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Enhancing engineering 
optimization using hybrid 
sine cosine algorithm 
with Roulette wheel selection 
and opposition‑based learning
Vu Hong Son Pham , Nghiep Trinh Nguyen Dang * & Van Nam Nguyen 

Meta‑heuristic algorithms distinguish themselves from conventional optimization methods owing 
to their intrinsic adaptability and straightforward implementation. Among them, the sine cosine 
algorithm (SCA) is lauded for its ability to transition seamlessly between exploration and exploitation 
phases throughout the optimization process. However, there exists potential for enhancing the 
balance that SCA maintains between exploration and exploitation. To augment the proficiency 
in global optimization of SCA, an innovative strategy—nSCA—that integrates the roulette wheel 
selection (RWS) with opposition‑based learning was formulated. The robustness of nSCA was 
rigorously evaluated against leading‑edge methods such as the genetic algorithm (GA), particle swarm 
optimization, moth‑flame optimization, ant lion optimization, and multi‑verse optimizer, as well 
as the foundational SCA. This evaluation included benchmarks set by both CEC 2019 and CEC 2021 
test functions. Additionally, the performance of nSCA was confirmed through numerous practical 
optimization problems, emphasizing its effectiveness in applied settings. In all evaluations, nSCA 
consistently showcased superior performance compared to its evolutionary algorithm counterparts, 
delivering top‑tier solutions for both benchmark functions and real‑world optimization challenges. 
Given this compelling evidence, one can posit that nSCA serves as a strong candidate for addressing 
intricate optimization challenges found in real‑world contexts, regardless of whether they are of a 
discrete or continuous nature.

Evolutionary algorithm
In recent years, the scholarly community has increasingly turned its attention to nature-inspired optimization 
algorithms, recognizing their efficacy in addressing complex optimization challenges.  Holland1 was among the 
pioneers, utilizing genetic algorithms (GA) to explore complex adaptive systems. He drew a compelling parallel 
between biological evolution and computational problem-solving. Kennedy and  Eberhart2 put forth the particle 
swarm optimization (PSO), a method tailored for nonlinear function optimization. They detailed its evolution, 
tested it against benchmarks, applied it in neural network training, and explored its intersections with artificial 
life and GA. Rezaei et al.3 introduced the geometric mean optimizer (GMO). This new meta-heuristic technique 
leverages the capabilities of the geometric mean operator. When compared to other contemporary algorithms, 
GMO consistently exhibited superior performance in various optimization challenges.  Mirjalili4 introduced the 
sine cosine algorithm (SCA), a unique population-based optimization approach. This technique, which utilizes 
sine and cosine functions to guide solution candidates, demonstrated its versatility in multiple tests, notably 
in the optimization of an aircraft wing’s cross-section. Such applications underscore its capacity to navigate 
challenges with constrained and unfamiliar search domains. Mirjalili et al.5 presented the multi-verse optimizer 
(MVO). Drawing inspiration from cosmological phenomena, the MVO was proficient in outperforming other 
well-regarded optimization methods across diverse benchmark tasks and real-world challenges.  Gandomi6 put 
forth the interior search algorithm (ISA), a novel technique inspired by principles of interior design. With its 
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efficacy pitted against other popular algorithms, ISA yielded promising results and featured a straightforward 
single-parameter tuning approach.  Mirjalili7 rolled out the moth-flame optimization (MFO) algorithm. Inspired 
by the navigation techniques of moths, the MFO asserted its dominance across a gamut of benchmark functions 
and tangible engineering quandaries, such as marine propeller optimization.  Mirjalili8 proffered the ant lion 
optimizer (ALO). Rooted in the predatory dynamics of antlions, this method underscored its pre-eminence 
across diverse test environments, spanning mathematical functions to intricate engineering challenges, such as 
ship propeller formulation, further solidifying its stature vis-à-vis other established algorithms.

In population-based evolutionary algorithms, the optimization technique is commonly divided into 
exploration and exploitation stages, irrespective of the algorithm’s specific  characteristics9,10. The exploration 
phase focuses on investigating promising regions within the search area, where significant changes in directions 
can have a substantial impact. Conversely, the exploitation stage enables gradual adjustments in options and 
demonstrates the algorithm’s convergence by utilizing the solutions obtained during exploration. Finding the 
optimal trade-off between the exploration and exploitation phase is crucial to ensure the effectiveness of the 
algorithm in achieving global optimization.

Optimization techniques have wide applications across various fields. Xi et al.11 utilized advanced machine 
learning algorithms combined with novel optimization techniques to forecast the compressive strength of 
recycled aggregate concrete (RAC). Their findings highlighted the superior performance of the LGBM-based 
hybrid model and underlined the crucial role of factor interactions in shaping the mechanical properties of 
RAC. In another study, Zhou et al.12 applied three optimization algorithms to fine-tune the hyper-parameters 
of the support vector machine. Their aim was to predict the progress rate of tunnel-boring machines in hard 
rock conditions. Data from a water transfer tunnel project in Malaysia revealed that the MFO hybrid model 
surpassed other models in accuracy. Li et al.13 used support vector regression along with five optimization 
algorithms to estimate the mean fragment size (MFS) during blasting operations. Their analyses identified the 
grey wolf optimization (GWO) variant as the top performer. Additionally, their research found that the uniaxial 
compressive strength was the most significant factor influencing the prediction of blasting MFS. Son and Nguyen 
 Dang14 introduced the MVO as a potent tool designed for time–cost optimization challenges in construction 
project management. Evaluations, especially on smaller benchmarks, reinforced the effectiveness of MVO 
over other stochastic optimization methods. In another insightful study, Son and  Hieu15 developed a detailed 
model for logistics costs associated with precast concrete structures. This model, based on the activity-based 
costing method, also incorporated an enhanced ALO algorithm that combined OBL, mutation, and crossover 
strategies for optimal cost solutions. When compared to earlier models, this new approach demonstrated better 
performance in terms of convergence speed, accuracy, and overall cost reduction.

The continuous evolution and improvement of algorithms have piqued the interest of numerous  researchers16. 
This interest arises from the acknowledgment that there is no universally applicable algorithm competent in 
addressing diverse optimization problems. This understanding compels researchers either to enhance the current 
algorithms to cater to novel challenges or to devise new ones that can competently rival their predecessors. Son 
and Nguyen  Dang17 introduced the hybrid multi-verse optimizer model (hDMVO), a synthesis of the MVO 
and the SCA. This model is explicitly crafted to navigate discrete time–cost trade-off dilemmas encountered in 
construction project management. Its efficacy is particularly pronounced in large-scale projects, where it outstrips 
many established algorithms. Zhen et al.18 proposed a novel WPA-PSO hybrid algorithm. By harnessing the 
collective strengths of both methodologies, this amalgamated solution boasts enhanced prediction accuracy and 
stability, particularly when operating with sparse data, as opposed to its individual counterparts. Pham et al.19 
ventured into logistics with an innovative hybrid swarm intelligence algorithm. The chief aim of this model is 
to refine dispatch schedules for ready-mix concrete trucks, fostering improved coordination between batching 
plants and construction locales. Teng et al.20 launched the grey wolf grasshopper hybrid algorithm (GWGHA). 
This algorithm targets the optimization of traffic light cycles, with a vision to curtail vehicle waiting durations 
and bolster on-time arrivals. The efficacy of this model is underpinned by the simulation of urban mobility 
(SUMO), which employed data from an assortment of global cities. Qiao et al.21 introduced a groundbreaking 
hybrid algorithm, fusing the lion swarm optimizer with the GA. Tasked with amplifying the stability and 
accuracy of carbon dioxide emission predictions, this model was rigorously tested using data spanning 1965 to 
2017. Its performance in terms of optimization, convergence speed, and forecasting precision outshone other 
prevalent models. Long et al.22 brought forth the GWOCS, a hybrid algorithm blending the GWO with the cuckoo 
search (CS). Augmented with an OBL strategy, this algorithm adeptly extracts parameters from various solar 
PV models, utilizing experimental data across heterogeneous conditions. It achieves a harmonious interplay 
between exploration and exploitation, as evinced by its superior benchmark test outcomes. Dhiman and  Kaur23 
championed the hybrid particle swarm and spotted hyena optimizer (HPSSHO). This avant-garde optimization 
technique marries the PSO with the spotted hyena optimizer (SHO). It seeks to augment the hunting strategy of 
the SHO by integrating PSO dynamics. Its performance, as evidenced across thirteen benchmark functions and 
a nuanced 25-bar engineering design challenge, stands as a testament to its prowess over other metaheuristic 
approaches. Şenel et al.24 unveiled a hybrid algorithm that seamlessly integrates the robustness of both PSO and 
GWO. Notably, it shines in benchmark evaluations and real-world applications alike, consistently eclipsing other 
traditional and hybrid optimization techniques.

