
1

Vol.:(0123456789)

Scientific Reports |         (2024) 14:2123  | https://doi.org/10.1038/s41598-024-51340-z

www.nature.com/scientificreports

Identification of genes 
with oscillatory expression 
in glioblastoma: the paradigm 
of SOX2
Richard Zhiming Fu 1,2,3, Oliver Cottrell 1, Luisa Cutillo 4, Andrew Rowntree 1, Zsolt Zador 5,6,7, 
Heiko Wurdak 8, Nancy Papalopulu 1* & Elli Marinopoulou 1*

Quiescence, a reversible state of cell-cycle arrest, is an important state during both normal 
development and cancer progression. For example, in glioblastoma (GBM) quiescent glioblastoma 
stem cells (GSCs) play an important role in re-establishing the tumour, leading to relapse. While most 
studies have focused on identifying differentially expressed genes between proliferative and quiescent 
cells as potential drivers of this transition, recent studies have shown the importance of protein 
oscillations in controlling the exit from quiescence of neural stem cells. Here, we have undertaken 
a genome-wide bioinformatic inference approach to identify genes whose expression oscillates and 
which may be good candidates for controlling the transition to and from the quiescent cell state in 
GBM. Our analysis identified, among others, a list of important transcription regulators as potential 
oscillators, including the stemness gene SOX2, which we verified to oscillate in quiescent GSCs. These 
findings expand on the way we think about gene regulation and introduce new candidate genes as key 
regulators of quiescence.

Quiescence is a state of cell-cycle arrest which, unlike senescence or terminal differentiation, is reversible upon 
receiving appropriate signals from the environment1. Quiescence is thought to be a property commonly found 
in stem cells and it is important for homeostasis and regeneration by maintaining a pool of cells from which new 
cells can be produced, upon exit from quiescence, to replenish cells depleted through ageing or injury2. Quies-
cence is also important in a cancer context; here, it is thought that transition of cancer stem cells to a quiescent 
state creates a population with the potential to enter the cell cycle at a later time point, thus, contributing to 
reactivation of a tumour and clinical relapse3,4. The magnitude of this problem is underscored by recent studies 
suggesting that cancer treatment may push some surviving cancer cells into quiescence from where they can 
be reactivated5,6.

Reactivation from quiescence may be problematic for any cancer, but it may be particularly an issue for can-
cers with a high rate of relapse such as glioblastoma. Glioblastoma, also historically referred to as glioblastoma 
multiforme (GBM), is the most common and most deadly adult primary brain cancer, comprising more than half 
of all gliomas7. Despite decades of dedicated research and numerous clinical trials collectively covering a range 
of often innovative treatment modalities, tragically, there remains no cure and relapse is often inevitable8. Thus, 
there is a great need for innovative scientific approaches to better understand the basic biology of this cancer 
and in particular, to understand the mechanisms by which cells enter and exit quiescence.
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Efforts to identify molecular drivers of quiescence often focus on differential gene expression between nor-
mally dividing cells and their dormant counterparts1. However, even with state-of-the-art molecular methods, 
such differential gene expression, that is causally related to the acquisition of the quiescent state, has proved 
elusive to define. Thus, some recent studies have focused on epigenetic changes. Indeed, it was shown that in 
GBMs there is a failure to lock cells into a differentiated state9, resulting in increased plasticity whereby cells can 
transition into undesirable states.

In our own recent work, we have provided evidence for a dynamic conceptual framework of controlling the 
transition to and from quiescence10. Working with normal, i.e. non-cancerous neural stem cells, we have discov-
ered that protein expression oscillations of the mammalian Hairy and Enhancer of Split 1 (HES1) transcription 
factor (TF), are needed for cells to be able to exit the quiescent state10. Such oscillations have a periodicity, which 
is typically shorter than the well-known circadian periodicity, and are increasingly recognised as playing an 
important role in cell-state transitions in normal development, in a number of different models and contexts11–13.

There is emerging evidence that oscillations are also important in a cancer context. Specifically, HES1 has been 
shown to oscillate in a breast cancer model14, and so have p5315 and p2116. In breast cancer cells, HES1 oscilla-
tions are important for efficient proliferation14, while p53 oscillations determine the response to radiotherapy17,18. 
These findings present a new way of understanding cell-state transitions, based on dynamic gene expression, that 
includes entry to and exit from quiescence. But how common are oscillations and which genes are likely to oscil-
late? Our previous work has shown that the network motif that commonly underlies oscillatory gene expression 
(autoregulation and microRNA interaction) is very widespread among mammalian TFs19. However, because the 
presence of oscillations is context specific, we argued that a more direct approach was needed for GBM.

Thus, to answer this question, we leveraged two recent developments. First, we took advantage of a recently 
developed bioinformatic pipeline, which is designed to uncover oscillatory gene expression in single-cell RNA-seq 
(scRNA-seq) data, irrespective of their periodicity20. This pipeline was developed by Leng et al.20, and optimised 
by us21 to improve on the statistical robustness and sensitivity of the method. Second, we took advantage of the 
availability of a plethora of scRNA-seq data from different human GBM tumours22.

By applying this bioinformatic methodology we uncovered up to 3K genes with the potential to oscillate in 
GBM. We also found that oscillators that are shared across GBM tumours associate with processes that con-
tribute to cancer pathogenesis, highlighting a potential functional role. To validate our findings, we created an 
endogenous reporter knock-in GBM line for SOX2 and we optimised a GBM quiescence protocol. We report 
that SOX2 oscillates in both proliferative and quiescent stem cells, with a period of 17 h.

Our findings provide a global view of oscillatory gene expression in GBM, which shows that it is more com-
mon than previously appreciated. They also uncover a previously unknown level of SOX2 regulation, which may 
be important for regulating the transition to quiescence.

