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An improved GBSO‑TAENN‑based 
EEG signal classification model 
for epileptic seizure detection
M. V. V. Prasad Kantipudi 1,7, N. S. Pradeep Kumar 2,7, Rajanikanth Aluvalu 3,7, 
Shitharth Selvarajan 4,5* & K Kotecha 1,6,7

Detection and classification of epileptic seizures from the EEG signals have gained significant 
attention in recent decades. Among other signals, EEG signals are extensively used by medical experts 
for diagnosing purposes. So, most of the existing research works developed automated mechanisms 
for designing an EEG-based epileptic seizure detection system. Machine learning techniques are highly 
used for reduced time consumption, high accuracy, and optimal performance. Still, it limits by the 
issues of high complexity in algorithm design, increased error value, and reduced detection efficacy. 
Thus, the proposed work intends to develop an automated epileptic seizure detection system with an 
improved performance rate. Here, the Finite Linear Haar wavelet-based Filtering (FLHF) technique 
is used to filter the input signals and the relevant set of features are extracted from the normalized 
output with the help of Fractal Dimension (FD) analysis. Then, the Grasshopper Bio-Inspired Swarm 
Optimization (GBSO) technique is employed to select the optimal features by computing the best 
fitness value and the Temporal Activation Expansive Neural Network (TAENN) mechanism is used for 
classifying the EEG signals to determine whether normal or seizure affected. Numerous intelligence 
algorithms, such as preprocessing, optimization, and classification, are used in the literature to 
identify epileptic seizures based on EEG signals. The primary issues facing the majority of optimization 
approaches are reduced convergence rates and higher computational complexity. Furthermore, 
the problems with machine learning approaches include a significant method complexity, intricate 
mathematical calculations, and a decreased training speed. Therefore, the goal of the proposed work 
is to put into practice efficient algorithms for the recognition and categorization of epileptic seizures 
based on EEG signals. The combined effect of the proposed FLHF, FD, GBSO, and TAENN models 
might dramatically improve disease detection accuracy while decreasing complexity of system along 
with time consumption as compared to the prior techniques. By using the proposed methodology, the 
overall average epileptic seizure detection performance is increased to 99.6% with f-measure of 99% 
and G-mean of 98.9% values.

Electroencephalogram (EEG) signal1,2 is one of the most extensively used tools for detecting human brain dis-
eases, providing information related to brain activity’s physiological states. Also, it is considered a communication 
medium for detecting disorders like epilepsy and brain tumor. Typically, the EEG signals3,4 are reasonable and 
non-invasive, acquiring the information for analyzing the complex behaviour of the brain. The epileptic seizure is 
a kind of neurological disorder5 that is identified based on the abnormal electrical activities of neurons. Also, it is 
highly essential to detect and recognize epileptic seizures to provide appropriate treatment at the time. Based on 
the statistical report provided by the World Health Organization (WHO), around 70 million people are affected 
by epileptic seizure disease6. So, various imaging modalities have been developed for detecting epilepsy, in which 
the EEG signal-based epileptic seizure detection7 has recently gained significant attention. Moreover, some of 
the automated mechanisms8,9 are developed in the existing works to detect epileptic seizures from EEG signals. 
When compared to the other approaches, machine learning algorithms are extensively used for automatic medical 
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diagnosis systems. The typical EEG signal classification system10 comprises the steps of signal de-noising, feature 
extraction, optimization, and classification. In conventional works, different types of machine learning techniques 
have been employed to improve both the efficiency and accuracy of epileptic seizure detection. The de-noising 
is mainly performed to remove the noise contents and other artifacts present in the signal by using the filtering 
approaches. The feature extraction and selection techniques are used to extract the most suitable features for 
increasing the accuracy of the classifier. The machine learning classifiers are mainly employed to increase the 
effectiveness of disease detection systems. An example of a binary classification technique is the Support Vector 
Machine (SVM) algorithm. It is able to handle a large number of predictors despite its small sample size and 
high sensitivity to a very large number of variables. This is just one of its many impressive qualities. The linear 
decision surface is the foundation of SVM because it has the largest gap among borderline patients and can be 
used to isolate patient classes. Features and classes are dealt with by the Naïve Bayes (NB) algorithm. It is taking 
into consideration a quick algorithm that analyses all of its training datasets and needs less data for classification. 
NB is a probabilistic classifier that completely relies on learning while taking into account the independence of 
the features given the class. To categorize the samples, K-NN is regarded as a stochastic regression, non-linear, 
and intuitive method. Moreover, it performs well for the bigger training dataset. Weights and neurons make up 
the Artificial Neural Network (ANN) function. Weights transport values among neurons, whereas neurons pass 
input values through functions and output results.

However, the conventional optimization-based classification techniques11–14 limit with the following key 
problems:

1.	 Difficult to understand the system design
2.	 Complexity in mathematical modelling and computations.
3.	 Requires increased time consumption for training and testing the features.
4.	 Increased misprediction rate and error rate.
5.	 High dimensionality of features.
6.	 Inability to handle large dimensional datasets.
7.	 Overfitting and reduced convergence rate

Therefore, the proposed work intends to develop a new prediction system for accurately identifying epileptic 
seizure from the given EEG signals. In the proposed detection framework, simple and advanced feature extrac-
tion, optimization, and classification techniques are employed to predict the seizure with minimal computational 
time. The complexity of classification is minimized by optimally choosing the features according to the global 
best solution. In addition to that, it helps to reduce the time consumption of classification with increased pre-
diction accuracy.

Contributions of the proposed work
The significant contributions behind this research work are as follows,

1.	 An automated and accurate epileptic seizure detection system is designed to identify EEG signal abnormali-
ties by using advanced bio-inspired optimization and deep learning classification techniques.

2.	 The quantitative information is obtained from the EEG signals with the help of Fractal Dimension (FD) 
based feature extraction methodology.

3.	 The optimal number of features are identified and selected based on the optimal position updation of grass-
hoppers using the GBSO technique. Also, the random jumping strategy is obtained from both the local and 
global optimal values.

4.	 The GBSO-TAENN improves the seizure detection scheme’s overall performance by identifying original 
features and optimal hyper-parameters like dropout, decay, leaving and cosine similarity. These parameters 
are mainly considered for computing the loss function, which can be utilized for training the classifier with 
reduced computational complexity.

5.	 Moreover, the different EEG datasets, such as the University of Bonn and CHB-MIT, have been utilized to 
test the proposed scheme’s effectiveness and accuracy during the experimental validation. These datasets 
comprise more complex cases of difficult signals to handle.

The other sections of this paper are structuralized as follows: section “Related works” investigates the con-
ventional EEG signal detection and classification techniques with their benefits and demerits. Then, section 
“GBSO-TAENN-based seizure prediction” describes the proposed GBSO-TAENN-based seizure detection system 
with its detailed algorithmic and flow illustrations. The performance and comparative analysis of both existing 
and proposed techniques are validated in section “Results and discussion”. Finally, the overall obtainments of 
this paper is summarized with its future scope in Section “Conclusion”.

Related works
This section reviews the conventional algorithms related to preprocessing, feature extraction, optimization, and 
classification for EEG-based epileptic seizure detection. Also, it discusses the working strategy of each technique 
with respect to its advantages and disadvantages.