Sine cosine algorithm
Since its introduction in 2016, the SCA has gained considerable popularity as an optimization method widely 
utilized in various domains to address a broad spectrum of problems. For instance, Zhao et al.25 developed a 
discrete version of SCA to overcome the challenge of community detection, while Banerjee and Nabi 26 proposed 
an SCA model to optimize the return trajectory phase of a reusable launch vehicle. Fatlawi et al.27 used SCA 
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to determine camera positions for monitoring systems. Reddy et al. 28 presented a binary adaptation of SCA 
to determine the optimal commitment and dispatch of power-generating units while considering operational 
constraints. Tawhid and  Savsani29 developed an enhanced SCA for the optimization of engineering design tasks 
with multiple objectives. Finally, Raut and  Mishra30 proposed an advanced SCA modification that incorporates a 
load flow methodology leveraging data structures to optimize power distribution network reconfiguration tasks.

Given the diverse nature of optimization problems, it is widely acknowledged that there is no universally 
applicable optimization algorithm competent in addressing diverse optimization  problems16. Cheng and  Duan31 
proposed a hybrid version that combines SCA and the cloud model to handle benchmark test functions with 
different dimensions. Bureerat and  Pholdee32 developed a hybrid model that combines SCA and DE for detecting 
structural damage.  Turgut33 proposed a model that integrates the SCA with the backtracking search algorithm to 
effectively address multi-objective problems in heat exchanger design. Bairathi and  Gopalani34 improved SCA by 
integrating the opposition-based mechanism to instruct multi-layer neural networks. Qu et al.35 introduced an 
upgraded version of the SCA by incorporating a neighborhood search technique and a greedy Levy mutation. 
Finally, Pham and  Nguyen36 proposed an integrated SCA version with tournament selection, OBL, and mutation 
and crossover methods to handle cement transport routing.

The motivation of this study
The SCA, recognized for its simplicity, has carved a niche for itself as a preferred stochastic optimization 
technique across various scientific domains. Nonetheless, a prominent drawback associated with the SCA is 
its inclination to converge prematurely. This can be attributed to its undefined exploitation mechanism within 
the search  area37. Such a limitation has spurred researchers to suggest a refined SCA framework, envisaged as a 
panacea to the intricacies intertwined with optimization issues.

In the subsequent section, the development and evolution of the nSCA are detailed. In “Analysis of 
performance” section, a thorough examination of the algorithm’s convergence properties is provided. Here, its 
behavior and efficacy are evaluated using benchmarks from CEC 2019 and CEC 2021. In “Practical application 
of nSCA” section, the robustness of the model is validated by subjecting the nSCA to a range of real-world 
optimization challenges, including the cantilever beam design, truss structure design, and the capacity vehicle 
routing problems. In “Conclusion” section, pivotal research insights are compiled, and potential avenues for 
future research are suggested. “Limitations” section presents the limitations identified in the nSCA.

Novel version of sine cosine algorithm
Roulette wheel selection (RWS)
The Roulette wheel selection (RWS) mechanism has been widely employed in the realm of optimization, being 
incorporated into numerous algorithms because of its inherent flexibility and adaptability. This mechanism 
is fundamentally based on the principle of selection probability, where entities are selected according to their 
performance metrics, most commonly their fitness values in genetic algorithms (GA). The visualization of RWS 
is likened to a roulette wheel, with slots assigned in proportion to an individual’s fitness. Individuals with higher 
fitness values are allocated larger slots, thereby augmenting their likelihood of selection for the subsequent 
generation. The dynamic character of RWS has prompted several refinements to its core structure. Efforts have 
been made to sharpen the selection criteria, while others have aimed to evade the issue of premature convergence. 
For example, the challenge of the well-known traveling salesman problem (TSP) was addressed by Yu et al.38, 
who instilled adaptability into RWS. A mechanism was introduced that dynamically modified the selection 
pressure, bolstering genetic diversity and ensuring continued exploration. Differential evolution (DE) has also 
been influenced by RWS. It was integrated into DE by Qian et al.39 for the purpose of mutation strategy selection, 
enhancing its convergence behaviour. In the domain of sentiment analysis, RWS was utilized by Pandey et al.40 
to bolster the performance of the CS algorithm, leading to improved outcomes. The capabilities of RWS extend 
beyond traditional algorithms. A multi-dimensional strategy was advocated by Asghari et al.41, merging RWS 
with the whale-PSO algorithm. Their objective was to address intricate optimization challenges. The subject of 
parallelism in optimization has gained traction, and a significant contribution to this field was made by Lloyd and 
 Amos42. Their research cantered on the efficacy of an autonomous RWS mechanism within parallel ant colony 
optimization (ACO). In the realm of power dispatching, a complex endeavour, a novel approach was proposed 
by Cheng et al.43. RWS was amalgamated with PSO to adeptly handle equality constraints.

Opposition‑based learning (OBL)
The opposition-based learning (OBL) approach has been widely recognized and utilized in diverse optimization 
applications, underscoring its versatility and efficacy. First introduced by  Tizhoosh44 in 2005, OBL was presented 
as an innovative framework for computational intelligence, devised to generate complementary solutions for 
existing ones. Later, Wang et al.45 put forth a generalized OBL method, aiming to augment the efficiency of the 
PSO. In the context of construction project management, a balance in optimizing time, cost, and quality in 
multi-mode projects was achieved by Luong et al.46 through the application of opposition multiple objective 
DE. Further, a two-phase DE algorithm was developed by Cheng and  Tran47 for multi-criteria decision-making, 
primarily targeting the equilibrium between time and cost in resource-constrained projects. The power systems 
sector has not been untouched by OBL’s influence. Shaw et al.48 formulated an algorithm that harnesses OBL 
principles and integrates a gravitational search strategy, aiming to optimize both economic and emission 
objectives simultaneously. Furthermore, the integration of OBL into various other optimization algorithms has 
been witnessed. This includes its incorporation into the grasshopper optimization algorithm (GOA) by Ewees 
et al.49, and into the salp swarm algorithm (SSA) by Tubishat et al.50. Surveying the literature reveals a clear trend: 
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the integration of OBL can notably elevate the relative performance of numerous optimization algorithms across 
varied sectors. This positions OBL as a potent avenue warranting further exploration in upcoming research.

Novel version of SCA (nSCA)
In the nSCA, each solution position is defined by a series of variables, which collectively form sets of solutions. 
These sets, together with their associated positions, are systematically organized into a matrix configuration, 
as illustrated in Eq. (1). In a similar manner, the matrix of opposite solutions, which are produced during the 
exploration phase, is delineated in Eq. (2). Such matrix formulations aid in proficient handling and assessment 
of solutions within the algorithm, thereby promoting efficient exploration and optimization of the search space.

During the initial population generation phase, the OBL method, shown in Fig. 1, is employed to produce 
opposite solutions from those randomly generated, as illustrated in the pseudocode for nSCA in Table 1. The 
fitness function is subsequently applied to both the randomly generated solutions and their corresponding 
opposite solutions to identify the superior and inferior solutions. The superior solution is retained, while the 
inferior one is discarded, maintaining a consistent population size.