Results
Inference of oscillatory gene expression in GBM tumours
To identify putative oscillators in GBM we interrogated publicly available scRNA-seq data from the Neftel 
et al.22 study, an in-depth transcriptomic study of GBM tumours. Five tumours (MGH124, MGH125, MGH102, 
MGH143, MGH115), representing the most common subtypes of GBM tumours in patients, were selected 
for inference analysis of oscillators. The tumours correspond to neural-progenitor-like (NPC-like) (MGH124, 
MGH125, MGH102), astrocyte-like (AC-like) (MGH143) and a mixture of astrocyte-like (AC-like) and mes-
enchymal-like (MES-like) (MGH115) subtypes according to the classification described in Neftel et al.22. To 
specifically identify important oscillators for tumour formation and progression, we sought first to determine the 
neoplastic (tumour cell) compartment of each tumour by using the “Label Transfer” method23 (Fig. 1A). “Label 
Transfer” is a reference-based integrative analysis approach used to transfer previously identified cell identities 
onto a query dataset23. In our case, we treated the scRNA-seq data from the 5 tumours as the query dataset and 
used as a reference dataset the cell identities of neoplastic and non-neoplastic (immune, oligodendrocyte pre-
cursors cell (OPC), vascular, neuronal, oligodendrocyte and astrocyte) cells in GBM, as previously described in 
Darmanis et al.24, to separate the groups of cells with tumour-cell characteristics from their more differentiated 
or immune infiltrating counterparts (Fig. 1A). We have independently verified the neoplastic identity of these 
populations by estimating the presence of copy number alterations (CNAs), which characterise malignant cells. 
Indeed, by using the Single CEll Variational ANeuploidy (SCEVAN) algorithm25, we confirmed that 99% of the 
neoplastic populations were detected to carry CNAs (Supplementary Fig. S1).

Oscillatory genes are expected to have variable levels between cells thus, we wanted to ensure that we mini-
mise false positive results due to variability in gene expression originating from the mixing of different cell types 
or states within each neoplastic population. Therefore, additional clustering was performed to identify more 
homogeneous neoplastic subclusters based on differential gene expression (Fig. 1B). These subclusters revealed 
appreciable differences in terms of their enrichment for the Human Molecular Signature Database (MSigDB) 
Hallmark gene sets (Supplementary Table S1).

To infer oscillatory gene expression in the neoplastic populations we used the OscoNet computational 
algorithm21, an optimised version of a previously described gene oscillatory inference pipeline20. OscoNet capi-
talises on the fact that within an unsynchronised but homogeneous population, genes which are dynamically 
expressed are expected to have variable levels that follow a sinusoidal process. To distinguish from noisy expres-
sion, and acknowledging that the expression values of genes oscillating with similar frequencies would form an 
ellipse on a scatter plot (independently of cell order), the algorithm searches for pairs of genes whose expression 
best fits a two-dimensional sinusoidal function, to uncover genes that oscillate with similar frequencies but 
possibly different phases20.
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OscoNet was applied in each of the neoplastic subclusters separately (Fig. 1B), using the following two filtering 
criteria. First, for a gene to be considered for OscoNet analysis it had to be expressed in at least 80% of the cells 
within each subcluster (zero-filtering criterion), as an in-silico exploration determined that the presence of zero 
expression values affects negatively the performance of the algorithm (Supplementary Methods). Second, genes 
that had passed the zero-filtering were further filtered based on gene expression variance (variance-filtering crite-
rion), such that only genes whose expression variance was higher than the mean variance of all genes were chosen 
as input for the OscoNet pipeline (Fig. 1C). Our analysis revealed that out of all genes that are expressed across 
each subcluster in ≥ 80% of cells (average of 930 genes), approximately 45% them were found to be highly variable 
(average of 418 genes) with the majority (87%) of these subsequently inferred to be oscillators (average of 361 
genes) (Fig. 1D). Considering that only a handful of genes in the literature have been shown to oscillate to date, 
this in-silico study suggests that a considerably large number of genes, at least in the setting of GBM, oscillate.

OscoNet identifies potential oscillators in GBM
The OscoNet inference pipeline identified 361 genes on average to oscillate per neoplastic subcluster per GBM 
tumour (Fig. 1D), whereas all inferred oscillators across all neoplastic subclusters in all tumours were found to 
be 3422 (named “All Oscillators”) (Supplementary Table S2). Amongst these, there were known genes that have 
been previously shown to exhibit oscillatory expression at an ultradian scale (i.e. oscillate with a period less than 
24h) and be important for normal neural development. Such genes were HES1, HES4, HES6, Ascl1 and Olig2 

Figure 1.   Applying the OscoNet algorithm to identify oscillatory genes in GBM tumours. (A) Example UMAP 
(Uniform Manifold Approximation and Projection) plot representing all single cells in tumour MGH124. 
Cells belonging to different clusters (neoplastic and non-neoplastic) are identified by different colours (B) 
Example UMAP plot of the neoplastic population of tumour MGH124 showing the clustering of the cells into 7 
neoplastic subclusters based on differential gene expression. Different clusters are identified by different colours. 
(C) Diagram showing the sequential steps followed to process the tumour scRNA-seq data prior to subjecting 
them to inference analysis for oscillatory gene expression using OscoNet. (D) Bar graph showing the average 
number of genes across all neoplastic subclusters across all tumours for each of the pre-processing steps prior 
to inference analysis for oscillatory gene expression and following inference analysis with OscoNet. Error bars 
represent standard deviation.
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(Supplementary Table S2)11,26,27. In addition, we found that cell cycle regulators (GO_0007049, selected those 
expressed in ≥ 80% of cells in at least one neoplastic subcluster) (Supplementary Table S3), whose expression may 
oscillate during the cell cycle28, were significantly enriched in our predicted list of oscillators across all tumours 
(Fig. 2A). These findings suggest that the OscoNet pipeline can successfully identify known oscillators.

To independently verify our predictions, we cross-referenced our findings with that of an alternative bioin-
formatic screen for genes capable of dynamic gene expression, including oscillations. We have previously found 
that transcription regulators with the potential to autoregulate (i.e. bind to their own promoter) and which are 
involved in dual feedback interactions with a miRNA are very common in mammalian TFs19. In particular, in 
humans, we identified 582 TFs to potentially autoregulate and be in a feedback loop with a miRNA (we call this 
a “dynamic gene network motif ”)19 (Supplementary Table S4). Thus, we sought to identify if any of these genes 
have been predicted to oscillate by OscoNet in GBM.