Wang et al.15 introduced a new Time-Varying (TV) model with Multi-Wavelet Basis Function (MWBF) 
approach for detecting epileptic seizures from EEG signals. The main aim of this paper was to obtain an improved 
detection of a seizure by incorporating the functionalities of TV auto-regression, MWBF, and Ultra Regularized 
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Orthogonal Forward Regression (UROFR) models. The Principle Component Analysis (PCA) based optimiza-
tion model was employed to reduce the dimensionality of features based on the optimal fitness function. The 
significant advantages of this work were better classification performance and detection efficiency. However, it 
limits the issues like high complexity in algorithm design and more time consumption for processing. Alickovic 
et al.16 utilized a combination of Discrete Wavelet Transform (DWT), and wavelet-packed decomposition models 
for automatically detecting epileptic seizures from the given EEG signals. This system comprises the stages of 
signal de-noising, decomposition based on the empirical model, relevant feature extraction and classification. 
The empirical decomposition model was mainly utilized to decompose the signals based on the local minima and 
maxima values. Then, the transformation technique could be applied to construct various sub-bands of signals 
based on the estimated coefficients. Moreover, the performance of four different machine learning algorithms, 
such as SVM, k-NN, MLP, and RF, were compared based on the overall detection accuracy. This classification 
framework has the ability to process a large number of datasets with an improved performance rate.

Boubchir, et al.17 investigated the performance of different feature extraction techniques used for EEG signal 
processing, which comes under the categories of time-domain and frequency-domain. Then, some widely used 
machine learning techniques have been used to classify the signals based on the extracted features. It includes 
mean, variance, kurtosis, skewness, minimum, maximum, energy, peak frequency, amplitude, and mobility. Yet, 
this detection system is required to estimate the detection efficiency of classification with a large amount of data. 
Solaija, et al.18 suggested a new feature selection mechanism named Dynamic Mode Decomposition (DMD) 
for reducing the dimensionality of features used for EEG signal classification. The steps involved in this system 
design were preprocessing, feature extraction, selection, classification, and post-processing. The channel selec-
tion was performed during the signal processing, and the DMD and curve length features were extracted from 
the de-noised signal. After that, the RUSBoost decision tree technique was employed to train the classifier based 
on the feature values. Finally, the signal post-processing has been performed to decide whether the input signal 
is normal or seizure-detected based on the consequences of several epochs. It offered the benefits of reduced 
complexity and time consumption for processing the signals. Still, it limits the issues of reduced accuracy and 
detection efficiency in classification.

Jaiswal and Banka19 developed two different feature extraction approaches, such as Sub pattern-based PCA 
(SpPCA) and Cross-Sub pattern correlation-based PCA (SubXPCA) to improve the efficiency of automatic epi-
leptic seizures detection. Also, the SVM classification technique was employed to classify the seizure-affected 
signal based on the set of extracted feature vectors. The merits of these techniques were reduced space and 
time complexities during feature extraction. Wang et al.20 implemented a new detection methodology based 
on multiple feature extraction and classification to predict an epileptic seizure. Here, the Daubechies wavelet 
threshold technique was employed to normalize the input signal; then, the wavelet decomposition has been 
performed to obtain the sub-bands of the de-noised signal. After that, the PCA-based optimization technique 
was utilized to reduce the dimensionality of features by selecting the best fitness function. Finally, the machine 
learning classifier was used to categorize whether the signal is normal or abnormal based on the selected feature 
values. Kalbkhani and Shayesteh21 implemented a kernel Principal Component Analysis (PCA) method for 
reducing the dimensionality of feature vectors used in the EEG signal epileptic seizure detection system. Here, 
the Stockwell transformation was performed to partition the frequency bands, then the feature vectors were 
calculated with respect to the amplitude distribution. Based on these features, the most optimal feature values 
were selected using kPCA, and the k-nearest neighbor classification technique was employed to categorize the 
signals as Healthy, Interictal, and Ictal. Moreover, it obtained the advantages of reduced time complexity and 
increased classification accuracy.

Atal et al.22 developed an automatic classification system for discovering the abnormalities of the input EEG 
signals. Here, an Enhanced Curvelet Transform (ECT) technique was applied to denoise the signal by excluding 
the irrelevant positions and noisy contents. Sequentially, the quantitative information from the preprocessed 
signal was extracted by applying the graph and texture-based feature extraction mechanism. Then, the Grey Level 
Co-occurrence Matrix (GLCM) technique was deployed to extract the statistical information for simplifying 
the process of abnormality detection. Finally, the Random Forest (RF) classification technique uses the selected 
feature vectors to label the signal as normal or abnormal. Tsiouris et al.23 designed an automatic epileptic sei-
zure recognition system using the unsupervised machine learning approach, where the signals with epileptic 
abnormality were detected and isolated with increased accuracy. The authors validated the seizure detection 
performance of the suggested unsupervised learning methodology using different measures like time, false 
detection rate, sensitivity, specificity, and etc.

Chen et al.24 applied the nearest neighbours classification with the Fast Fourier Transform (FFT) technique to 
detect epileptic seizures from the EEG signals. The main intention of this paper was to obtain an improved clas-
sification performance with reduced detection time. In paper25, a complete ensemble empirical model decomposi-
tion model for classifying the given EEG signal as seizure or normal. It incorporates the processes of segmenta-
tion, signal decomposition, feature extraction, training/testing, and signal classification. Also, this work employed 
an adaptive boost classification technique to improve the accuracy and efficiency of the seizure detection system.

Zhou et al.26 suggested a Convolutional Neural Network (CNN) technique for recognizing epileptic seizures 
from the EEG signals, where the signal was classified into interictal, preictal, and ictal. For this analysis, the 
CHB-MIT database was utilized to test the average accuracy of this model with respect to these three classes. 
Still, this work has the major drawbacks of increased complexity in design and high time consumption for 
processing. Dash et al.27 utilized a Hidden Markov Model (HMM) classification technique to detect the input 
EEG signal’s seizure and non-seizure activities. This system comprises the working stages of preprocessing, 
decomposition, spectral density analysis, clustering and classification. The k-means clustering technique helps 
obtain an improved classification performance by identifying the similar data points with respect to the distance 
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vector28–30. However, this detection system lacks the issues of reduced robustness and high noisy contents, which 
affects the entire classification performance.

From the survey31–37, it is studied that the existing works utilized different types of machine-learning classifica-
tion techniques for detecting the epileptic seizure from the input signals with respect to varying classes. Yet, some 
of the limitations could degrade the effectiveness and accuracy of the seizure detection system, which include:

•	 High computational complexity.
•	 Reduced detection efficiency and accuracy.
•	 Very sensitive to artifacts.
•	 High time cost.

Thus, this research expects to design an effective signal classification framework for an accurate prediction 
and classification of epileptic seizures.