The opposite solution s∗ of the solution s ∈ [bl , bu] can be identified by:

where bl and bu denote the lower and upper boundary of alternative s.
For a solution S with d dimensions, where each dimension is within the range of [bl,j , bu,j] , an opposition 

solution S∗ = (s∗1 , s
∗
2 , s

∗
3 , . . . , s

∗
d) can be characterized by:

where bl,j and bu,j show the minimum and maximum limits of the jth dimension, respectively.
Following the update of the new solution set during the initial population generation phase, the solutions are 

sorted, and the current optimal solution is identified. Subsequently, the normalized fitness score for each solution 
is determined, playing a crucial role in the RWS mechanism, as depicted in Fig. 2. The normalized fitness score 
is derived using Eq. (5), and the RWS mechanism is mathematically expressed in Eq. (6). These computations 
and mechanisms play pivotal roles in selecting and advancing the exploration of solutions within the algorithm.
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Figure 1.  The OBL concept.
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The terms NF(Si) and F(Si) represent the normalized fitness score and fitness score of solution Si, respectively. 
The notation sji indicates the jth parameter of the ith solution, and sj1 represents the jth parameter of the best 
solution achieved so far. The variable σ2 corresponds to a stochastic number ranging between 0 and 1. Distinctive 
categorization of the optimization process into exploration and exploitation stages has emerged as a focal point 
in earlier studies. Such a division is characteristic of many population-based stochastic  methods9. Within 
the exploration phase, the optimization method employs a heightened degree of randomness, facilitating the 

(6)s
j
i =

{

s
j
1σ2 < NF(Si)

s
j
iσ2 ≥ NF(Si)

.

Table 1.  Pseudocode of the nSCA.

Input: Population size (N); number of iteration (Imax)
Begin
Generate random solutions;

OBL method for initial population generation phase
[
Generate opposite solutions (Eq. (4));

Compute the fitness score for each solution;

Update the new set of solutions (N solutions);

]
while (the termination condition remains unsatisfied) do

Sort solutions;

Normalize the fitness score of the solution;

Calculate sigma_1 (Eq. (8));

for (each solution i) do
for (each parameter j) do

RWS mechanism
[
Generate random value for sigma_2;

Update solutions by roulette wheel selection (Eq. (5) and Eq. (6));

]
Basic SCA

[
Generate random value for sigma_3;

Update solutions according to Eq. (7)

]
OBL method for exploitation phase

[
Generate random value for sigma_6;

Calculate jumping condition JC (Eq.(9))

if sigma_5 ≤ JC;

Generate opposite solution (Eq. (10)); 

end;           
Determine fitness score of each solution;

Choose the superior option (Eq. (11));

]
end;

end;
Update the best solution

end
Output: Optimal solution and its fitness score.
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amalgamation of solutions and quickening the identification of promising areas within the search domain. On 
the other hand, the exploitation phase witnesses subtle adjustments in the stochastic solutions, characterized by 
notably reduced stochastic fluctuations compared to the exploration phase. With regard to the SCA, mathematical 
formulas, encapsulated by Eq. (7), are outlined to update positions during both the exploration and exploitation 
phases. The value of these formulas stems from their role in directing the search trajectory of the SCA, ensuring 
an effective survey and utilization of the solution domain.

In Eq. (7), the location of current solution in the ith dimension at the tth iteration is represented by stj  . The 
movement direction is determined by σ1, while σ3 is a uniformly distributed random variable between 0 and 1. 
Additionally, σ4 is a stochastic variable that governs the magnitude of displacement towards or away from the 
destination, and σ5 is a random number used as the weight for the destination. The location of the target solution 
in the ith dimension is denoted by Dt

j  , and the absolute value is indicated by ||.
Figure 3 presents a comprehensive model that illustrates the effectiveness of sine and cosine functions within 

the range of [− 2, 2]. These functions facilitate an alternative to navigate within the area bounded by them or 
extend beyond it, facilitating flexible movement toward the desired objective. The figure highlights the dynamic 
nature of the sine and cosine ranges, which are instrumental in updating the solution positions. Moreover, the 
inclusion of a stochastic variable, σ4, in the range of 0 to 2π, as defined in Eq. (7), introduces a stochastic element 
into the process. This mechanism enhances exploration within the search space, enabling a more extensive 
exploration of potential solutions.

(7)st+1
j =







stj + σ1 × sin(σ4)×

�

�

�
σ5P

t
j − stj

�

�

�
σ3 < 0.5

stj + σ1 × cos(σ4)×

�

�

�
σ5P

t
j − stj

�

�

�
σ3 ≥ 0.5

.

Figure 2.  The RWS concept.

Figure 3.  The exploration and exploitation mechanisms of the SCA.
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Within each iteration, the range of the sine and cosine functions in Eq. (7) is dynamically adjusted to strike 
an optimal trade-off between exploitation and exploration (Fig. 4). This adaptive modification aims to efficiently 
identify fruitful spaces within the search area, ultimately enabling the attainment of the optimal solution. The 
adaptation process is governed by Eq. (8), where the constant value v is set to 2, Icur represents the current iteration 
number, and Imax denotes the maximum iteration number.

During the exploitation phase, as illustrated in the pseudocode of nSCA in Table 1, the solutions are 
updated using Eq. (7). Subsequently, a jumping condition, denoted as JC in Eq. (9), is employed to dynamically 
generate the opposite solution using Eq. (10). This procedure stands in contrast to the method adopted during 
the initial population generation phase. The objective equation evaluates both the original solution and its 
opposite, preserving the more optimal of the two and eliminating the less optimal. Such a practice guarantees 
the consistency of the population size, as articulated by Eq. (11).

where Si represents the ith solution; σ6 is a uniformly distributed random variable between 0 and 1; S∗i  represents 
the opposite solution of the ith solution created by OBL.

Analysis of performance
In the realm of optimization, particularly in the exploration of evolutionary algorithms and metaheuristics, 
the efficacy of these algorithms is required to be validated to ensure their applicability in addressing real-world 
challenges. The performance of these optimization techniques is often benchmarked using specific test cases 
or established benchmark problems. Such benchmarks are provided to allow for a consistent platform, thereby 
facilitating an objective and uniform comparison across various algorithms. For the purposes of this research, 
the CEC 2019 and CEC 2021 test functions have been employed. These functions have been utilized to gauge the 
performance of nSCA in comparison to other well-established metaheuristic techniques.

CEC 2019 test functions
The CEC 2019 dataset consists of ten complex composition functions within the  suite51. For addressing large-scale 
optimization problems, these functions have been employed. The first three functions, F1 to F3, are characterized 
by various dimensions, as depicted in Table 2. In contrast, the functions F04 to F10 are set as 10-dimensional 
minimization challenges within the scope of [− 100, 100], and they have undergone shifts and rotations. Every 
function within the CEC 2019 is scalable, with the global optimum of these functions established at 1.

Results for the CEC 2019 test functions of nSCA, along with six other established metaheuristic algorithms 
(GA, PSO, MFO, ALO, MVO, and the original SCA), are provided in Tables 3 and 4. Each of the test functions 
was solved 30 times, with 50 search agents being utilized over 300 iterations. For the evaluation of nSCA’s 

(8)σ1 = v − Icur
v

Imax
.

(9)JC = −

(

Icur

Imax

)2

+ 2

(

Icur

Imax

)

,

(10)Create opposite solution S∗i of Si if σ6 < JC,

(11)Snew =

{

Si if F(Si) is superior solution
S∗i if F

(

S∗i
)

is superior solution
,

Figure 4.  The range of sine and cosine exhibits a decreasing pattern.
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performance, two essential statistical metrics, the average value (avg) and standard deviation (std), were 
determined.