We focused on comparing genes with TF activity as the information about genes involved in dynamic gene 
networks is available only for transcription regulators. We hypothesised that TFs that were inferred to oscillate 
in GBM were more likely to be involved in such a network as opposed to “Non-oscillators”. In this case, “Non-
oscillators” were defined as genes that were expressed in at least one tumour (i.e. passed zero-filtering) but had not 
been found to oscillate in any of the tumours (643 genes) (named “Non-oscillators”) (Supplementary Table S5). 
We also hypothesised, that TFs involved in dynamic gene networks would be more prevalent amongst inferred 

Figure 2.   Inferred oscillators enrich for cell cycle genes and are involved in dynamic gene network motifs. (A) 
Venn diagram showing the overlap of “All oscillators” from all 5 tumours (3422 genes) with cell cycle regulators 
(expressed in at least one tumour) (446 genes). The hypergeometric probability was estimated to be 0.047. 
(B) Venn diagram showing the overlap of all predicted oscillators in each tumour and across all 5 tumours. 
Table shows the names of 117 oscillators identified to be shared across all tumours. (C) Bar graph showing the 
percentage of TFs in the “Non-oscillators”, “All oscillators” and “Shared oscillators” lists that are involved in a 
dynamic gene network motif.
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oscillatory TFs that were shared across the 5 tumours, as they were always predicted to oscillate. For the latter, we 
intersected the oscillators from all neoplastic subclusters per tumour and found a total of 117 oscillatory genes in 
common (named “Shared oscillators”) (Supplementary Table S6) (Fig. 2B). We then selected only the TFs from 
each of “All oscillators” (3422), “Shared oscillators” (117) and “Non-oscillators” (643) lists by cross-referencing 
them against the list of all human TFs as described by Lambert et al.29 (Supplementary Table S7). From these TFs 
we further selected only those for which it was feasible to assess their involvement in a dynamic gene network 
motif (i.e. availability of information on autoregulation) and compared them against all TFs that belonged in a 
dynamic gene network motif (582 genes) (Supplementary Table S4). Importantly, we found that all TFs in the 
“Shared oscillators” (100%) were involved in network motifs predicted to oscillate as opposed to 64.8% and 50% 
in the lists of “All oscillators” and “Non-oscillators” respectively (Fig. 2C). These findings lend further support 
to our method for identifying putative oscillators and suggest that genes predicted to oscillate in every GBM 
tumour are potentially the highest confidence candidate genes to have dynamic behaviour.

Oscillatory genes in GBM tumours associate with processes that contribute to cancer 
pathogenesis
Next, we aimed to gain some insights into the type of genes we have identified that may oscillate in the GBM 
tumours. As previously mentioned, we considered the “Shared oscillators” to be high confidence oscillators and 
potentially functionally important. Gene ontology analysis on the “Shared oscillators” revealed that the most 
enriched molecular and cellular functions were related to cell proliferation and development, cell death and sur-
vival, and cell movement, which align with the cancerous profile of the neoplastic population (Fig. 3A). On the 
contrary, the “Non-oscillators” had lower enrichment scores overall and associated mainly with processes such 
as protein/molecule trafficking, cell function and maintenance and cellular assembly and organisation (Fig. 3B).

Accordingly, the top enriched canonical pathways in the “Shared oscillators” associated with oxidative 
stress, mitochondrial dysfunction and remodelling of epithelial adherens junctions, all known to associate with 
cancer30,31 (Fig. 3C), whereas “Non-oscillators” enriched for core cell processes such as translation and rRNA 
processing (Fig. 3D).

“Shared oscillators” were also enriched for Hallmark gene sets that are included in MSigDB32. Amongst the 
most enriched were gene sets that associate with apoptosis, hypoxia and the reactive oxygen species pathway, 
which all constitute hallmark pathways of cancer33 (Fig. 3E). Conversely, “Non-oscillators” did not enrich for 
any of the Hallmark gene sets. These findings consistently reveal that oscillators appear enriched in known gene 
pathways and processes that contribute to cancer pathogenesis whereas “Non-oscillators” tend to associate with 
more house-keeping processes.

Oscillatory genes in quiescent/low‑cycling GBM tumour cells
Considering that the inevitable tumour relapse is one of the main reasons GBM is practically an incurable disease, 
we next sought to identify oscillators that are potentially important for driving this process. Recent evidence sug-
gest that the main cause of relapse is the activation of quiescent GBM stem cells (GSCs) that are left behind after 
surgery, are refractory to chemotherapy and radiotherapy and are able to re-initiate tumour formation34. To this 
end, we decided to look at oscillators that specifically overlap with a quiescent gene signature or are expressed 
in the quiescent/low cell-cycling population of the neoplastic cells.

To address this, we interrogated the list of “Shared oscillators” (which we found to be our highest confidence 
candidates) and particularly the TFs in this list, as we argued that an oscillator is more likely to drive cell-
state transitions (e.g. exit from quiescence) if they control the expression of downstream genes. We therefore 
intersected the inferred oscillatory TFs that are shared across the tumours, with a list of GBM neoplastic cell-
specific Neural G0 marker genes35 (Supplementary Table S8) (Fig. 4A). The latter had been previously derived 
by applying a cell-cycle classifier to identify a putative quiescent-like state in gliomas along with the pathways 
that associate with it35. The overlap of all these lists provided us with a short list of 6 genes (SOX2, JUNB, FOS, 
NFIB, TCF4, TSC22D1) which are predicted to oscillate, regulate transcription and associate with a quiescent 
phenotype (Fig. 4A).

As an independent way to identify oscillators that potentially control the quiescent state of GBM, we looked 
at oscillators that were specifically expressed in the low-cycling neoplastic subclusters of these tumours, defined 
as those enriched for Hallmark gene sets associated with the downregulation of cell cycle genes. This analysis 
identified a list of 99 oscillators shared across the low-cycling neoplastic subclusters in the 5 tumours (Sup-
plementary Table S9) out of which only 6 were found to be putative TFs (Fig. 4B). Interestingly, 4 out those 6 
genes (SOX2, JUNB, FOS, TSC22D1) were also identified by our previous analysis on the Neural G0 signature-
associated oscillators (Fig. 4A) revealing a core of 4 TFs that oscillate and are potentially important for regulating 
the quiescent state (Fig. 4C).

Establishing an in vitro system to study oscillatory gene expression in quiescence
Having identified a core list of candidate oscillators in low-cycling neoplastic cells, our next objective was to 
establish a GBM in vitro system to verify protein expression oscillations in a quiescent state. Our oscillator infer-
ence analysis was based on 5 tumours represented primarily by the NPC-like and MES-like subtypes (proneural 
and mesenchymal subtype respectively according to Verhaak classification36), with the majority belonging to 
the NPC-like subtype22. We therefore chose the previously characterised GBM1 patient-derived GSC line as our 
experimental model, which was found to primarily enrich for a proneural transcriptional signature37,38.