GBSO‑TAENN‑based seizure prediction
This sector delivers the complete depiction of the proposed GBSO-TAENN classification system with its algo-
rithmic and flow illustrations. The main motive of this paper is to precisely detect the EEG signal as to whether 
normal or seizure-affected by using advanced optimization and classification techniques. The motivation of 
this research work is to develop a new and computationally effective disease prediction framework for epileptic 
seizure detection and classification. For improving better performance, advanced optimization and classification 
methodologies are implemented in the proposed framework. In order to attain better accuracy and performance, 
the Finite Linear Haar wavelet-based Filtering (FLHF) approach is used for signal preprocessing and normaliza-
tion. Then, the Fractional Dimension (FD) based feature extraction is performed to obtain the suitable features 
from the preprocessed signal. Consequently, the GBSO algorithm is applied to reduce feature dimensionality, 
where the unique inertia weight updation is performed to improve the performance of optimization. Moreo-
ver, the deep learning model, named as, TAENN is utilized to predict the signal abnormalities with improved 
accuracy and reduced time consumption. The literature uses a variety of intelligence algorithms, including 
preprocessing, optimization, and classification, to identify epileptic seizures based on EEG readings. The main 
problems that most optimization techniques face are increasing computing complexity and lower convergence 
rates. Moreover, the challenges associated with machine learning techniques comprise a high degree of method 
complexity, sophisticated mathematical computations, and reduced training speed. Thus, putting into practice 
effective algorithms for the identification and classification of epileptic seizures based on EEG signals is the 
aim of the proposed work. When compared to earlier methods, the combined impact of the suggested FLHF, 
FD, GBSO, and TAENN models may significantly increase illness detection accuracy while lowering system 
complexity and time consumption.

The working stages involved in the proposed system are as follows:

•	 Signal de-noising and decomposition using FLHF
•	 FD analysis-based feature extraction
•	 Optimization using GBSO
•	 Abnormality identification based on TAENN

In the work flow mentioned in Fig. 1, two different datasets, such as University of Bonn EEG and CHB-MIT 
EEG, have been used to test the proposed classification system. At first, the input EEG signal obtained from these 
datasets is preprocessed by eliminating the artifacts and noisy contents with the help of the FLHF technique. 
Then, the different types of FD features such as higuchi FD, katz FD, sevcik’s FD, instantaneous energy, teager 
energy and Petrosian FD are extracted from the filtered signal.

Consequently, the GBSO-based optimization technique is employed to reduce the dimensionality of features 
by computing the optimal fitness function. Based on the selected feature vectors, the TAENN technique classi-
fies the given signal as to whether normal or seizure affected. The hyperparameter tuning is performed with the 
dropout, decay, and learning rate measures. The major advantages of the proposed GBSO-TAENN technique 
are high classification accuracy, reduced computational complexity, increased efficacy, reduced overfitting, and 
better prediction performance. Moreover, an advanced deep learning mechanism is utilized for classification, 
where the hyper-parameters like drop, decay, leaving, and cosine learning are computed for computing the loss 
function. Then, this value can be utilized for training the classifier, and it also helps reduce the classification 
system’s complexity.

Preprocessing
The EEG signal preprocessing is one of the essential stage in medical diagnosing systems, where the noise/arti-
facts removal is performed for de-noising the signal. In this stage, the signal decomposition is mainly performed 
to reduce the complexity of input EEG signals, which also helps to improve both the detection and classification 
performance rate. Due to the non-linearity nature of EEG signals, signal decomposition is used for accurately 
detecting epileptic seizures. For this purpose, the Finite Linear Haar wavelet-based Filtering (FLHF) approach 
is deployed in this work, which performs the processes of signal decomposition, artifacts/noise removal, and 
normalization. Typically, the haar wavelets is a type of wavelet transformation model, which converts the discrete 
signal into two sub-signals. Also, it is computationally fast, memory effective, and it can be easily reversible with 
minimal data loss. Moreover, the haar functions are treated as the orthogonal functions, which helps to estimate 
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the frequency component of the given signal. Therefore, the proposed work intends to utilize a FLHF based 
filtering technique for signal preprocessing and normalization operations.

In this filtering technique, the mother wavelet transformation has been performed, where the rectangular 
format of mother wavelets are considered for obtaining the signal error rates. Based on that, the noise location 
has been identified and removed by computing the probability value. The main reason for deploying this filtering 
technique is to accurately detect and eliminate the noisy contents that exist in the signal by using the rectangular 
mother wavelets. The significant benefits of this preprocessing technique are as follows: fast computation, simple 
design structure, and less memory consumption by following the simple steps for noise removal.

Here, the EEG signal obtained from the given dataset is taken as the input si(t) and the artifacts removed 
signal is produced as the output AR(t) . Here, the mother wavelet can be defined based on the Haar wavelet 
function as shown below:

where, 2r indicates the support size of the Nyquist frequency and (r, c, d) are the indices, r is the scale index, c 
defines the frequency shift phase parameter, and d represents the time-related parameters. After that, the rec-
tangular form is constructed from the mother wavelet as shown below:

(1)τ(r,c,d)(t) = τ(c)
(
2r t − n

)

Figure 1.   The flow of GBSO-TAENN-based epileptic seizure detection system.
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Consequently, the wavelet packet coefficients are estimated based on the coherent part e(t) of sequence si(t) , 
which is illustrated as follows:

where D indicates the length of wavelet transformed signal described by log2 (n) , and n is the length of the 
sequence. Then, the measured signal si(t) and noise component e(t) can be differentiated for obtaining the 
observed sequence AR(t) , which is illustrated as follows:

Finally, the wavelets are rearranged with respect to the localization of the noise component, and the detected 
subspaces of probability is estimated as follows:

The algorithmic illustration of the FLHF technique is shown below:

Input: Input EEG signal 

Output: Artifacts removed signal 

Step 1: Mother wavelet is defined based on a haar wavelet function by using equation (1).  

Step 2: Rectangular format of the mother wavelet is constructed by using equation (2). 

Step 3: The coherent part  of the sequence  with respect to wavelet packet coefficients is computed using equation (3). 

Step 4: The observed sequence  is calculated based on the difference between the measured signal  and noise 

component , which is represented in equation (4). 

Step 5:  Finally, the wavelet can be rearranged by localizing the noise component and detecting probability subspaces, as shown

in equation (5). 

Algorithm I—Finite Linear Haar wavelet-based Filtering (FLHF)

Feature extraction
After normalization, the features are extracted from the preprocessed signal using the Fractal Dimension (FD) 
analysis model38. The FD is a type of biological waveform that is typically employed to evaluate signal complex-
ity because of its two main characteristics: self-similarity and irregularity. Furthermore, measuring FD for the 
seizure detection system yields more effective results than the currently used feature extraction methods. At this 
point, the normalized signal is used to extract the various FD properties, such as teager energy, instantaneous 
energy, katz, sevcik’s, and higuchi. The Higuchi FD is mostly based on discrete time series signals and is used to 
evaluate the waveform’s fractal dimension. The Kalz-FD is therefore better suited to handling problems involving 
the unit-making technique, where a variable is employed to verify the average distance between the successive 
points. Furthermore, the hausdorff dimension is used to estimate the approximate value of Sevcik’s FD. As such, 
the log-based energy, or teager, is calculated based on the signal’s amplitude and frequency fluctuations.