In Tables 3 and 4, superiority in the majority of the CEC 2019 test cases was demonstrated by nSCA. An 
average value smaller than that of SCA, MFO, PSO, and GA in all 10 CEC 2019 test functions was attained by 
nSCA. In 9 of the CEC 2019 test functions, a smaller average value than that of MVO was achieved by nSCA. In 

Table 2.  CEC 2019 test functions.

Function Name ndim Range fmin

F1 Storn’s Chebyshev polynomial fitting problem 9 [− 8192, 8192] 1

F2 Inverse Hilbert matrix problem 16 [− 16,384, ,16384] 1

F3 Lennard–Jones minimum energy cluster problem 18 [− 4, 4] 1

F4 Shifted and rotated Rastrigin’s function 10 [− 100, 100] 1

F5 Shifted and rotated Griewank’s function 10 [− 100, 100] 1

F6 Shifted and rotated Weierstrass function 10 [− 100, 100] 1

F7 Shifted and rotated Schwefel’s function 10 [− 100, 100] 1

F8 Shifted and rotated expanded Schaffer’s F6 function 10 [− 100, 100] 1

F9 Shifted and rotated happy cat function 10 [− 100, 100] 1

F10 Shifted and rotated ackley function 10 [− 100, 100] 1

Table 3.  Statistical results obtained from different algorithms on CEC 2019 test functions.

Algorithm/function Statistical metrics F1 F2 F3 F4 F5

nSCA
avg 1.0000E+00 4.4360E+00 1.8642E+00 1.4672E+01 1.0438E+00

std 5.3101E−10 4.1999E−02 2.5608E−01 2.3899E+00 1.4185E−02

GA
avg 3.2648E+05 4.5220E+02 7.6939E+00 1.1665E+02 1.4314E+00

std 1.1632E+05 3.4891E+01 5.6725E−02 1.2830E+01 5.4219E−02

PSO
avg 1.3819E+07 9.0960E+02 1.0444E+01 2.4056E+02 1.9162E+00

std 2.1059E+07 3.2540E+02 5.6372E−01 1.7613E+02 2.0756E−01

SCA
avg 2.2568E+05 2.6646E+02 5.1290E+00 1.2443E+02 1.5491E+00

std 3.0806E+05 6.7367E+01 1.0833E+00 2.4558E+01 9.7463E−02

MFO
avg 3.3762E+08 2.1620E+03 1.0816E+01 8.6194E+03 3.9494E+00

std 1.3608E+08 5.6290E+02 4.8941E−01 3.4470E+03 6.7227E−01

ALO
avg 2.5662E+06 4.2218E+02 5.0445E+00 3.0418E+01 1.3248E+00

std 2.0764E+06 2.1465E+02 2.4198E+00 1.2777E+01 2.0214E−01

MVO
avg 1.6838E+06 2.6842E+02 7.5775E+00 2.9282E+01 1.1843E+00

std 1.5459E+06 1.3917E+02 1.8665E+00 1.0332E+01 8.2334E−02

Table 4.  Statistical results obtained from different algorithms on CEC 2019 test functions.

Algorithm/function Statistical metrics F6 F7 F8 F9 F10

nSCA
avg 9.3824E+00 1.0001E+00 1.0000E+00 1.2184E+00 1.9098E+01

std 4.0091E−01 6.2581E−05 8.5380E−11 3.6162E−02 5.4587E+00

GA
avg 1.0651E+01 5.9839E+01 1.0119E+00 7.1370E+00 2.1416E+01

std 1.4966E−01 5.8617E+01 4.6964E−03 4.3181E−01 1.7170E−02

PSO
avg 1.1121E+01 6.8933E+01 1.0008E+00 3.0083E+00 2.1452E+01

std 5.1184E−01 8.7810E+01 9.1039E−04 3.2582E+00 2.6011E−01

SCA
avg 1.1069E+01 6.3272E+00 1.0020E+00 4.8350E+00 2.0601E+01

std 5.8813E−01 1.7654E+00 8.6689E−04 8.1033E−01 2.5256E+00

MFO
avg 1.0302E+01 6.0386E+02 1.2980E+00 5.7099E+02 2.1465E+01

std 1.2608E+00 1.4460E+02 1.1544E−01 2.0007E+02 1.1999E−01

ALO
avg 5.3504E+00 4.4431E+01 1.0000E+00 1.3973E+00 2.1038E+01

std 1.4560E+00 1.8339E+02 2.4321E−11 2.2292E−01 8.2668E−02

MVO
avg 7.4261E+00 6.1456E+01 1.0000E+00 1.5303E+00 2.1103E+01

std 1.2525E+00 2.0799E+02 8.7431E−07 1.6057E−01 4.3663E−02
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8 of the CEC 2019 test functions, a smaller average value than that of ALO was recorded by nSCA. The benefits of 
combining the RWS and OBL mechanisms were observed, as they aided in the initial exploration and contributed 
to the final convergence of the solutions identified early in the exploration phase.

CEC 2021 test functions
For a comprehensive assessment, the effectiveness of nSCA was benchmarked against an array of state-of-the-art 
algorithms, utilizing the sophisticated functions delineated in the IEEE CEC 2021 test suite. The performance of 
nSCA was scrutinized based on shifted, rotated, and biased functions within this suite, spanning 10 dimensions, 
as detailed in Table 5. This methodology was employed to offer a deeper understanding of the capabilities of 
nSCA by setting it in direct comparison with other renowned algorithms such as GA, PSO, MFO, ALO, MVO, 
and the foundational SCA. In-depth insights into the IEEE CEC 2021 test suite can be found in Ref.52.

Results of the CEC 2021 test functions for nSCA, alongside six other well-regarded metaheuristic algorithms 
(GA, PSO, MFO, ALO, MVO, and the original SCA), are elucidated in Tables 6 and 7. Following the approach 
used in the CEC 2019 test function assessment, each function underwent 30 trials, with the deployment of 50 
search agents throughout 300 iterations. For the purpose of gauging the performance of nSCA, two statistical 
metrics, namely the average value (avg) and standard deviation (std), were extracted.

Tables 6 and 7 reveal the dominance of nSCA across a significant portion of the CEC 2021 test cases. 
Specifically, nSCA secured an average value lower than those of MFO, PSO, and GA across all 10 CEC 2021 test 
functions. Moreover, in 9 out of these 10 functions, nSCA surpassed the original SCA. In a comparison with ALO, 
nSCA managed to record a lower average in 8 functions, whereas MVO achieved this distinction in 6 functions.

Figure 5 offers a visual depiction of the convergence trajectories of both nSCA and its original version, SCA, 
across the CEC 2021 test functions. From Fig. 5, it is clear that nSCA significantly excels over the original SCA 
in terms of identifying superior solutions. Additionally, as evidenced in Fig. 5, the effectiveness of nSCA in 
locating the global optimal solution and avoiding local optima is attributed to its integration of the RWS and 
OBL mechanisms. These mechanisms not only enable nSCA to induce sudden shifts in solution vectors but also, 
through the juxtaposition of fitness values between original and OBL-generated solutions, facilitate the retention 

Table 5.  CEC 2021 test functions.

Function Name ndim Range fmin

F1 Shifted and rotated Bent cigar function (F1 CEC-2017) 10 [− 100, 100] 100

F2 Shifted and rotated Schwefel’s function (F11 CEC-2014) 10 [− 100, 100] 1100

F3 Shifted and rotated Lunacek bi-Rastrigin function (F7 CEC-2017) 10 [− 100, 100] 700

F4 Expanded Rosenbrock’s plus Griewangk’s function (F15 CEC-2014) 10 [− 100, 100] 1900

F5 Hybrid function 1 (F17 CEC-2014) 10 [− 100, 100] 1700

F6 Hybrid function 2 (F15 CEC-2017) 10 [− 100, 100] 1600

F7 Hybrid function 3 (F21 CEC-2014) 10 [− 100, 100] 2100

F8 Composition function 1 (F21 CEC-2017) 10 [− 100, 100] 2200

F9 Composition function 2 (F23 CEC-2017) 10 [− 100, 100] 2400

F10 Composition function 3 (F24 CEC-2017) 10 [− 100, 100] 2500

Table 6.  Statistical results obtained from different algorithms on CEC 2021 test functions.