Next, we used the GBM1 cells to induce a quiescent state in vitro by replacing the EGF and FGF mitogens in 
the culture with BMP4. Previous studies have shown that GSCs undergo cell-cycle arrest in response to BMP4, 
and although they exhibit astrocyte differentiation9,38,39 they subsequently fail to permanently exit the cell cycle 
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and remain susceptible to re-entry9. Accordingly, live image-based confluency analysis of GBM1 cells over a 
period of 14 days showed that cells amplify over time in the presence of mitogens but they stop within 48 h of 
BMP4 administration and remain cytostatic for as long as they are treated with BMP4 (up to 7 days) (Fig. 5A). 
Importantly, upon withdrawal of BMP4 and re-introduction of FGF and EGF mitogens in the culture, GBM1 
cells were able to re-enter the cell cycle (Fig. 5A). These results suggest that administration and subsequent 
removal of BMP4 facilitates a reversible cell-cycle arrest suggesting that addition of BMP4 induces a quiescent 
state. Immunostaining of the cells for the Ki67 proliferation marker in proliferative, quiescent and re-activation 
conditions confirmed the loss of Ki67 in the presence of BMP4 and re-expression of the marker following re-
activation (Fig. 5B,C). Altogether these findings suggest that the GBM1 cell line is a suitable experimental model 
to study oscillatory expression in a quiescent state.

Figure 3.   Shared oscillators across the GBM tumours enrich for processes that contribute to cancer 
pathogenesis. (A,B) Bar graphs showing significantly enriched molecular and cellular functions in the lists 
of "Shared oscillators” (117 genes) (A) and “Non-oscillators” (643 genes) (B). (C,D) Bar graphs showing 
significantly enriched canonical pathways in the lists of “Shared oscillators” (C) and “Non-oscillators” (D). 
(E) Table showing the fold enrichment and FDR enrichment of “Shared oscillators” for MSigDB Hallmark 
gene sets. Fold enrichment refers to the percentage of genes in the “Shared oscillators” list that belong in each 
gene set, divided by the corresponding percentage in the background list. The FDR enrichment reports the 
hypergeometric test value.
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The stemness gene SOX2 oscillates in proliferative and quiescent GSCs
From the core list of 4 candidate genes (SOX2, JUNB, FOS, TSC22D1) that have been predicted to oscillate 
and regulate the quiescent state (Fig. 4C), the stemness gene SOX2 is of particular interest. A large number of 
studies in the literature have highlighted the important role of SOX2 in promoting GBM malignancy40,41 and 
the association of high SOX2 levels with tumour aggressiveness and poor clinical outcome42–44. We therefore 
chose SOX2 as our prime candidate to verify whether its protein expression oscillates in GSCs. To assess this we 
generated a SOX2-mKate2 fusion knock-in line, using CRISPR/Cas9, to mark the endogenous SOX2 expression 
in GBM1 cells. In particular, we inserted a linker, followed by the mKate2 fluorophore and a P2A-Neomycin 
cassette, at the C-terminus of the SOX2 protein (Fig. 6A). This direct fusion enabled us to follow the kinetics of 
the endogenous SOX2 protein while maintaining the SOX2 protein intact. We generated 3 clonal SOX2-mKate2 
GBM1 lines which were all heterozygotes for SOX2-mKate2.

Next, we performed single-cell live fluorescence imaging in proliferative (Fig. 6B) and quiescent conditions 
(Fig. 6C), in GBM1 SOX2-mKate2 cells. Tracking of the SOX2-mKate2 protein expression in single cells for 
approximately 50–70 h, revealed that SOX2 is dynamically expressed, showing peaks and troughs in intensity 
over time in single nuclei, where SOX2 is expressed (Fig. 6B,C). As a negative control, we tracked expression of 
the GFP fluorophore driven by the UbC promoter in the same cells, which had been previously transduced in the 
GBM1 cell line. Conversely to SOX2-mKate2, GFP expression showed no apparent or regular dynamicity, with 
GFP intensity forming a flat line over time denoting steady expression (Fig. 6B,C). To determine whether the 
SOX2-mKate2 protein expression oscillates, we performed periodicity analysis on multiple single cell intensity 
tracks using the Lomb-Scargle periodogram (LSP)45 (Fig. 6D). Our analysis showed that the SOX2-mKate2 cell 
traces, in both proliferative and quiescent conditions, had a higher dominant power in the power spectrum com-
pared to GFP traces, suggesting a stronger periodic signal (Fig. 6D). Further comparison of the SOX2-mKate2 
dominant power between the proliferative and quiescent conditions revealed a significant increase in quiescent 
condition indicating that SOX2 oscillations are of better quality in the quiescent state (Fig. 6E). The average 
period of SOX2-mKate2 expression was calculated to be ~ 17 h in both proliferative and quiescent conditions 

Figure 4.   Identification of oscillatory TFs in quiescent/low-cycling GBM tumour cells. (A) Venn diagram 
showing the overlap of “Shared oscillators” (117 genes) with the list of all human TFs (1639 genes) and with the 
Neural G0 Signature list (553 genes). 6 genes (shown in the table) where identified as common across all three 
lists. (B) Venn diagram showing the overlap of “Shared oscillators” in low-cycling neoplastic subclusters (99 
genes) with the list of all human TFs (1639 genes). 6 genes (shown in the table) where identified as common 
between the two lists. (C) Venn diagram showing the overlap of the shared oscillatory TFs in Neural G0 
signature with the shared oscillatory TFs in low-cycling neoplastic subclusters.
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(Fig. 6F), while the overall SOX2 levels [but not GFP (Supplementary Fig. S2)] were significantly increased by 
1.6 × fold in quiescence (Fig. 6G).

Overall, our findings show that SOX2 oscillates with the same period in both proliferative and quiescent 
conditions, suggesting that although the cells have entered quiescence, gene expression dynamics are maintained.

Discussion
Gene oscillations are emerging as a powerful, yet largely unexplored, way to regulate gene expression and dictate 
cell-state transitions10,12,13,46,47. In this paper, we have used a tailored bioinformatic pipeline21 to identify genes 
that are expressed in an oscillatory manner in human GBM tumour samples. Based on our previous work, we 
have reasoned that such dynamically expressed genes are likely to be important for the transition of cells between 
states, such as a proliferative and a quiescent state10. Here, we have identified a list of oscillators that are likely to 
control cancer progression in GBM and we have experimentally verified the stemness gene SOX2 to oscillate in 
both proliferative and quiescent GSCs in vitro.