Here, the Higuchi FD feature is considered for accurately estimating the signals, katz FD is mostly concen-
trated for obtaining the best aggregation degree, and the sevrick’s energy is computed for analyzing the variations 
in the energy distribution of each peak of the signal. Similarly, the teager energy is used to estimate the IMF 
component of signal for analyzing the extreme across two successive zero crossings, and the Petrosian feature 
has been used to analyze the exceeds of the standard deviation magnitude of each signal peak.

Initially, the FD waveform of the given input signal can be defined as follows:

where ω  indicates the wavelength and, d1n is the Euclidean distance between wave points. Then, FDT is updated 
as follows:

where, dtc1n represents the distance value, and j indicates the maximum range obtained from the starting point. 
Consequently, the Higuchi FD can be extracted as follows:

(2)τ h(t) =

{
1; if 0 ≤ t ≤ 1/2
−1; if 1/2 ≤ t ≤ 1
0; for all othert

(3)e(t) =
∑

r∗ ,c∗

2D−r∑

p=0

pc(r∗ ,c∗ ,p)τ(r,c,d)(t)

(4)AR(t) = si(t)− e(t)

(5)pc(r∗ ,c∗ ,p) =

∣∣∣∣∣∣

2D−r∑

p=0

{
pc(r∗ ,c∗ ,p)

}
∣∣∣∣∣∣

(6)FDT =
log10 ω

log10 d1n

(7)FDT = max
(
dtc1n

(
1, j

))
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where, n = 1, 2, 3, . . . , j and 
[
D−n
j

]
 is the Gauss notation, j and n indicated as the integers. Then, the value of j 

can be used to find out the starting and interval time values, and the length of Xn
j  can be updated at every time 

as shown in below:

where, D−1[
D−n
j

]
j
 indicates the normalization factor with respect to the length of FD. The average value of A

(
j
)
 over 

j sets (i.e.) An

(
j
)
 is updated as follows:

Subsequently, the Katz FD can be extracted with respect to the mean distance davg of successive points as 
shown in below:

where the value of h can be divided the states of ω with respect to the number of successive points. Then, the 
Sevcik’s FD is extracted based on the Hausdorff distance Hd , which is represented as follows:

where D(γ ) indicates the total radius ε required for FD, then,
the waveform with the length L can be defined as follows:

where, D(γ ) = L/2γ . Based on signal normalization, the unit vector can be visualized in D × D cells, which is 
shown in below:

where, FDs
T equals to the fractal dimension FDT and its approximation is boosted as D → ∞ . In addition to 

that, the signal instantaneous energy can be defined based on the distribution on each band, which is illustrated 
as follows:

where, Ni represents the amount of signal samples, and wi indicates the weight value of vector at each sample. 
Subsequently, the teaser energy can be represented based on the values of amplitude and frequency of signal as 
shown in below:

Finally, the Petrosian FD is computed as follows:

The above-extracted features help to increase the overall efficiency of signal classification. Then, the dimen-
sionality of these features can be minimized by applying the optimization technique.

(8)Xn
j = y(n), y

(
n+ j

)
, y
(
n+ 2j

)
, y
(
n+ 3j

)
, . . . , y

(
n+

[
D− n

j

]
j

)

(9)A
�
j
�
=

1

j




�
D−n
j

�

�

t=1

��X
�
n+ tj

�
− X

�
n+ (t − 1)j

��� D − 1�
D−n
j

�
j
/j




(10)A
(
j
)
=

j∑

n=1

An

(
j
)

(11)FDT =
log10

(
ω

davg

)

log10

(
d1n
davg

) =
log10 h

log10

(
d1n
ω

)
+ log10 h

(12)Hd = lim
γ→0

−log (D(γ ))

log (γ )

(13)FDT = lim
γ→0

−
log (L)− log (D(γ ))

log (γ )

(14)FDs
T = lim

D′→∞

[
1+

log (L)− log (2)

log (2(D − 1))

]

(15)EI = log10

(
1

Ni

Ni∑

t=1

(wi(t)
2

)

(16)EI = log10

(
1

Ni

Ni−1∑

t=1

|wi(t)
2 − wi(t − 1) ∗ wi(t + 1)|

)

(17)FDpetr =
log10m

log10m+ log10

(
m

m+0.4Ni

)
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Feature selection
To increase classification accuracy and efficiency, the best features are chosen using the GBSO technique once 
the set of features has been extracted. The hybrid BF and GA method known as genetically bacterial swarm 
optimisation (GBSO) in the current work uses three genetic operators—crossover, mutation, and selection—as 
well as BF’s chemotactic mechanism to perform local search. Furthermore, when a person is removed from the 
initialization process in order to generate a new one, the course does not alter; rather, a new person is created 
by altering every dimension. The two stages of the GBSO strategy are as follows: the first stage concentrates on 
genetic selection through the use of the breeder genetic algorithm (BGA) mutation, crossover through extended 
initial mating, and stochastic universal sampling (SUS) method. But, it has the following problems:

1.	 Slow convergence
2.	 Due to the fixed step size, it is more complex to balance the exploration and exploitation capabilities
3.	 Local optimum
4.	 Complex design

However, the Geneticall Bacterial Swarm Optimization (GBSO) method now in use is not the same as the 
suggested Grasshopper Bio-Inspired Swarm Optimization (GBSO).For feature selection in the suggested work, we 
employed the Grasshopper Bio-Inspired Swarm Optimization (GBSO) algorithm. This method balances explora-
tion and exploitation by updating the inertia weight based on the parameter G. Additionally, by changing one of 
the parameters G in the suggested GBSO model, the consistency of the search process is guaranteed. Furthermore, 
the suggested GBSO replicates the swarming behaviors of grasshoppers. Additionally, the grasshopper optimiza-
tion method will be used in the proposed work to choose the best characteristics from the EEG input. It is a type 
of bio-inspired meta-heuristic optimization method that emulates the swarming behavior of grasshoppers39. It 
offers the best results and most appropriate optimal solutions when compared to other optimization strategies 
for resolving the provided issues. The GBSO40 technique is applied in this work because of its quality of solution 
and exploration capabilities. It effectively solves the complex optimization problem by mimicking the behavior 
of grasshoppers in nature. The social interaction probability is estimated in the proposed work with the social 
force, which is a key distinction between the existing and proposed grasshopper optimization techniques. It 
facilitates the achievement of the global optimal value and a higher convergence rate. In addition, it offers excel-
lent accuracy, low exploration and increased exploitation, and ease of deployment.

Furthermore, in comparison to other optimization strategies, the searching efficiency and convergence speed 
are significantly higher. Based on the parameters of unity vector, social interaction, and gravitational force, the 
GBSO objective function is calculated. Based on the optimized value, the ideal amount of features for this model 
is chosen from a list of features that are available. Next, based on the ideal values of the variables employed in 
the optimization, the optimal cost is calculated. In this optimization technique, the input populations of the 
grasshoppers are updated for the prediction of best optimum value. Since the updating populations can be 
repeated in this case, the location can always be altered. Thus, in order to complete the feature selection process, 
it is helpful to obtain both the local and global optimal values. Just the local optimal value has been determined 
in relation to the weight function in the traditional grasshopper model. However, in the suggested model, the 
random jumping process has been used to compute both the local and global values. This optimization method 
has the following advantages: faster convergence, fewer parameters needed, manipulative searching pattern, high 
coverage, precise setup, and higher-quality random populations.