Algorithm/function Statistical metrics F1 F2 F3 F4 F5

nSCA
avg 2.6139E+06 9.7566E+04 2.2058E+04 1.9034E+03 6.1125E+03

std 3.8102E+06 7.6190E+04 1.7970E+04 8.7061E−01 1.4966E+03

GA
avg 1.0005E+08 5.1855E+09 3.0612E+09 1.9675E+03 2.4600E+04

std 1.7850E+08 1.3072E+10 1.0216E+10 7.3585E+01 9.1165E+03

PSO
avg 9.5844E+07 2.4241E+09 2.9732E+09 1.9891E+03 1.7675E+05

std 2.6058E+08 4.3878E+09 6.7726E+09 2.3611E+02 1.5460E+05

SCA
avg 3.3244E+07 2.1955E+09 4.6439E+08 1.9043E+03 1.5350E+04

std 1.5347E+07 9.4690E+08 2.1793E+08 6.9655E−01 7.1861E+03

MFO
avg 5.7981E+09 6.8269E+11 2.1017E+11 1.7674E+04 9.3913E+05

std 2.2265E+09 3.3572E+11 8.4213E+10 2.7271E+04 7.9781E+05

ALO
avg 2.0900E+03 3.2377E+05 7.5700E+04 1.9021E+03 4.3610E+04

std 2.2000E+03 3.8084E+05 7.5302E+04 1.1604E+00 3.9773E+04

MVO
avg 1.1209E+04 5.1402E+06 5.3232E+05 1.9022E+03 2.1333E+04

std 8.7490E+03 9.8699E+05 5.2583E+05 6.4910E−01 6.1424E+03
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of more favorable options. This capability equips nSCA to discern promising zones within the search landscape, 
ensuring a thorough exploration and the subsequent identification of optimal outcomes.

Practical application of nSCA
The primary objective of this section is to evaluate the effectiveness of nSCA in addressing a range of practical 
technical optimization challenges characterized by multiple inequality constraints. The emphasis lies in 
understanding the ability of nSCA to adeptly manage these constraints during the optimization procedure.

Cantilever beam design problem
Figure 6 presents a visual depiction of five parameters that define the cross-sectional geometry of cubes within 
the beam. This particular beam is assembled from five distinct square blocks. While the foremost block remains 
fixed, the fifth one is subjected to a vertical load. The central objective of this optimization task is to minimize 
the weight of a cantilever beam composed of hollow square blocks. Subsequent equations elaborate on the 
mathematical underpinnings that frame this complex challenge. Within the nSCA framework, any solution that 
fails to satisfy the constraints is penalized by assigning it an exceptionally large fitness value. The incorporation 
of OBL and RWL techniques, which facilitate abrupt adjustments to the non-conforming solution, primes the 
algorithm to generate an improved, compliant solution from its predecessor. Such methodologies empower the 
nSCA to channel its search in the direction of solutions that comply with the established constraints.

Consider:

Minimize:

Subject to:

Variable range:

Table 8 provides a detailed evaluation of the results pertaining to the problem. Evidently, nSCA consistently 
produces solutions that either match or surpass the performance of advanced optimization techniques such as 
SCSO,  PSO53,  RCGO54,  ERHHO55,  GSA56,  GCA_I57,  GCA_II57 and  MMA57. This observation underscores the 
formidable capability of the algorithm in adeptly addressing and optimizing complex constrained challenges. 
Furthermore, these outcomes highlight the practical utility of nSCA in sectors like engineering and related fields, 
emphasizing its competence in navigating challenging problem landscapes.

Truss structure design problem using continuous variables
Truss optimization represents a complex facet of structural engineering and design, focused primarily on 
discerning the most resource-efficient configurations for truss structures. Defined as skeletal assemblies 
composed of straight members intersecting at joints, trusses are foundational in both architectural and civil 

(12)−→x = [x1x2x3x4x5].

(13)f
(−→x

)

= 0.6224(x1 + x2 + x3 + x4 + x5).

(14)g
(−→x

)

=
61

x31
+

27

x32
+

19

x33
+

7

x34
+

1

x35
− 1 ≤ 0.

(15)0.01 ≤ x1, x2, x3, x4, x5 ≤ 100.

Table 7.  Statistical results obtained from different algorithms on CEC 2021 test functions (continued).

Algorithm/function Statistical metrics F6 F7 F8 F9 F10

nSCA
avg 2.1239E+03 6.3754E+03 2.3024E+03 2.5968E+03 3.0088E+03

std 2.9213E+02 2.2236E+03 9.3241E−01 1.7917E+01 1.8385E+01

GA
avg 4.8594E+03 7.1530E+03 2.3345E+03 3.1832E+03 3.1595E+03

std 3.7275E+03 5.2281E+03 1.1242E+01 8.3419E+02 4.1794E+01

PSO
avg 7.2962E+03 1.5042E+05 2.3130E+03 3.0133E+03 3.0895E+03

std 5.0285E+03 5.4994E+05 4.4205E+00 3.3501E+02 6.3185E+01

SCA
avg 2.9617E+03 1.1761E+04 2.3087E+03 2.8274E+03 3.0072E+03

std 1.0790E+03 4.5072E+03 1.1630E+00 8.4929E+01 1.1181E+01

MFO
avg 2.9666E+04 7.2657E+06 2.3457E+03 5.5363E+03 3.4342E+03

std 1.7217E+04 6.1941E+06 9.3688E+00 6.0756E+02 2.1886E+02

ALO
avg 6.2181E+03 2.5595E+04 2.3075E+03 2.5974E+03 3.0110E+03

std 5.7222E+03 2.6519E+04 2.9237E+00 3.3996E+01 3.7818E+01

MVO
avg 2.4545E+03 2.3408E+03 2.3036E+03 2.6071E+03 2.9798E+03

std 2.1974E+03 2.3907E+02 1.8328E+00 5.2987E+01 2.5083E+01
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engineering realms. They play a crucial role in supporting various types of loads, especially in the contexts of 
buildings, bridges, and other diverse structural entities.

The primary goal of truss optimization is to conceive a truss design capable of bearing the stipulated loads with 
the least material consumption. This efficiency is attained by fine-tuning the section of each truss member. The 
aim is to ensure that every member endures minimal stress while abiding by specific design constraints. Within 
truss optimization, the design variables encompass the cross-sectional areas of the truss members, the precise 

Figure 5.  Convergence behavior of nSCA and SCA on CEC 2021 test functions.
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locations of the joints, and a myriad of geometric parameters delineating the truss’s shape and configuration. The 
mathematical representations pertinent to this optimization challenge can be delineated as follows:

Consider:

Objective function:

Subject to:

In Eq. (17), W denotes the total weight of the truss structure. γi represents the material density of the ith truss 
member, while Ai and Li signify the cross-sectional area and length of the ith member, respectively. N stands for 
the total number of members in the truss structure. Equation (18) is imperative for ensuring that the truss design 
complies with the stress constraints. Within this equation, σi refers to the stress experienced by the ith member. 
σmin and σmax are, respectively, the minimum and maximum permissible stresses. Equation (19) is formulated to 
ascertain that the truss design adheres to the deflection constraints. In this context, δj is the deflection at the jth 
node, and δmin and δmax correspond to the minimum and maximum allowable deflections, respectively. Lastly, 
Eq. (20) ensures that the truss design remains within the geometric constraints. For this equation, Ai is the cross-
sectional area of the ith member, and Amin and Amax represent the smallest and largest permissible cross-sectional 
areas for the truss members, respectively.

