	 Abadi, M. et al. Deep learning with differential privacy. In Proceedings of the 2016 ACM SIGSAC conference on computer and com‑

munications security, 308–318 (2016).
	10.	 McMahan, B., Moore, E., Ramage, D., Hampson, S. & y Arcas, B. A. Communication-efficient learning of deep networks from 

decentralized data. in Artificial intelligence and statistics, 1273–1282 (PMLR, 2017).
	11.	 Li, T. et al. Federated optimization in heterogeneous networks. Proc. Mach. Learn. Syst. 2, 429–450 (2020).
	12.	 Karimireddy, S. P. et al. SCAFFOLD: Stochastic controlled averaging for federated learning. in International Conference on Machine 

Learning, 5132–5143 (PMLR, 2020).
	13.	 Nguyen, D. C. et al. Federated learning for smart healthcare: A survey. ACM Comput. Surv. 55, 1–37 (2021).
	14.	 Rieke, N. et al. The future of digital health with federated learning. NPJ Digit. Med. 3, 119 (2020).
	15.	 Lee, J. et al. Privacy-preserving patient similarity learning in a federated environment: Development and analysis. JMIR Med. 

Inform. 6, e20 (2018).
	16.	 Brisimi, T. S. et al. Federated learning of predictive models from federated Electronic Health Records. Int. J. Med. Inf. 112, 59–67 

(2018).
	17.	 Huang, L. & Liu, D. Patient clustering improves efficiency of federated machine learning to predict mortality and hospital stay 

time using distributed electronic medical records. J. Biomed. Inform. 99, 103291 (2019).
	18.	 Zhao, Y. et al. Federated learning with non-IID Data. arXiv preprint at arXiv:​1806.​00582 (2018).
	19.	 Li, Q., Diao, Y., Chen, Q. & He, B. Federated learning on Non-IID data silos: An experimental study. in 2022 IEEE 38th International 

Conference on Data Engineering (ICDE) 965–978 (2021).
	20.	 Long, X., Haakma, R., Leufkens, T. R., Fonseca, P. & Aarts, R. M. Effects of between-and within-subject variability on autonomic 

cardiorespiratory activity during sleep and their limitations on sleep staging: A multilevel analysis. Comput. Intell. Neurosci. 2015, 
78 (2015).

	21.	 Karimian, N., Guo, Z., Tehranipoor, M. & Forte, D. Highly reliable key generation from electrocardiogram (ECG). IEEE Trans. 
Biomed. Eng. 64, 1400–1411 (2016).

Table 5.   Comparison of overall accuracy and F1 score on auxiliary domain fine-tuning methods.

Auxiliary domain fine-tuning module Overall accuracy (%) Overall F1 score

None 84.73 0.8109

GCN 87.89 0.8320

GAT​ 88.56 0.8386

https://archive.ics.uci.edu/ml/datasets/WESAD+%28Wearable+Stress+and+Affect+Detection%29
https://archive.ics.uci.edu/ml/datasets/WESAD+%28Wearable+Stress+and+Affect+Detection%29
http://arxiv.org/abs/1806.00582


11

Vol.:(0123456789)

Scientific Reports |          (2024) 14:903  | https://doi.org/10.1038/s41598-024-51344-9

www.nature.com/scientificreports/

	22.	 Teng, X., Pei, S. & Lin, Y. StoCast: Stochastic disease forecasting with progression uncertainty. IEEE J. Biomed. Health Inform. 25, 
850–861 (2020).

	23.	 Saenko, K., Kulis, B., Fritz, M. & Darrell, T. Adapting visual category models to new domains. in European Conference on Computer 
Vision, 213–226 (2010).

	24.	 Ghosh, A., Chung, J., Yin, D. & Ramchandran, K. An efficient framework for clustered federated learning. Adv. Neural. Inf. Process. 
Syst. 33, 19586–19597 (2020).

	25.	 Briggs, C., Fan, Z. & Andras, P. Federated learning with hierarchical clustering of local updates to improve training on non-IID 
data. in 2020 International Joint Conference on Neural Networks (IJCNN), 1–9 (IEEE, 2020).