In this technique, the population size N and maximum number of iterations Imx are taken as the input, and 
the optimized value OV is produced as the output. After getting the input parameters, the initial population is 
generated as follows:

where, Sj indicates the social interaction of the jth grasshopper, Grj defines the gravity force of the jth grasshopper, 
and Adj represents the wind advection of the jth grasshopper. Then, Grj is defined as follows:

where, gc is the gravitational constant, dc indicates the constant drift, ec defines the unity vector towards the center 
of the earth, and ew Indicates the unity vector towards the direction of the wind.

As shown in Eq. (18), three key elements make up simulation of gravitational force, wind advection, and 
social interaction. These three elements mimic grasshopper movement. To tackle optimization problems, GBSO 
merely mimics the social interaction as represented in Eqs. (20) and (21). Then, the current iteration is initialized 
as I = 1, and the social interaction is estimated for the jth grasshopper, which is shown below:

(18)Xj = Sj + Grj + Adj

(19)Grj = −gcêcAdj = dcêw

(20)Sj =

N∑

j=1,k �=j

sf
[
djk

]
d̂jk

(21)sf (r) =

√√√√
f

exp

(
r/
g
)
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 where, Sj indicates the social interaction, N is the total number of grasshoppers in the population, sf (r) is the 
social force,  f  is the attraction intensity, g is the length of attraction scale, and djk represents the distance value 
between jth and kth grasshoppers. According to where a grasshopper is in relation to nearby grasshoppers, it may 
experience the three forces of attraction, repulsion, and neutrality in a grasshopper swarming. Thus, the area is 
split into three sections: the region before the comfort zone, the area inside the comfort zone, and the area after 
the comfort zone. These three parameters and their forces are simulated using the aforementioned mathematical 
function. The function s is used to demonstrate how it affects grasshoppers’ social interactions (attraction and 
repulsion). Here, the repulsion occurs between 0 and 2.079. When addressing optimization issues, this value 
can be normalized to any desired range. When the distance is 2.079, the grasshopper will be in an unforced 
neutral position. The attractive force increases as the grasshopper moves farther, up until around 5, when the 
vast distance causes the forces to decrease. In GOA, it is considered that the function s’s operating range is 0–3.3.

Consequently, estimating the fitness function of all feature vectors is the best optimal solution. Then, the 
value of optimization function G is estimated with respect to the values of upper and lower bounds of dimen-
sion, which is shown in below,

where, G is the optimization function, it indicates the current iteration, itmaxi is the maximum number of itera-
tions, Gmaxi and Gmini are maximum and minimum values of coefficients for reducing exploration, and increasing 
exploitation. The classic GOA algorithm relies on the parameter G to balance both exploration and exploitation, 
which linearly declined as iterations increased. Yet, without taking into account each grasshopper’s fitness, all the 
grasshoppers use the same parameter. In the proposed work, a unique inertia weight calculation is performed 
that adopts several tactics based on the fitness value of grasshoppers. Moreover, the consistency of the searching 
procedure is ensured in the proposed GBSO model by replacing one of the parameter G. The work flow model 

(22)G = Gmaxi − it
Gmaxi − Gmini

itmaxi

Figure 2.   Workflow of GBSO algorithm.
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of the proposed GBSO algorithm is shown in Fig. 2. Based on the following model, the inertia weight value 
updation is performed:

Then, the distance values are normalized between the solutions in set X and the value of xj ∈ X is updated 
as follows:

where, xj is the jth grasshopper, xk is the kth grasshopper, ub is the upper bound, and lb is the lower bound. Finally, 
the optimized value is obtained as OV = xj , which can be used for improving the performance of classification. 
Before applying an optimization technique, the total number of features is 724, and after applying the proposed 
GBSO technique, the number of features are reduced to 497.

Input: Population size N, ,  and maximum number of iteration 

Output: optimized value 

Procedure: 

Step 1: Generate initial population  as shown in equ (18). 

Step 2: Initialize the current iteration 1
Step 3: 

Step 4: Social interaction of the  grasshopper is computed by using equation (20). 

Step 5: Estimate the fitness function based on the extracted features and select the optimal solution. 

Step 6:        Update the value of by using equation (21). 

Step 7:          Normalize the distance between solutions in X.    

Step 8:          Update by using equation (22). 

Step 9: End while 

    Step 10: Return the optimized value 

Algorithm II—Grasshopper Bio-Inspired Swarm Optimization (GBSO)

Classification
After selecting the optimal features, the TAENN technique is implemented to detect the epileptic seizure from 
the input signal sequence accurately. This technique is developed based on the standard Deep Neural Network 
(DNN), Spatio-Temporal Neural Network (i.e. CNN and gated recurrent unit),13,41,42 and back propagation algo-
rithm, which offers a large set of functions for analyzing the patterns of seizure-affected signals. The proposed 
TAENN is able to effectively deal with the temporal correlation that exists within the input time series because 
of the directional circulation mechanism. By applying this method, the temporal information of EEG sequences 
can be processed effectively on the foundation of extracting EEG spatial information. This layered architecture 
comprises the three layers of input state, hidden state and output state. Typically, selecting the optimal values 
for tuning the hyper-parameters is one of the most difficult and challenging tasks in the deep learning model, 
because it can directly degrades the learning model’s performance, and are more significant to the datasets. In 
this classification algorithm, the hyper-parameters such as dropout, decay and learning rate are tuned for proper 
training and testing.

At first, the dropout parameter is used to eliminate the randomly chosen neurons for training the learning 
model with reduced data specialization. Also, it mainly intends to increase the generalization ability of the clas-
sification network by utilizing the more dependable neurons for training. The incorporation of dropout technique 
in the input layer can increase the loss of informative attributes, but the use of dropout technique in the hidden 
layer ensures increased classification effectiveness. Hence, it is more essential to deploy the dropout rates based 
on the clear analysis of the specific model and level of learning. Generally, the training data overfitting can hap-
pen due to the large weight values of the network with increased variability and complexity. In order to solve 
this issue, the L1 regularization has been used, which increases the generalization capability of network training 
data by making the smaller weight values with zero mean distribution. The main advantage of using this model 
is, it effectively improves the robustness by optimally selecting values.

Moreover, the cosine learning rate is used to obtain the minimal loss value by discovering the local minimums, 
which incorporates the parameters of decay and learning rate. The selection of these parameters highly depends 
on their topological structure, and it is more important to select the most suitable values for these parameters. 
Because the better parameter identification with the best local minimum helps to reduce the computational 
complexity with high generalization ability. Hence, these hyper parameters have been utilized in this classifica-
tion system to enhance the training data model’s transient behaviour.