Genes expressed in an oscillatory manner are difficult to identify in static scRNA-seq data with most com-
monly used current bioinformatic methods. Time-series scRNA-seq or pseudotime inference methods fail to 
detect ultradian oscillations, which unlike circadian oscillations, tend to be out of phase between cells and there-
fore are very difficult to distinguish from expression noise. To get around this limitation, the approach that we 
used is based on pairwise gene comparisons, which looks at the co-expression relationship within each cell and 
across all cells and how well that fits a sinusoidal process, irrespective of real time information and accounting 
for a phase shift20,21. However, two caveats remain: First, the absence of real time information precludes any direct 
estimation of periodicity. Second, our method detects potential oscillations at the mRNA level, which would be 

Figure 5.   Inducing quiescence in GSCs. (A) Cell confluency analysis of GBM1 cells over a period of 14 days 
under 3 different conditions: Proliferation (cells cultured in proliferative media for 14 days), quiescence (cells 
cultured in quiescent media for 14 days) and reactivation (cells cultured in quiescent media for 7 days and then 
replaced by proliferative media for another 7 days). Vertical dotted line shows the time of media change for 
each condition with their respective media. (B) Immunofluorescence staining images of GBM1 cells for the 
proliferation marker Ki67 under 3 different conditions: proliferation (cells cultured in proliferative media for 6 
days), quiescence (cells cultured in quiescent media for 6 days) and reactivation (cells were cultured in quiescent 
media for 6 days replaced by proliferative media for 5 days). Cells were also counterstained for DAPI (scale 
bar = 50 μm). (C) Bar graph showing the mean percentage of Ki67 positive cells under proliferative, quiescent 
and reactivated conditions (error bars represent standard deviation, n = 3 biological experiments, total number 
of cells counted per condition Proliferation = 5448 cells, Quiescence = 3038 cells, Reactivation = 5828 cells, One-
way ANOVA with Tukey’s multiple comparison test, proliferation versus quiescence **p = 0.008, quiescence 
versus reactivation *p = 0.021, proliferation versus reactivation ns not significant).
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Figure 6.   SOX2 oscillates in proliferative and quiescent GSCs. (A) Schematic representation of the SOX2 
locus following genome editing with CRISPR/Cas9. A DNA sequence encoding for a linker protein, the 
mKate2 fluorescence protein followed by a P2A sequence and the neomycin resistance gene, has been inserted 
downstream of the SOX2 exon and upstream of the 3’UTR. (B,C) Example snapshot images of SOX2-mKate2 
expression in GBM1 cells in proliferative (B) and quiescent (C) conditions (top panels). Warm colours represent 
high expression and cold colours represent low expression (scale bar = 3 μm). Example cell traces showing 
SOX2-mKate2 and UbC-GFP expression over time in the same cell in GBM1 SOX2-mKate2 cells carrying a 
UbC-GFP reporter (A.U. = arbitrary units) (bottom panels). Numbers in Cell 1 in each condition indicate the 
timepoints that correspond to the images in the top panels. (D) Lomb-scargle periodogram (LSP) showing 
peaks in the power spectrum from SOX2-mKate2 and UbC-GFP expression in proliferative and quiescent 
conditions in GBM1 cells (averaged across all cell traces per protein expression per condition). SOX2-mKate2 
expression shows a stronger peak in both proliferative and quiescent conditions compared to UbC-GFP (E–G) 
Graphs showing the dominant power (E) and dominant period (F) (as determined by LSP), and the mean 
protein expression levels for SOX2-mKate2 in proliferative and quiescent conditions (in (E) and (F) black 
horizontal lines represent mean, Mann–Whitney test, two-tailed, ****p < 0.0001, ns = not significant, in (G) dots 
represent mean levels per experiment, paired t-test, two-tailed, *p = 0.012, n = 3 biological experiments, total 
number of cells tracked: Proliferative = 119, Quiescent = 112).
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translated to protein expression oscillations only in appropriate production/degradation parameters48. Indeed, 
in some cases mRNA oscillations were translated in a stepwise accumulation of the protein49. Therefore, further 
experimental validation of the potential oscillations is needed, ideally by tagging the endogenous protein, as we 
have done for the case of SOX2 here.

In this work, several steps have been taken to increase confidence in detecting potential oscillations. First, we 
verified that the inference pipeline can detect known oscillators such as HES1, Olig2 and ASCL111 and cell cycle 
genes28. Second, we chose genes that were consistently predicted to oscillate in each of the 5 tumour samples 
analysed (“Shared oscillators”) thus, less likely to be false positives. Third, we found that all shared oscillatory TFs 
(100%) were involved in gene network motifs capable of driving dynamic expression19. Collectively these steps 
suggested that genes that were predicted to oscillate in our pipeline were high confidence candidates.

Our analysis predicted that approximately ~ 3K genes (excluding cell cycle regulators) are likely to oscillate 
at the transcriptional (mRNA) level across all the tumours. Given that the number of genes previously shown to 
oscillate at the protein level across biological contexts is in the tens for the ultradian scale46,50,51 and in the hun-
dreds for the circadian scale (GO_0007623), rather than the thousands, this is a significant increase, suggesting 
that oscillations are a more widespread form of gene regulation that one might anticipate.

Interestingly, the “Shared oscillators” were enriched for functions that contribute to cancer pathogenesis, 
as opposed to “Non-oscillators”, which associated primarily with cell maintenance processes. In that regard, 
we hypothesise that oscillations are likely to enable cancer cells to develop adaptative strategies to survive and 
grow. Such examples we find in bacteria where studies have shown that microbial cells are known to use pul-
satile expression to create a range of phenotypes that help them adapt a bet-hedging strategy to respond to 
environmental changes52. Thus, our inference analysis can potentially help us identify key regulators that control 
cell-state transitions.