	26.	 Fallah, A., Mokhtari, A. & Ozdaglar, A. Personalized federated learning: A meta-learning approach. Preprint at arXiv:​2002.​07948 
(2020).

	27.	 Finn, C., Abbeel, P. & Levine, S. Model-agnostic meta-learning for fast adaptation of deep networks. in International conference 
on machine learning, 1126–1135 (PMLR, 2017).

	28.	 Smith, V., Chiang, C.-K., Sanjabi, M. & Talwalkar, A. S. Federated multi-task learning. Adv. Neural Inf. Process. Syst.30 (2017).
	29.	 Deng, Y., Kamani, M. M. & Mahdavi, M. Adaptive personalized federated learning. Preprint at arXiv:​2003.​13461 (2020).
	30.	 Caldarola, D. et al. Cluster-driven graph federated learning over multiple domains. in Proceedings of the IEEE/CVF Conference on 

Computer Vision and Pattern Recognition, 2749–2758 (2021).
	31.	 Shenaj, D. et al. Learning across domains and devices: Style-driven source-free domain adaptation in clustered federated learning. 

2023 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV) 444–454 (2022).
	32.	 Dredze, M., Kulesza, A. & Crammer, K. Multi-domain learning by confidence-weighted parameter combination. Mach. Learn. 79, 

123–149 (2010).
	33.	 Bilen, H. & Vedaldi, A. Universal representations: The missing link between faces, text, planktons, and cat breeds. Preprint at arXiv:​

1701.​07275 (2017).
	34.	 Rebuffi, S.-A., Bilen, H. & Vedaldi, A. Learning multiple visual domains with residual adapters. Adv. Nneural Inf. Process. Syst.30 

(2017).
	35.	 Sarwar, S. S., Ankit, A. & Roy, K. Incremental learning in deep convolutional neural networks using partial network sharing. IEEE 

Access 8, 4615–4628 (2019).
	36.	 He, S. et al. Multi-domain learning and identity mining for vehicle re-identification. in Proceedings of the IEEE/CVF Conference 

on Computer Vision and Pattern Recognition Workshops, 582–583 (2020).
	37.	 Parekh, V. S. et al. Cross-domain federated learning in medical imaging. Preprint at arXiv:​2112.​10001 (2021).
	38.	 Li, Y., Zhou, W., Wang, H., Mi, H. & Hospedales, T. M. FedH2L: Federated learning with model and statistical heterogeneity. 

Preprint at arXiv:​2101.​11296 (2021).
	39.	 Sun, B., Huo, H., Yang, Y. & Bai, B. PartialFed: Cross-domain personalized federated learning via partial initialization. Neural Inf. 

Process. Syst. 34, 23309–23320 (2021).
	40.	 Elvebakken, M. F., Iosifidis, A. & Esterle, L. Adaptive parameterization of deep learning models for federated learning. Preprint 

at arXiv:​2302.​02949 (2023).
	41.	 Jiang, S., Firouzi, F. & Chakrabarty, K. Low-overhead clustered federated learning for personalized stress monitoring. IEEE Internet 

of Things J. (2023). Early Access.
	42.	 Mukherjee, S., Asnani, H., Lin, E. & Kannan, S. ClusterGAN: Latent space clustering in generative adversarial networks. Proc. 

AAAI Conf. Artif. Intell. 566, 4610–4617 (2019).
	43.	 Zhang, L., Yang, Q., Liu, X. & Guan, H. Rethinking hard-parameter sharing in multi-domain learning. in 2022 IEEE International 

Conference on Multimedia and Expo (ICME), 01–06 (IEEE, 2022).
	44.	 Veličković, P. et al. Graph attention networks. arXiv preprint arXiv:​1710.​10903 (2017).
	45.	 Wu, Z. et al. A comprehensive survey on graph neural networks. IEEE Trans. Neural Netw. Learn. Syst. 32, 4–24 (2019).
	46.	 Zhou, J. et al. Graph neural networks: A review of methods and applications. AI Open 1, 57–81 (2020).
	47.	 Vaswani, A. et al. Attention is all you need. in Proceedings of the 31st International Conference on Neural Information Processing 