(23)






Gk
i = Gmaxi − (Gmaxi − Gmini)×

�
it

itmaxi

�
if fitness(i) ≥ avg

Gk
i = Gmaxi − (Gmaxi − Gmini)×

�
2it

itmaxi
−

�
it

itmaxi

�2�
if fitness(i) < avg

(24)xj = G




N�

j=1,k �=j

G
ub − lb

2
sf
�
xj − xk

�xj − xk

djk




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where, X indicates the entire feature set of EEG signal, xn represents the number of EEG signal (i.e. the extracted 
feature values of nth EEG signal). Then, the hidden state of the network is defined as follows:

where, τ represents the nonlinear function such as the hyperbolic tangent function, and the rule for the hidden 
state is updated as follows:

where, Ci indicates the coefficient matrix of input and Up is the coefficient matrix of present hidden state. In this 
mechanism, the essential hyper-parameters such as dropout rate, decay rate, and learning rate. In which, the 
dropout rate is mainly used to eliminate the random neurons during the training process, and helps to analyze 
the network with less specialization. The decay is used to stabilize the network with reduced weight value, and to 
reduce the overfitting of training data with improved generalization capability. Then, the learning rate is utilized 
for discovering the local minimum as shown in below:

where, θn defines the exponential decay rate, ρn is the minimum learning rate, ϑn indicates the maximum learn-
ing rate, Epi is the total number of epochs, and Ep defines the current epochs. Consequently, the conditional 
probability distribution is estimated as follows:

Then, the activation function is estimated for the network by using,

where, tanh(.)  indicates the hyperbolic tangent function, and on is the output layer of the network. After that, the 
output layer of the network can be updated based on the weight matrix, which is illustrated as follows:

where, δ(.) is the logistic sigmoid function, Woi represents the weight matrix of input and output state, Who defines 
the weight matrix for hidden and output state, and Wom represents the weight matrix for memory and output 
state. The memory state mn is computed as follows:

where, Wmi defines the weight matrix of input and output state, and Wmh indicates the weight matrix of hidden 
and output state. Then, the activation function is reformulated based on the learnable parameters, which are 
shown below:

where, γn is the learnable parameter. Simultaneously, the parameters are optimized in the network based on the 
chain rules formed by γn , which is defined as follows:

where, ∂L
∂f (γn)

 is the gradient back propagated from the deeper layer of the activation function as shown in below:

Finally, the predicted label y can be obtained by using,

where, Who is the output-hidden weight matrix, hK indicates the hidden vector sequence, and bo defines the bias 
vector of the output layer. The algorithmic steps involved in the proposed TAENN technique is illustrated below:

(25)X = {x1, x2, . . . , xn}

(26)hn =

{
0 if n = 0

τ(hn−1, xn) else

(27)hn = τ
(
Cixn + Uphn−1

)

(28)δ = e−θnEp(ρn +
1

2
(ϑn − ρn)

[
1+ cos

(
Ep

Epi
π

)]

(29)p{x1, x2, . . . , xn} = τ(hn)

(30)hn = ontanh(cn)

(31)on = δ

(
Woixn +Whohn−1 +Wommn

)

(32)mn = tanh
(
Wmixn +Wmhhn−1

)

(33)f (hn) =

{
tanh (hn) if hn > 0

γn tanh (hn) if hn ≤ 0

(34)
∂L

∂γn
=

∑

hn

∂L

∂f (γn)

∂f (γn)

∂γn

(35)
∂f (γn)

∂γn
=

{
0 if hn > 0

tanh (hn) if hn ≤ 0

(36)y = WhohK + bo
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Step 1: Get, the input given EEG sequence, 

, , … ,
Step 2: Define the Hidden state ℎ  of the network with respect to the hyperbolic tangent function as shown in equation (26). 

Step 3: The classification output will be in the form of, 

, , … ,
Step 4: Update the rules of the hidden state based on the coefficient matrices as shown in equation (27). 

Step 5: Compute the hyper parameters of dropout, decay rate, and learning rate by using equation (28). 

Step 6: Then, the conditional probability distribution function is estimated as shown in equation (29)   

Step 7: The activation function is formulated for the network with respect to the hyperbolic tangent function as shown in equation 

(30).  

Step 8: The classification output layer of the network is updated based on the weight matrix and logistic sigmoid functions as 

shown in equation (31) 

Step 9: Consequently, the memory state is computed based on the weight matrix of input, hidden and output states, which is 

illustrated in equation (32). 

Step 10: The activation function is reformed based on the learnable parameter as shown in equation (33).  

Step 11: The parameter optimization is performed with the use of the chain rule, as shown in equations (34) and (35).  

Step 12: Finally, the output label y can be predicted with the values of the output hidden weight matrix, vector sequence, and bias 

vector, which is defined in equation (36). 

Algorithm III—Temporal Activation Expansive Neural Network (TAENN)

Results and discussion
This section presents the performance analysis of both existing and proposed epileptic seizure detection tech-
niques with respect to varying performance measures. The major contribution of this work is to accurately detect 
the epileptic seizure from the input EEG signals by using an advanced optimization and classification methods. 
Also, it motivates to increase the detection accuracy with minimal computational complexity. For this purpose, 
a combination of GBSO-TAENN mechanisms are employed in the proposed work, which predicts the input 
signal as whether normal or seizure affected.

Dataset details
Two distinct benchmark datasets, namely Bonn University43 and CHB-MIT44, are used in this evaluation, in 
which the Children’s Hospital Boston’s CHB-MIT database was the one used in this investigation.

CHB‑MIT
EEG recordings from 24 pediatric patients who were having uncontrollable seizures are included in the collec-
tion. This collection contains 916 h of EEG data and 23 samples of EEG recordings from 22 people, ages ranging 
from 1.5 to 22 years. A continuous EEG readout was acquired following the cessation of anti-seizure medication. 
Seizures and non-seizures were identified in 664 EEG files from the CHB-MIT database, which comprised 198 
seizures from all patients. With 129 files involving one or more seizures, these data sets range in duration from 
one to four hours. A rate of 256 samples per second was used to record every EEG signal. In line with this, Phy-
sioNet has the CHB-MIT dataset, which consists of 23 patients’ multi-channel EEG signals. Additionally, it is a 
publicly accessible dataset with various EEG recordings that was obtained using an hour-long recording of the 
EEG signals using a conventional 10–20 system. At every recording, it is labelled with the beginning and ending 
of the seizure. Typically, a session of 23 electrodes is used to sample EEG signals at 256 Hz.

Bonn dataset
The Bonn University dataset description is given in Table 1. It is divided into five subsets, A, B, C, D, and E, each 
of which has about 100 single-channel segments. The data set utilised in this study was gathered by a University 
of Bonn research team and has been extensively used in studies on the detection of epilepsy with the sampling fre-
quency of 173.61 Hz. The standard method of placing 10–20 electrodes was employed to record the EEG signals. 
There are 100 one-channel instances in each of the five sets (A to E) that make up the entire data collection. Five 
healthy participants were recorded with their eyes open (A) and closed (B) when they were relaxed and awake 

Table 1.   Bonn dataset description.