In GBM, quiescent GSCs have been found to be resistant to chemotherapy and radiotherapy53 and responsible 
for re-initiating tumour growth following treatment34. We have therefore looked specifically for oscillators that 
may control the quiescent state and identified a core list of 4 genes. From those, we selected the SOX2 gene for 
further experimental validation. SOX2 is well known for its role in maintaining pluripotency54. In the context of 
GBM, SOX2 has been implicated in promoting GBM malignancy40,44,55,56. In addition, it was found that chromatin 
regions enriched for SOX binding motifs fail to reconfigure in response to BMP4, suggesting that the levels and/
or activity of SOX proteins may impede the exit from self-renewal9.

By generating an endogenous knock-in reporter in GBM1 proneural cells, we have found that SOX2 oscilla-
tions are detected at the protein level in both proliferative and quiescent GSCs with a periodicity of 17 h. This is 
a novel aspect of SOX2 expression that provides new insights into the way it may regulate downstream targets, 
whereby not just the presence or absence of SOX2 protein, but also its pattern of expression may dictate diverse 
cell-fate decisions. In the future we would like to generate additional SOX2 knock-in lines covering a range of 
different GBM subtypes, including mesenchymal GSCs which associate better with a quiescent phenotype57,58, 
but also a healthy human neural stem cell line counterpart to examine if and how the SOX2 expression pattern 
is altered between a malignant and non-malignant cell line.

Our findings are significant because dynamic gene expression in general, and ultradian oscillations in par-
ticular, have been linked to the ability of the cell to make cell-state transitions10,11,13,14,46,47. SOX2 protein oscil-
lations in GBM quiescent cells are indeed reminiscent of HES1 oscillations in quiescent neural stem cells. In 
the case of HES1, we and others have shown, that oscillations enable the exit from quiescence10,12. It is therefore 
possible that by manipulating SOX2 oscillations to sustained expression we can prevent quiescent GSCs from 
reactivating, thus prohibiting tumour progression, specifically after traditional chemotherapy where the active 
proliferative part of the tumour has been largely eliminated, while quiescent GSCs persist. Thus, locking cells in 
quiescence is an important therapeutic avenue to explore in addition to tumour resection and chemotherapy/
radiotherapy. Alternative therapy strategies, such as promoting BMP4-induced tumour differentiation have 
been proven challenging with several barriers to implementation59, as tumour cells fail to commit to differentia-
tion and are susceptible to de-differentiation9. On the other hand, silencing of SOX2 showed promising results 
on reducing tumorigenicity60,61, however abolishing SOX2 expression may have potential consequences in the 
normal brain, which is not a desirable outcome.

GBM cells are also known to transition from a proneural to a mesenchymal phenotype following radiotherapy 
and chemotherapy, which is the most aggressive subtype that strongly associates with poor prognosis62. It would 
therefore be of great interest to investigate whether there are any differences in the pattern of SOX2 expression 
between proneural and mesenchymal phenotypes and manipulate the dynamics accordingly. For example, if 
SOX2 oscillates in mesenchymal cells then altering the oscillatory expression to sustained could potentially 
inhibit the transition from proneural to mesenchymal, on the other hand, if SOX2 behaves differently in mesen-
chymal cells then perhaps maintaining an oscillatory pattern would inhibit the transition. Thus, understanding 
how SOX2 oscillations regulate the GBM quiescent state would be of great putative translational potential.

In summary, we have shown that oscillatory gene expression is prevalent in GBM neoplastic cells and char-
acterises genes that are likely to play key roles in cell-state transitions. Deciphering this type of gene regulation, 
could have important therapeutic implications.

Methods
Identification of the neoplastic population
Single-cell sequencing data from 5 tumours (MGH 124, MGH 125, MGH 143, MGH 102 and MGH 115) in 
GEO GSE131928 (sample GSM3828673)22, processed on the 10× genomics platform, were used. Tumour MGH 
105, also processed on the same platform, was not included as samples had been collected from four different 
locations within the tumour, akin to regional samples. Thus, to maintain consistency in our analysis we focused 
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only on tumours whose samples were acquired in the same way. All selected tumours were IDH-wild-type. 
Quality control checks and TPM (transcripts per million) calculations had already been undertaken by the 
study’s authors. For the identification of the neoplastic population, the integration method “Label Transfer” was 
used23. The neuronal, vascular, glial, immune (GSE6783563) and neoplastic (GSE8446524) labels were used as a 
reference dataset and the number of anchors was set at 100. This method relies on similarities in gene expression 
programs between a reference and query dataset. The algorithm uses canonical correlation analysis and projects 
the datasets into a shared subspace defined by their correlation structure. The algorithm then identifies pairs of 
mutual nearest neighbours within the query and reference cells and these cells are used as “anchors” between 
reference and query datasets. This approach allows the labelling of overlapping cell types between reference and 
query dataset as well as the identification of unique cell types.

In order to attain more homogenous subclusters of neoplastic cells, clustering was repeated on only the neo-
plastic population of each tumour using the Seurat (4.0.3.) package64 with default parameters. These neoplastic 
subclusters were used as input for the OscoNet pipeline.

Single-cell sequencing data from the 5 tumours were further analysed using SCEVAN25. This algorithm detects 
large scale CNAs and segregates cells into “Normal” (non-malignant) and “Tumour” (malignant) cells. Cells with 
less than 200 genes and the genes expressed in less than 1% of the cells were marked as “Filtered” and excluded 
from the analysis. The details of the algorithm are described by De Falco et al.25.

Identification of low‑cycling neoplastic subclusters
The ‘FindAllMarkers’ Seurat function64 was used to determine differentially expressed genes (DEG) for each 
neoplastic subcluster in every tumour, with parameters ‘min.pct’ = 0.25 and ‘logfc.threshold’ = 0.25. Only DEGs 
with an adjusted p value < 0.05 were further selected for Gene Set Enrichment Analysis (GSEA). GSEA was per-
formed using the clusterProfiler package in R65. The ‘msigdbr’ function was used to extract the human Hallmark 
gene sets from the MSigDB32, the ‘pvalueCutoff ’ was set at 0.1 and the ‘set.seed’ function was set at an arbitrary 
value of 1234. The results of this analysis are summarised in Supplementary Table S1. Clusters where one or 
more of cell-cycle related Hallmark gene sets (E2F Targets, G2M Checkpoint, Mitotic Spindle) were within the 
top 3 significantly enriched and downregulated gene sets were classed as ‘low-cycling’.