To provide an unbiased comparison among truss design problems, the necessity of multiple independent 
evaluations was emphasized. Consequently, ten independent runs were undertaken. In each instance, a group 
of 50 search agents was utilized, with each agent progressing through 250 iterations.

(16)−→x = [x1x2 . . . xN ].

(17)f
(−→x

)

= W =

N
∑

i=1

γiLiAi .

(18)σmin ≤ σi ≤ σmax,

(19)δmin ≤ δj ≤ δmax,

(20)Amin ≤ Ai ≤ Amax.

Figure 6.  Cantilever beam design problem.

Table 8.  The best design obtained by different algorithms on cantilever beam design problem.

Optimization technique

Optimal parameters

Optimal weightx1 x2 x3 x4 x5

nSCA (This study) 5.944606 4.865280 4.503500 3.492579 2.134620 1.303342

SCSO53 6.0164 5.3060 4.4935 3.5059 2.1516 1.339952

PSO53 6.0040 5.2950 4.4915 3.5125 2.1710 1.339983

RCGO54 6.020877 6.020877 6.020877 6.020877 6.020877 1.33996

ERHHO55 6.0509 5.2639 4.514 3.4605 2.1878 1.3402

GSA56 5.6052 4.9553 5.6619 3.1959 3.2026 1.41

GCA_I57 6.0100 5.3000 4.4900 3.4900 2.1500 1.3400

GCA_II57 6.0100 5.3000 4.4900 3.4900 2.1500 1.3400

MMA57 6.0100 5.3000 4.4900 3.4900 2.1500 1.3400
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10‑Bar truss structure design problem
In order to benchmark the performance of the nSCA in comparison with other optimization techniques tailored 
for continuous variables, an augmented 10-bar truss design is introduced, as illustrated in Fig. 7. This design 
specification permits the truss’s cross-sectional areas to vary between a range of 0.1  in2 and 35.0  in2.

The material selected for this truss possesses distinctive characteristics. Specifically, it carries a unit weight 
of 0.1 lb/in3 and is characterized by a modulus of elasticity set at  107 psi.

The design of the truss is governed by certain predefined conditions:

• The stress magnitudes in any given truss member must not surpass an acceptable range of ± 25 ksi.
• All nodal deflections, be they vertical or horizontal, must be confined within a limit of ± 2.0 in.

These predetermined conditions aim to guarantee the truss’s peak performance, ensuring it is consistent with 
its established design criteria and operational requirements.

Table 9 presents a comparative analysis of the optimal solution obtained using nSCA alongside results from 
various other optimization techniques. It is significant to highlight that the results derived from  PSO62 and  HS61 
are characterized by constraint violations. When utilizing nSCA, the design records a weight of 5061.0548 lb after 
10,950 equation evaluations and presents a standard deviation (SD) of 0.5491. Such performance is superior to 
that of both  EHS59 and  SAHS59. Although the design from ABC-AP60 has a weight of 5060.88 lb and emerges as 

Figure 7.  10-Bar truss structure problem.

Table 9.  The best design obtained by different algorithms on the 10-bar truss structure using continuous 
variables.

Variables  (mm2) nSCA TLBO 58 SAHS 59 EHS 59 ABC-AP 60 HS 61 PSO 62

1 30.265338 30.6684 30.394 30.208 30.548 30.150 29.999

2 0.100000 0.1000 0.100 0.100 0.100 0.102 0.100

3 23.301629 23.1584 23.098 22.698 23.180 22.710 23.268

4 15.361201 15.2226 15.491 15.275 15.218 15.270 15.129

5 0.100000 0.1000 0.100 0.100 0.100 0.102 0.100

6 0.561455 0.5421 0.529 0.529 0.5510 0.544 0.554

7 20.947396 21.0255 21.189 7.558 21.058 21.560 21.232

8 7.426226 7.4654 7.488 21.559 7.4630 7.541 7.454

9 0.100000 0.1000 0.100 0.100 0.100 0.100 0.100

10 21.656878 21.4660 21.342 21.491 21.501 21.450 21.670

Optimal weight (lb) 5061.0548 5060.973 5061.42 5062.39 5060.88 5057.88 5059.85

Mean weight (lb) 5061.8713 5064.808 5061.95 5063.73 N/A N/A 5067.51

SD 0.5491 6.3707 0.71 1.98 N/A N/A 17.509

NFEmax 12,500 N/A 30,000 30,000 N/A N/A N/A

Best NFE 10,950 13,767 7081 9791 500,000 20,000 10,194

Constraint tolerance (%) None None None None None 0.191 0.109
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the most optimal on the scale, it necessitates an extensive 500,000 function evaluations. Conversely, the design 
from  TLBO58 with a weight of 5060.973 lb, aligns closely with the outcome from ABC-AP60 but necessitates 
13,767 function evaluations. From the data collated in Table 9, nSCA not only produces a solution comparable 
to those of other renowned algorithms but also excels in terms of computational efficiency.

25‑Bar truss structure design problem
The 25-bar truss problem, as illustrated in Fig. 8, encompasses two distinct load scenarios, detailed in Table 10. 
This truss structure is divided into eight symmetrical segments, with each segment subject to its own stress 
limitations as outlined in Table 11.

The selected material for the truss structure possesses the following attributes:

• A density of 0.1 lb/in3.
• A modulus of elasticity of 10,000 ksi.

Figure 8.  25-bar truss structure problem.

Table 10.  Multiple loading cases for 25-bar truss structure using continuous variables.

Case Note Px (kips) Py (kips) Py (kips)

1

1 1.0 10.0  − 5.0

2 0.0 10.0  − 5.0

3 0.5 0.0 0.0

6 0.5 0.0 0.0

2
1 0.0 20.0  − 5.0

2 0.0  − 20.0  − 5.0
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Constraints on nodal movements have been enforced, ensuring displacements do not exceed ± 0.35 inches in 
any x, y, or z direction. These constraints are grounded in the findings presented in Ref.63.

In this problem, the design variables are continuous. Moreover, the bars within the truss can have cross-
sectional areas ranging from a minimum of 0.01  in2 to a maximum of 3.40  in2. This range facilitates the 
optimization of the truss within the prescribed constraints and stipulations.

Table 12 offers a comprehensive comparison between the designs produced using nSCA and those generated 
by other optimization techniques. Notably, the most efficient 25-bar truss configuration realized by nSCA 
weighs 545.1630 lb, ascertained following 10,350 evaluation equations, accompanied by a standard deviation 
(SD) of 0.1820. From the information provided in Table 12, it becomes evident that nSCA surpasses several 
other techniques, including  PSO64,  MSPSO64,  HSPSO65,  IRO66,  TLBO58, ACO 67 and  STA68. This assessment 
underscores the capability of nSCA in achieving superior performance and computational efficiency, particularly 
in the context of the 25-bar truss problem with continuous variables, thereby solidifying its edge over other 
metaheuristic methodologies.

Capacity vehicle routing problem
The capacitated vehicle routing problem (CVRP), inherently discrete in nature, holds a foundational topic 
within the realms of operations research and logistics, as evidenced by a comprehensive body of  research69. 
Essentially, the CVRP seeks to identify the most efficient strategy for distributing goods from a singular depot 
to a predetermined set of customers. This task is accomplished by deploying a fleet of vehicles, each of which 
returns to the depot after its delivery. This concept can be succinctly captured in a mathematical formulation:

Consider:

Objective function:

D = total distance travelled by all units,

xijt =

{

1, vehicle t depart from i to j
0, otherwise

; yit =

{

1, customer i is served byunitt
0, otherwise

.

Table 11.  Element groups and corresponding allowable stresses for 25-bar truss structure using continuous 
variables.