Data Set A Set B Set C Set D Set E

Type Healthy Healthy Epileptic Epileptic Epileptic

State Awake State with Eyes Open Awake State with Eyes closed Interictal Interictal Ictal

No of Channels 100 100 100 100 100

Electrode Placement International 10–20 System International 10–20 System Hippocampus Opposite to 
Hemisphere Within Epileptic Zone Within Epileptic Zone
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when the EEG data for Sets A and B were obtained. Sets C, D, and E comprised information from five patients. 
The EEG traces for set D were gathered in the epileptogenic zone. Set C was recorded in the other hemisphere of 
the brain, where the hippocampus is formed. Unlike Sets C and D, which contain EEG signals recorded during 
seizure-free periods (interictal) (ictal), Set E’s EEG data were exclusively recorded during seizure activity. For 
both datasets, around 80% of data has been taken for training models and 20% of data is considered for testing 
the models. Then, the type of sample signals obtained from the dataset are shown in Fig. 3.

Comparative analysis
For this evaluation, the University of Bonn dataset has been used to test the performance and efficiency of the 
filtering approach, feature extraction model, and optimization mechanism separately. Table 2 shows the Peak 
Signal to Noise Ratio (PSNR) and SD of the existing Blackman window and maximally flat filtering techniques. 
For the signals obtained from the Bonn dataset, the average SNR and SD values are estimated by implementing 
both existing and proposed approaches. Then, these results stated that the proposed FLHF approach provides 
the reduced average SNR and SD values by eliminating the noise based on the probability estimation using the 
rectangular format of mother wavelets. In the proposed work, two main issues such as noise removal and class 
imbalance are solved in the preprocessing stage by using the FLHF mechanism. It helps to remove the noise and 
improve SNR of the EEG signals. All the operations involved in the preprocessing stage helps to improve the 
SNR of EEG signals, and also it results in an improved classification performance.

Table 3 shows the analysis of the proposed FD feature extraction model using the university of Bonn dataset, 
where the performance measures are evaluated for each FD feature. It is clearly described how the proposed 
system obtains the results without the features of Higuchi FD, Katz FD, instantaneous energy, teager energy, and 
Petrosian FD. For analysis, the feature extraction model without Higuchi FD offers the reduced performance 
values compared to the integration of all FD features. Hence, it is stated that the incorporation of all FD features 
could efficiently improves the performance of entire seizure detection system.

Depending on how the epileptic seizure manifests itself, there are various categories into which it can be 
divided. The ictal state refers to the period between the beginning of the seizure and its conclusion. After a 
seizure has ended, a postictal state begins and lasts for a short while. Interictal state, or regular brain activity, is 

(a)  Healthy State –Eyes Open (b)  Healthy State, Eyes Closed (c)  Inter-Ictal State (epileptic focus) 

(d)  Inter-Ictal State (Hipocam.region) (e)  Ictal State 

figure 3.   Sample EEG signals.

Table 2.   Average PSNR and SD of existing and proposed filtering approaches.

Filter Average Peak SNR (dB) SD

Blackman Window 5.2713 1.0530

Maximally Flat 6.0257 1.3298

Proposed FLHF 7.4462 1.3040
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distinguished from preictal state, or abnormal brain activity, which can begin 60 to 90 min before the onset of a 
seizure. Here, the average accuracy is estimated in Table 3 for these classes of the EEG signals. In this analysis, the 
accuracy is only evaluated for with and without feature extraction model, where the accuracy is separately calcu-
lated for the individual features as well as the inclusion of all FD features. According to the estimated results, it is 
observed that the accuracy can be greatly increased to 99.8% with the inclusion of all FD features. Similarly, the 
proposed epileptic seizure detection system is tested with and without optimization stages as shown in Table 4. 
Based on the analysis, it is observed that with the inclusion of optimization, the accuracy is increased to 98.9% 
in the proposed model. Moreover, these two analyses are performed for individually validating the effectiveness 
of feature extraction and optimization mechanisms.

Table 4 shows the parametric evaluation of proposed system with and without optimization techniques, 
where the analysis has been taken for the Bonn university dataset. Based on this analysis, it is stated that without 
optimization the performance values of all measures are decreased, when compared to the performance values 
of “with optimization”. Because, the GBSO technique finds both local and global optimum value based on the 
optimal position updation of grasshoppers. Here, the optimized value can be predicted based on the random 
jumping strategy, which helps to efficiently training the classifier for predicting the seizure with better perfor-
mance outcomes.

Overall performance analysis
Figure 4 presents the overall performance analysis of the proposed GBSO-TAENN mechanism, where the sen-
sitivity, specificity, accuracy, precision, and F-measure measures have been computed. Typically, the sensitivity, 
specificity, and accuracy measures are used to test the classification efficiency of the detection system. Similarly, 
the parameters of precision, recall, g-mean and f-measure are also estimated in this work for ensuring the detec-
tion efficiency of the machine learning classifier. The sensitivity is defined based on the ratio of the number of 
TP rate and the value of TP with FN. Then, the specificity is defined by the ratio of the TN and TN with FP, and 
accuracy is estimated to determine that how the classifier could actually predict the seizure-affected signals based 
on the set of features. The measures are defined as follows:

(37)Sensitivity =
TP

TP + FN

(38)Specificity =
TN

TN + FP

(39)Accuracy =
TP + TN

TP + TN + FP + FN

(40)Precision =
TP

TP + FP

Table 3.   Analysis of feature extraction.

Features Accuracy Sensitivity Specificity Precision Recall F-Measure G-Mean

Feature extraction without Higuchi FD 94.4 97.87 92.30 88.46 97.87 0.9293 0.9505

Feature extraction without Katz FD 95 96.01 94.31 91.90 96.01 0.9392 0.9516

Feature extraction without Instantaneous energy 96.2 96.03 96.30 94.63 96.03 0.9533 0.9617

Feature extraction without teager energy 98.2 99.48 97.36 96.05 99.48 0.9774 0.9842

Feature extraction without Petrosian FD 93 95.36 91.50 87.67 95.36 0.9136 0.9341

Feature extraction with inclusion of all FD features 99.8 99.5 100 100 99.5 0.99 0.99

Table 4.   Parametric evaluation of the proposed system for with and without optimization techniques.

Measures Without optimization With optimization

Accuracy 97.5 98.9

Sensitivity 97.5 98.6

Specificity 97 99.4

Precision 95.6 99.2

Recall 97.5 98.6

F-Measure 0.966 0.983

G-Mean 0.973 0.985
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where TP indicates the True Positive, TN represents the True Negative, FP defines the False Positive, and FN 
represents the False Negative. Based on this analysis, it is observed that the proposed GBSO-TAENN model 
provides improved classification results with high accuracy, sensitivity, specificity, precision and f-measure values.

Comparative analysis between existing and proposed techniques
Figures 5, 6 and 7 compares the existing XGBoost, CEEMD-XGBoost33 and proposed GBSO-TAENN mecha-
nisms based on sensitivity, specificity, and accuracy measures. These parameters are computed for the different 
subsets of signals mentioned in the Bonn University dataset. In this analysis, around 12 number of classes have 
been considered for testing the results of both existing and proposed techniques. Also, the obtained values of 
both techniques are tabulated in Table 5 and Table 6. The evaluation shows that the proposed GBSO-TAENN 
technique outperforms the other techniques with increased performance values. Because it optimally selects the 
most relevant features by estimating fitness value with respect to the distance measure, which helps improve the 
classifier’s overall performance.