Inference of oscillatory expression using OscoNet
Identification of oscillatory gene expression was performed for each neoplastic subcluster separately, using a 
modified version of the computational algorithm OscoNet21. The exact code that was used is available on https://​
github.​com/​Papal​opulu-​Lab/​Fu2023. Briefly, for each neoplastic subcluster per tumour, we selected only genes 
that were expressed in at least 80% of the cells in each subcluster, and were highly variable (i.e. gene variance 
higher than the gene mean variance of the population). The algorithm then detected all potential pairs of co-
oscillating genes and clustered them in communities with similar frequencies. Communities with just a single 
gene were excluded whereas all genes in the rest of the communities (regardless of the community significance 
score and linearity prediction status) were considered to be the inferred oscillators. The number of cells per neo-
plastic subcluster per tumour and the corresponding inferred oscillators are included in Supplementary Table S10.

Enrichment analysis
Data were analysed using the Qiagen Ingenuity Pathway Analysis29 (QIAGEN Inc., https://​digit​alins​ights.​qiagen.​
com/​IPA)66 to assess enrichment for biological and molecular functions. The ShinyGO 0.77 tool (http://​bioin​
forma​tics.​sdsta​te.​edu/​go/)67 )was used with default package parameters to estimate enrichment for MSigDB gene 
sets in Fig. 3. As background list we used the list of all expressed genes (i.e. all genes passed zero-filtering per 
neoplastic subcluster per tumour) (Supplementary Table S11).

Dynamic gene network motif analysis
We employed a previously published bioinformatic screen to identify TFs involved in dynamic gene networks, 
which consist of an autoregulatory TF that co-regulates a miRNA19. The screen was performed by integrat-
ing published TF binding site (TFBS) from the ReMap 2022 database68 and miRNA target data from miRbase 
(Release 22.1)69 and miRTarBase (release 9.0)70 into a single network. This network was then analysed to reveal 
genes involved in dynamic gene network motifs. For this work, the original network was re-built and modified 
to include the latest available TFBS in ReMap and miRNA databases. All code and documentation necessary to 
construct this latest network can be found on https://​github.​com/​Papal​opulu-​Lab/​Fu2023.

Cell Culture
The GBM1 cell line was derived from IDH-wild-type primary GBM tumours as previously described37 and was 
kindly donated by the Wurdak Lab (Stem Cell and Brain Tumour Group, University of Leeds). The line had been 
further modified to carry a UbC promoter driven GFP fluorophore reporter (GenTarget Inc, LVP1229), via viral 
transduction as previously described38. Puromycin (2 μg/ml) was used to select for positive cells for UbC-GFP 
expression. Cells were cultured on L-Laminin and Poly-L ornithine pre-coated flasks/plates in the presence of 
Neurobasal Medium (Gibco, Cat# 21103-049) supplemented with 0.5% N2 (100×) Supplement (Life Tech, Cat# 
17502048), 1% B27 (50×) Supplement (Life Tech, Cat# 17504044), FGF (40 ng/ml) (PeproTech, Cat# 100-18B) 
and EGF (40 ng/ml) (PeproTech, Cat# 315-09) (proliferating media). For coating, any flasks/plates were first 
coated with Poly-L ornithine (Gibco, Cat# P3655) at 5 μg/ml in water for 1 h at 37 °C, followed by 1× wash with 
water and coated subsequently with l-Laminin (Sigma-Aldrich, Cat# L2020) at 2 μg/ml in PBS overnight at RT, 
followed by 1× wash with PBS before cell seeding. For induction of quiescence, the FGF and EGF mitogens in 
the media were replaced by 100 ng/ml of BMP4 (Recombinant human BMP-4, PeproTech, Cat# AF-120-05ET) 

https://github.com/Papalopulu-Lab/Fu2023
https://github.com/Papalopulu-Lab/Fu2023
https://digitalinsights.qiagen.com/IPA
https://digitalinsights.qiagen.com/IPA
http://bioinformatics.sdstate.edu/go/
http://bioinformatics.sdstate.edu/go/
https://github.com/Papalopulu-Lab/Fu2023
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(quiescence media). To reactivate cells from quiescence, quiescence media was replaced by proliferating media 
after a gentle 2× wash with PBS.

Generation of SOX2‑mkate2 fusion cell line
We used CRISPR/Cas9 to generate a C-terminally endogenously tagged SOX2-mKate2 protein fusion in the 
GBM1 cell line. The donor template for Homologous Directed Repair (HDR) containing the Glycine-Alanine 
linker-mKate2 fluorophore-P2A-neomycin resistance (NeoR) cassette was PCR-amplified from the eFlut Plas-
mid 1A collection for C-terminus fluorescence tagging, kindly donated by the Lahav Lab16. The primers used 
to amplify the HDR template had 40bp homology to the SOX2 gene and 20 bp homology to the template and 
are listed in Supplementary Table S12. Guide RNAs (gRNAs) targeting the human SOX2 stop codon sequence 
were designed using the CRISPR Finder tool on the Wellcome Sanger Institute Genome Editing (WGE) website 
(https://​wge.​stemc​ell.​sanger.​ac.​uk//, 2021) and are listed in Supplementary Table S12. gRNAs were obtained as 
crRNAs and were mixed with tracrRNA in equal ratios of 45 μM in IDT duplex buffer (IDT, Cat# 1072570), 
heated at 95 °C for 5 min and then cooled slowly to RT. The Cas9 was delivered in the form of Ribonucleoprotein 
(RNP) complex, where the annealed gRNA-tracrRNA were complexed with the Cas9 protein (Alt-R™ S.p. HiFi 
Cas9 Nuclease V3, IDT, Cat# 1081061) in IDT duplex buffer at RT for 10 min before adding 1ug of the donor 
template (final concentrations: each gRNA 20.4 μM, Cas9 protein 11.09 μM, donor 9 ng/μl). The RNP complex 
was mixed with 8 × 10e5 GBM1 cells resuspended in 100 μl of SG solution from the SG Cell Line 4D-Nucleofec-
tor™ X Kit (Lonza, Cat# V4XC-3024). This entire mix was then placed in a Nucleocuvette™ and was nucleofected 
using a Lonza Amaxa 4D-Nucleofector ™ and the EN138 nucleofection programme. Following nucleofection, 
cells were further cultured in the presence of 200–400 μg/ml Neomycin (G418 Sulfate, ThermoFisher Scientific, 
Cat# 11811023) to select for genetically modified cells. Antibiotic resistant cells were then subjected to single-cell 
FACS for mKate2 and GFP expression (double positive) using a BD Influx sorter and plated onto pre-coated glass 
(Greiner BIO-ONE Sensoplate™ glass bottom, Cat# 655892) or plastic (Merk Corning© TC-Treated Microplates, 
Cat# CLS3997) bottom 96 well plates. An average number of 7 clones per 96-well plate grew into clonal lines and 
where further expanded. 10 clonal lines in total were screened by PCR for incorporation of the donor sequence 
and 9 were found to be positive. The genotyping primers used are listed in Supplementary Table S12. All positive 
clones were HET for the knock-in fusion. 6 clonal lines were further submitted for Sanger sequencing which 
verified that 5 out of 6 clonal lines had an intact wild type allele and they had correctly integrated the donor 
sequence. 3 out of those 5 clonal lines were further selected for experimentation.