Systems, 6000–6010 (2017).
	48.	 Schmidt, P., Reiss, A., Duerichen, R., Marberger, C. & Van Laerhoven, K. Introducing WESAD, a multimodal dataset for wearable 

stress and affect detection. in Proceedings of the 20th ACM international conference on multimodal interaction, 400–408 (2018).
	49.	 Kirschbaum, C., Pirke, K.-M. & Hellhammer, D. H. The ‘Trier Social Stress Test’-a tool for investigating psychobiological stress 

responses in a laboratory setting. Neuropsychobiology 28, 76–81 (1993).
	50.	 Jiang, S., Firouzi, F., Chakrabarty, K. & Elbogen, E. B. A resilient and hierarchical IoT-based solution for stress monitoring in 

everyday settings. IEEE Internet Things J. 9, 10224–10243 (2021).
	51.	 Gomes, P., Margaritoff, P. & Silva, H. pyHRV: Development and evaluation of an open-source python toolbox for heart rate vari-

ability (HRV). in Proc. Int’l conf. On electrical, electronic and computing engineering (icetran), 822–828 (2019).
	52.	 He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. in Proceedings of the IEEE conference on computer 

vision and pattern recognition, 770–778 (2016).
	53.	 Glorot, X. & Bengio, Y. Understanding the difficulty of training deep feedforward neural networks. in Proceedings of the thirteenth 

international conference on artificial intelligence and statistics, 249–256 (JMLR Workshop and Conference Proceedings, 2010).
	54.	 Zhang, W. et al. Dynamic-fusion-based federated learning for COVID-19 detection. IEEE Internet Things J. 8, 15884–15891 (2021).
	55.	 Li, S., Cheng, Y., Wang, W., Liu, Y. & Chen, T. Learning to detect malicious clients for robust federated learning. Preprint at arXiv:​

2002.​00211 (2020).
	56.	 So, J., Guler, B. & Avestimehr, A. S. Byzantine-resilient secure federated learning. IEEE J. Sel. Areas Commun. 39, 2168–2181 (2020).
	57.	 Liu, W. et al. D2MIF: A malicious model detection mechanism for federated-learning-empowered artificial intelligence of things. 

IEEE Internet Things J. 10, 2141–2151 (2021).
	58.	 He, K. & Sun, J. Convolutional neural networks at constrained time cost. in 2015 IEEE Conference on Computer Vision and Pattern 

Recognition (CVPR). pp 5353–5360 (2015).
	59.	 Asano, Y. M., Rupprecht, C. & Vedaldi, A. Self-labelling via simultaneous clustering and representation learning. Preprint at arXiv:​

1911.​05371 (2019).

Author contributions
Methodology, F.F., S.J., Y.L.; software, Y.L., S.J.; writing–original draft preparation, Y.L.; writing–review and edit-
ing, S.J., F.F., K.C.; All authors have read and agreed to the published version of the manuscript.

Competing interests 
The authors declare no competing interests.

Additional information
Correspondence and requests for materials should be addressed to S.J.

http://arxiv.org/abs/2002.07948
http://arxiv.org/abs/2003.13461
http://arxiv.org/abs/1701.07275
http://arxiv.org/abs/1701.07275
http://arxiv.org/abs/2112.10001
http://arxiv.org/abs/2101.11296
http://arxiv.org/abs/2302.02949
http://arxiv.org/abs/1710.10903
http://arxiv.org/abs/2002.00211
http://arxiv.org/abs/2002.00211
http://arxiv.org/abs/1911.05371
http://arxiv.org/abs/1911.05371


12

Vol:.(1234567890)

Scientific Reports |          (2024) 14:903  | https://doi.org/10.1038/s41598-024-51344-9

www.nature.com/scientificreports/

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access   This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder. To view a copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

© The Author(s) 2023, corrected publication 2024

www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Federated clustered multi-domain learning for health monitoring
	Limitations of previous work
	Motivation and paper contributions
	Method
	Federated ClusterGAN
	Federated multi-domain learning
	Graph-based domain knowledge fine-tuning


	Results
	Dataset
	Experimental setup
	Evaluation metrics
	Implementation details
	Baselines

	Effect of intra-client data heterogeneity
	Comparison with baselines
	Effect of federated ClusterGAN
	Effect of graph attention layer

	Conclusion
	References