Group Elements Compression (ksi) Tension (ksi)

1 A1 35.092 35.0

2 A2–A5 11.590 35.0

3 A6–A9 17.305 35.0

4 A10, A11 35.092 35.0

5 A12, A13 35.092 35.0

6 A14–A17 6.759 35.0

7 A18–A21 6.959 35.0

8 A22–A25 11.082 35.0

Table 12.  The best design obtained by different algorithms on the 25-bar truss structure using continuous 
variables.

Variables  (in2) nSCA (This study) STA 68 TLBO 58 IRO 66 MSPSO 64 PSO 64 HSPSO 65 ACO 67

Group 1 0.010003 0.0102 0.0100 0.0112 0.01 0.01 0.010 0.01

Group 2 1.985021 1.9866 1.9878 1.9766 1.9848 1.9503 1.970 2.0000

Group 3 2.996736 2.9943 2.9914 3.0099 2.9956 3.0408 3.016 2.966

Group 4 0.010000 0.01 0.0102 0.01 0.01 0.01 0.01 0.01

Group 5 0.010001 0.01 0.0100 0.01 0.01 0.01 0.01 0.012

Group 6 0.683104 0.6835 0.6825 0.6842 0.6852 0.6929 0.694 0.689

Group 7 1.677167 1.677 1.6775 1.6783 1.6778 1.6866 1.681 1.679

Group 8 2.662307 2.6626 2.6640 2.6571 2.6599 2.6362 2.643 2.668

Optimal weight (lb) 545.1630 545.175 545.175 545.19 545.172 545.22 545.19 545.53

Mean weight (lb) 545.3234 552.43 545.483 545.35 546.03 549.96 N/A 546.34

SD 0.1820 14.08 0.306 N/A 0.8 9.91 N/A 0.94

NFEmax 12,500 12,000 N/A 15,000 25,000 25,000 150,000 16,500

Best NFE 10,350 11,985 12,199 12,200 10,800 18,400 12,500 4700
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where xijt is a binary variable that indicates the selection of a route. Specifically, xijt is set to 1 if the route between 
customer i and customer j is chosen by the tth vehicle, and 0 otherwise. cij denotes the cost associated with 
traveling from customer i to customer j.

As outlined by Shan and  Wang70, the CVRP operates under two principal constraints:

• Single visit requirement Each customer must be serviced exactly once, ensuring not just efficiency, but also 
punctuality in deliveries.

  Equations (22) and (23) collaboratively ensure that each vehicle follows a unique route to serve every 
customer. Specifically, Eq. (22) mandates that each customer is visited only once, while Eq. (23) dictates 
that every vehicle must cater to at least one customer. In the context of Eq. (24), it is stipulated that a given 
customer can only be served by a single vehicle. However, an exception is carved out for the central depot or 
warehouse, which may be accessed by h vehicles, signifying the total fleet allocated for the operation.

• Vehicle capacity constraint Every vehicle within the fleet possesses a predetermined carrying capacity. As 
a result, the cumulative volume or weight of goods allocated to a particular route must not surpass this 
stipulated capacity.

  Equation (25) enforces a restriction on the carrying capacity of each vehicle, ensuring that it does not 
surpass its predetermined volume or weight during any given trip. Within this equation, gi represents the 
demand of the ith client, with i varying from 1 through k—the total number of clients. The term h symbolizes 
the entire count of vehicles engaged in the operation. Concurrently, qt designates the capacity of the tth 
vehicles, with t ranging from 1 to h.

8‑Customer problems
In this problem, there exists a central warehouse serving eight distinct customers. Two trucks, each boasting a 
carrying capacity of eight units, are deployed for this operation. Relevant data encompassing the distance matrix 
and individual customer demands are detailed in Table 13. The primary objective centers around optimizing the 
delivery routes for these trucks, aiming to minimize the total distance covered while concurrently respecting the 
inherent constraints of the VRP. To ensure robustness and maintain consistency in results, every algorithm was 
run 20 times, employing 20 search agents, and was subjected to a total of 50 iterations.

Table 14 presents a comparative analysis of results derived from various algorithms. Among them, nSCA 
distinguished itself by exhibiting exceptional efficiency. This superior performance becomes evident when 

(21)MinD =

k
∑

i=0

k
∑

j=0

h
∑

t=1

cijxijt ,

(22)
k

∑

i=0

xijt = yjt; j = 1, 2, . . . , k; t = 1, 2, . . . , h,

(23)
k

∑

i=0

xijt = yit; j = 1, 2, . . . , k; t = 1, 2, . . . , h,

(24)
h

∑

t=1

yit =

{

1; i = 1, 2, 3, . . . , k
h; i = 0

}

.

(25)
k

∑

i=0

giyit ≤ qtyit; t = 1, 2, . . . , h.

Table 13.  Distance matrix and delivery requirements of 8-customer problem 71.

Node 0 1 2 3 4 5 6 7 8 Demand

0 0 4 6 7.5 9 20 10 16 8

1 4 0 6.5 4 10 5 7.5 11 10 1

2 6 6.5 0 7.5 10 10 7.5 7.5 7.5 2

3 7.5 4 7.5 0 10 5 9 9 15 1

4 9 10 10 10 0 10 7.5 7.5 10 2

5 20 5 10 5 10 0 7 9 7.5 1

6 10 7.5 7.5 9 7.5 7 0 7 10 4

7 16 11 7.5 6 7.5 9 7 0 10 2

8 8 10 7.5 15 10 7.5 10 10 0 2
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considering its average percentage deviation (APD) from the optimal result. The most favorable solution 
identified for this specific problem had a total travel distance of 67.5 units. With an APD value of 0.33%, nSCA 
surpassed the performances of the original  SCA36,  DA36,  ALO36,  PSO36,  MHPSO71,  DPGA71, and  SGA71. Their 
corresponding APD values were recorded as 0.78%, 1.81%, 2.44%, 2.15%, 2.04%, 3.04%, and 4.33%, respectively. 
Such data distinctly emphasize the robustness of nSCA, especially in addressing discrete problem-solving 
challenges.

Figure 9 features a boxplot that contrasts nSCA with other metaheuristic methods, accentuating the efficacy 
of nSCA. The detailed routing for the two vehicles, representing the optimal solution, can be found in Table 15. 
For enhanced visual comprehension, this routing is also depicted graphically in Fig. 10.

Real CVRP in Vietnam: 16‑customer problems
In a practical application of the CVRP, delivery data from a delivery company in Vietnam was analyzed. Serving 
16 customers through a hub-and-spoke distribution model, the supplier operates a fleet of three delivery vehicles, 
each with a carrying capacity of 70 units. Distinguished from the traditional TSP, this case introduces added 
complexity due to the presence of multiple vehicles and capacity constraints. Distance and demand data for the 
16 customers were processed and converted into a distance matrix, as detailed in Table 16.

The core objective of this study revolves around optimizing the delivery process for a set of 16 customers 
using a fleet comprising three vehicles. The goal is to curtail the overall distance covered while staying within 
the boundaries of the CVRP constraints. This challenge was tackled using nSCA, alongside other esteemed 
algorithms like GA, PSO, MFO, ALO, MVO, and the original SCA. To ensure a balanced comparison, each 
algorithm underwent 20 runs, deploying 50 search agents, and spanning 400 iterations for all CVRP test 
instances. The outcomes generated by nSCA and the other methodologies are detailed in Table17.

Table 14.  Results of different algorithms on 8-customer problem.