Immunostaining
GBM1 cells were cultured in Poly-L ornithine and L-Laminin pre-coated coverslips in either proliferating media, 
quiescent media (for 6 days) or in proliferating media after reactivation from quiescence (that is 6 days in quies-
cent media followed by 5 days in proliferation media). Immunostaining was performed as previously described10. 
Primary antibody was mouse anti-Ki67 (1:200, BD Biosciences, Cat #550609) and secondary antibody was 
anti-mouse 568 (1:500, Thermo Fisher Scientific, Cat#A-11004). Coverslips were mounted with ProLong Gold 
Antifade mountant with DAPI (Invitrogen, Cat#P36935).

Image and time‑lapse movie analysis
Confluency analysis of GBM1 UbC-GFP cells was performed using the ZOOM Incucyte Live-Cell imaging 
platform (Sartorius). 8K cells per square centimetre per well were plated in 6-well plates and whole-well imag-
ing was performed in 120-min intervals using a Nikon 4 × objective. Cells were cultured continuously either 
in proliferative or quiescence media. For reactivation, quiescence media was replaced by proliferative media 
after 7 days in quiescence. Images were processed using the IncuCyte® ZOOM 2018A software to determine cell 
confluency over time.

Immunofluorescence images were captured using a Nikon Eclipse 80i with a Plan Fluor 20x / 0.5 DIC N2 
objective and a 1280 × 1024 format. Image processing of Ki67/DAPI staining, to quantify number of Ki67 posi-
tive nuclei, was performed on ImageJ 2.1.0/1.53c using automated tools for detection of fluorescence expression. 
Immunostaining images with just the secondary antibody were used as controls to determine the expression 
detection threshold.

For dual fluorescence imaging of GFP and mKate2, GBM1 SOX2-mKate2 clonal cells carrying the UbC-GFP 
reporter, were plated in a 4-compartment pre-coated glass bottom 35 mm dish (Greiner BIO-ONE, Cat# 627870). 
22K cells per square centimetre were plated in one compartment and imaged after being kept in proliferating 
media for 7 days and 44K cells per square centimetre were plated in another compartment and imaged at the 
same time after being kept in quiescence media for 6 days (proliferation media was replaced by quiescence 
media 1 day post cell seeding). Time-lapse imaging was performed for a total of 70–90 h using a Zeiss LSM 880 
Inverted Airyscan with a Plan-Apochromat 20×/0.8 M27 and a 1536 × 1536 or 1536 × 1024 format. Images were 
acquired every 20 min with z-stacking covering a 35.2 um depth. The fluorescent signals were collected on dif-
ferent tracks. For detection of GFP and mKate2 a 488 nm and a 594 nm laser were used for excitation and the 
emitted fluorescence was collected between 490–552 and 597–695 nm respectively. The fluorescent images were 
analysed using the Imaris imaging software (Bitplane) and individual cells were tracked using the Imaris “Spot” 
function to quantify the mKate2 and GFP fluorescence intensity signal over time.

Periodicity analysis
To estimate periodicity of the traces of SOX2-mKate2 expression we developed a MATLAB pipeline which made 
use of the Lomb-Scargle periodogram. This is an algorithm for detecting and characterizing periodic signals in 
unevenly sampled data45.

https://wge.stemcell.sanger.ac.uk//
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The steps used to develop our estimates were as follows: firstly, we detected a trend in each trace via a Gauss-
ian-weighted average filter with a 24 h moving window, as we were focusing on fluctuations that have less than 
24 h periodicity. We then subtracted this trend line from the raw data to obtain a new detrended trace, which 
was then fed into the “plomb” function that outputs the Lomb-Scargle power spectral density (PSD) estimate, 
sampled at the instants specified in an associated frequency vector.

The position of a spike in the X direction of this PSD estimate corresponds to the dominant frequency (1/
period) at which the detrended data trace is oscillating. Conversely, more low and shallow outputs in the PSD 
suggests a lack of oscillatory behaviour in the trace. To provide an average periodicity estimate we used the 
“interp1” function to interpolate the different traces, such that time points within each trace were consistent and 
therefore comparable. This allowed for a mean PSD/frequency plot to be developed for both the proliferative and 
quiescent conditions. This was also done on GFP traces as a control. Cell traces with time duration shorter than 
25 h and expression variance higher than 5× standard deviations from the mean were excluded. The excluded 
data accounted for 4% of overall data acquired in proliferation and less than 2% in quiescence conditions.

The code used to estimate periodicity can be found on https://​github.​com/​Papal​opulu-​Lab/​Fu2023.

Statistical analysis
Statistical analysis was performed using GraphPad Prism 10.0.3. A Shapiro–Wilk normality test was undertaken 
to determine whether a parametric or non-parametric statistical test should be used. When sample size was too 
small (i.e. n = 3), the distribution was judged based on the Normal QQ plots. The alpha level was set to 0.05. The 
statistical tests undertaken, the number of biological replicates, the sample size and p-values are reported in the 
relevant figure legends.

Data availability
Raw imaging data and processed datasets have been deposited at Figshare https://​figsh​are.​com/​proje​cts/​Ident​
ifica​tion_​of_​genes_​with_​oscil​latory_​expre​ssion_​in_​gliob​lasto​ma_​The_​parad​igm_​of_​SOX2/​185263. Any data 
reported in the current study that are not present in the public repository, are available from the corresponding 
author on reasonable request.

Code availability
All original code reported in this study is available on https://​github.​com/​Papal​opulu-​Lab/​Fu2023.
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