Algorithm
Solution set obtained by 
algorithm Max Min Mean Standard deviation APD (%)

nSCA (This study)

67.5 68 67.5 67.5 67.5

68.5 67.5 67.725 0.33 0.33
68.5 67.5 67.5 67.5 67.5

68.5 68 68 68 68

67.5 67.5 67.5 67.5 67.5

SCA36

69 68 69 68 68

69.5 67.5 68.025 0.60 0.78
68 69.5 67.5 67.5 68

69 68 67.5 67.5 67.5

68 67.5 68 67.5 67.5

DA36

71.5 67.5 71.5 68 67.5

71.5 67.5 68.725 1.30 1.81
69 70 70.5 68 69

70 67.5 67.5 69 68

67.5 68 68 67.5 69

ALO36

71.5 68 71.5 68 67.5

71.5 67.5 69.15 1.38 2.44
69 70 70.5 68 69

70 68 71 69 68

71.5 68 68 67.5 69

PSO36

67.5 70 70 69 69

70 67.5 68.95 0.89 2.15
68 69 70 70 68.5

68.5 68.5 67.5 68 70

70 67.5 69.5 69 69.5

MHPSO71

69.5 67.5 69 69 70

70 67.5 68.875 0.97 2.04
69.5 70 69 67.5 67.5

69 69.5 69 70 67.5

70 69 67.5 70 67.5

DPGA71

70 69 67.5 71 69

72 67.5 69.55 1.36 3.04
70.5 72 67.5 71.5 69

67.5 69 71 70 67.5

70.5 69 69.5 71 69

SGA71

69 72 73.5 69 70

75.5 67.5 70.425 2.03 4.33
71 67.5 69 69 75.5

70 69.5 69 73 69

74 70 69.5 69 70
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As evident from Table 17, nSCA clearly stands out in terms of efficiency. The optimal solution for this 
problem, identified using nSCA, corresponded to a total travel distance of 463 units. nSCA showcased an APD 
value of 8.80%, which was superior to the performances of the original SCA, GA, PSO, ALO, MFO, and MVO. 
The APD values for these methods were observed to be 26.29%, 40.19%, 29.42%, 45.81%, 28.64%, and 33.46%, 
respectively. This information underscores the strengths of nSCA, particularly when confronted with large-scale 
discrete problem-solving scenarios.

Figure 9.  Boxplot of nSCA, SCA, DA, ALO, PSO, MHPSO, DPGA, and SGA on 8-customer problem.

Table 15.  Routing of vehicles and distance obtained by nSCA on 8-customer problem.

Routes of the vehicles on 8-customer problem Distance

Route 1. 0 → Customer 1 → Customer 3 → Customer 5 → Customer 8 → Customer 2 → 0 34

Route 2. 0 → Customer 6 → Customer 7 → Customer 4 → 0 33.5

Total distance: 67.5 units

Figure 10.  Best solution of the 8-customer problem.
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Table 16.  Distance matrix and delivery requirements of 16-customer problem.

Node 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 Demand

0 0 67 54 33 15 50 51 46 40 12 48 61 25 52 42 43 45 0

1 67 0 121 35 64 116 96 74 48 58 50 85 91 70 31 110 55 13

2 54 121 0 87 60 17 61 77 88 64 93 86 31 86 94 13 88 4

3 33 35 87 0 35 81 65 47 34 23 30 61 57 47 11 76 33 5

4 15 64 60 35 0 60 66 60 28 22 57 75 35 65 45 52 56 10

5 50 116 17 81 60 0 45 63 89 58 82 70 26 72 87 11 76 3

6 51 96 61 65 66 45 0 25 89 49 49 26 42 33 65 49 43 12

7 46 74 77 47 60 63 25 0 76 38 25 16 50 9 43 64 19 15

8 40 48 88 34 28 89 89 76 0 40 64 92 63 79 44 80 66 17

9 12 58 64 23 22 58 49 38 40 0 36 53 34 43 30 53 34 6

10 48 50 93 30 57 82 49 25 64 36 0 35 62 20 22 80 6 12

11 61 85 86 61 75 70 26 16 92 53 35 0 62 15 56 73 30 7

12 25 91 31 57 35 26 42 50 63 34 62 62 0 59 63 19 58 13

13 52 70 86 47 65 72 33 9 79 43 20 15 59 0 41 73 15 8

14 42 31 94 11 45 87 65 43 44 30 22 56 63 41 0 82 26 9

15 43 110 13 76 52 11 49 64 80 53 80 73 19 73 82 0 75 10

16 45 55 88 33 56 76 43 19 66 34 6 30 58 15 26 75 0 14

Table 17.  Results of different algorithms on 16-customer problem.

Algorithm
Solution set obtained by 
algorithm Max Min Mean Standard deviation APD (%)

nSCA

553 568 473 514 463

568 463 503.75 31.5 8.80
488 528 468 519 479

492 515 465 537 489

486 510 463 554 511

SCA

595 518 571 528 582

665 518 584.7 40.9 26.29
614 665 561 620 588

594 658 542 616 546

575 647 540 565 569

GA

719 712 569 622 632

730 569 649.1 46.2 40.19
730 692 629 625 597

706 649 677 626 600

632 670 641 680 574

PSO

612 620 658 570 599

658 552 599.2 26.3 29.42
605 605 568 560 597

610 628 622 552 593

600 638 569 593 585

ALO

706 731 706 605 622

731 605 675.1 32.1 45.81
662 727 689 665 666

640 636 649 672 700

689 680 687 685 685

MFO

518 550 570 589 693

699 518 595.6 50.0 28.64
532 591 579 575 658

538 594 699 611 570

544 622 593 655 631

MVO

552 644 582 676 625

687 551 617.9 42.9 33.46
560 551 687 632 617

576 655 686 631 609

584 586 604 680 621
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Figure 11 provides additional evidence underscoring the superiority of nSCA, with its data distribution clearly 
outpacing other algorithms. The specific routing for the two vehicles, illustrating the optimal solution ascertained 
by nSCA, is delineated in Table 18. For an enriched visual perspective, this routing is further illustrated in Fig. 12.

Conclusion
Combining the opposition-based learning (OBL) technique with the roulette wheel selection (RWS) strategy, 
this research introduces nSCA, a novel approach intended to boost the exploratory capabilities of the SCA. The 
effectiveness of nSCA undergoes rigorous scrutiny alongside notable algorithms such as GA, PSO, MFO, ALO, 
MVO, and the foundational SCA, using the benchmarks provided by CEC 2019 and CEC 2021 test functions. 
Furthermore, the versatility and prowess of nSCA are evident in its capability to adeptly address tangible discrete 
and continuous optimization challenges. Insights from the analysis position nSCA above many metaheuristic 
methodologies, highlighting its refined ability to produce premier solutions for benchmark situations and 
practical optimization tasks. These findings solidify the role of nSCA as an essential instrument in the field of 
engineering optimization, paving the way for advanced problem-solving and decision-making techniques. With a 
foundation built on compelling evidence, it becomes clear that nSCA stands as a potent, trustworthy mechanism, 
well-suited for navigating the myriad of optimization challenges encountered in real-world scenarios.

Limitations
The efficacy of nSCA has been substantiated by the authors through the use of contemporary benchmark test 
suites such as CEC 2019 and CEC 2021, and its application to various practical optimization challenges has 
been demonstrated. However, deeper scrutiny is still deemed necessary. Enhancement in the evaluation of the 
robustness of nSCA could be achieved by its integration with regression or classification techniques, notably the 
support vector machine (SVM). By having this integrated framework applied to real-world problems, a more 
intricate understanding of the adaptability and efficacy of nSCA can be obtained. Through such an exhaustive 
assessment, richer insight into how nSCA collaborates with established machine learning methodologies will be 
provided, affirming the adaptability and capability of nSCA across a wider range of challenges.

Figure 11.  Box plot of nSCA, SCA, GA, PSO, ALO, MFO and MVO on 16-customer problem.

Table 18.  Routing of vehicles and distance obtained by nSCA on 16-customer problem.

Routes of the vehicles on 16-customer problem Distance

Route 1 0 → Customer 4 → Customer 8 → Customer 1 → Customer 14 → Customer 3 → Customer 9 → 0 168

Route 2 0 → Customer 6 → Customer 11 → Customer 7 → Customer 13 → Customer 16 → Customer 10 → 0 171

Route 3 0 → Customer 12 → Customer 5 → Customer 2 → Customer 15 → 0 124

Total distance: 463
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