In Fig. 8, some of the recent state-of-the-art model approaches including both machine learning and deep 
learning are compared with the GBSO-TAENN algorithm for proving the superiority of the proposed model. For 
this analysis, the parameters such as sensitivity (%), specificity (%), and average anticipation time (m) are taken 
into consideration. Since, the accuracy of classifier is highly relies on the parameters of sensitivity, specificity, 
and time. Therefore, the suggested existing and proposed GBSO-TAENN models are validated and compared 
in this table. The findings indicated that the proposed algorithm overwhelms the conventional approaches with 

(41)F −Measure =
2TP

2TP + FP + FN
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Figure 4.   Performance analysis of proposed GBSO-TAENN technique.
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increased sensitivity, specificity, and reduced time due to the proper operations such as filtering, feature extrac-
tion, optimization and classification.

Figure 8 compares the sensitivity and specificity values of various machine learning-based classification 
approaches used for epileptic seizure detection. The techniques taken for this analysis are thresholding, MLP, 
LSTM, ELM, ANN, KNN, LDA, GRNN, SVM, RF, CNN, domain matching, and FMGDA35–37,45. The evaluation 
proves that the proposed GBSO-TAENN technique provides an increased performance value by accurately clas-
sifying the seizure-affected signals from the given dataset.

Figure 9 validates the performance of the conventional and proposed filtering technique based on the param-
eters of average peak SNR, and standard deviation, which includes existing filtering techniques of blackman 
window and maximally flat. According to this analysis, it is identified that the proposed FLHF technique outper-
forms the other approaches with better SNR, and SD values. Figure 10 compares the performance of the proposed 
methodology with and without feature extraction. The obtained results depict that the proposed detection system 
provides an improved performance values with the inclusion of FD feature extraction technique. Consequently, 
Figs. 11 and 12 compares the F-measure and G-mean values of the proposed methodology with and without fea-
ture extraction techniques. The obtained results state that the proposed model provides an improved F-measure 
and G-mean values, when it is incorporated with all features. According to this evaluation, it is observed that 
the feature extraction method plays a vital role in the proposed system, since it supports to obtain an improved 
classification performance. Similarly, the performance analysis of the proposed mechanism is validated with 
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Table 5.   Analysis of sensitivity and specificity between existing and proposed techniques for different datasets.

Dataset Cases Classes

XG Boost CEEMD-XGBoost GBSO-TAENN

Sensitivity Specificity Sensitivity Specificity Sensitivity Specificity

Bonn

I A-E 100 100 100 100 100 100

II B-E 99 98 100 100 100 100

III C-E 99 99 99 100 100 99.33

IV D-E 100 100 100 100 100 100

V A-D 100 99 100 100 100 100

VI AB-E 99 99 100 100 100 100

VII CD-E 97 98.5 99 100 100 99

VIII ACD-E 97 99 100 99.67 100 99.67

IX BCD-E 96 99.67 99 99.33 100 99.33

X ABCD-E 96 99.75 99 99.50 99.5 99.2

XI A-D-E – – – – 100 100

XII AB-CD-E – – – – 99.5 98.99

CHB-MIT XIII Normal/Seizure 93.46 92.83 95.70 95.89 99 98.9

Table 6.   Accuracy analysis of existing and proposed techniques for two datasets.

Dataset Cases Classes

XG Boost CEEMD-XGBoost GBSO-TAENN

Accuracy Accuracy Accuracy

Bonn

I A-E 100 100 100

II B-E 98.50 100 100

III C-E 99 99.50 99.6

IV D-E 100 100 100

V A-D 99.50 100 100

VI AB-E 99 100 100

VII CD-E 98 99.33 99.4

VIII ACD-E 98.50 99.75 99.8

IX BCD-E 98.75 99.50 99.6

X ABCD-E 99 99.60 99.6

XI A-D-E 100 100 100

XII AB-CD-E 97.40 99 99.2

CHB-MIT XIII Normal/Seizure 93.14 95.79 99.1
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SVM
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Figure 8.   Overall comparative analysis between existing and proposed classification techniques.
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and without optimization techniques as shown in Figs. 13 and 14. Based on the results, it is analyzed that the 
proposed technique provides an improved results with the inclusion of optimization.

Figure 15 shows the training and testing performance of the proposed GBSO-TAENN classification technique 
with respect to varying number of epochs. According to the observed results, it is determined that the proposed 
model provides an improved training and testing outcomes with the inclusion of filtering, FD feature analysis 
and GBSO techniques.

Conclusion
In this work, a novel classification method called GBSO-TAENN for identifying epileptic seizures based on 
provided EEG signals is presented. This paper’s primary contribution is the creation, via sophisticated signal 
processing techniques, of an intelligent and effective epileptic seizure detection system. Feature extraction, 
feature selection, and classification algorithms are used in the development of multiple EEG signal processing 
frameworks in conventional works. However, most methods have issues with large computing overhead, poor 
accuracy, and lengthy forecast times for seizures. Thus, the goal of the proposed work is to create a framework 
that is both straightforward and computationally effective for identifying and categorizing epileptic seizures based 
on EEG signals. Even though epileptic seizures are uncommon, they are extremely important to diagnose and 
treat because of the influence they have on social interaction, physical communication, and patient sentiment. 
To improve the signal quality, the EEG signals are first preprocessed. Once the data has been preprocessed, an 
optimal subset of features is derived using the FD. The GBSO is then utilised to further optimise the FD and 
decrease classification time while improving accuracy. In order to predict abnormalities in the provided EEG sig-
nal, the classification is ultimately carried out using the TAENN algorithm. The unique contribution of this work 
is the accurate disease prediction it achieves by using sophisticated and effective signal processing techniques 

Figure 9.   Performance of the filtering technique.

Figure 10.   Performance analysis with and without feature extraction.
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Figure 11.   F-measure for with and without feature extraction.

Figure 12.   G-Mean for with and without feature extraction.
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Figure 13.   Performance analysis with and without optimization.

Figure 14.   F-measure and g-mean values for with and without optimization.
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Figure 15.   Training and testing accuracy.
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such as preprocessing, feature extraction, optimization, and classification. The unique inertia weight updation is 
carried out during feature selection, which enhances optimisation performance and convergence. Subsequently, 
the Deep Neural Network (DNN), back propagation method, and regular spatiotemporal neural network are 
used to implement the TAENN. Therefore, an automated system for detecting epileptic seizures would be more 
suited to use GBSO-TAENN in conjunction. This work’s primary goal is to correctly categorise the input EEG 
signal as either normal or seizure-related. Several soft computing approaches have been used in this work to 
achieve this goal, and the FLHF approach is used for signal decomposition and normalisation. The attributes of 
Higuchi, Katz, Sevcik’s, instantaneous energy, petrosian FD, and teager energy are then extracted using the FD 
analysis. The efficacy of the seizure prediction and classification system is enhanced by these feature vectors. Next, 
in order to further reduce the dimensionality of feature vectors, the fitness value is utilised in conjunction with 
the GBSO process to select the best features. Ultimately, the TAENN-based classifier is used to identify whether 
the provided EEG signal is seizure-affected or normal. Here, the effectiveness of this detection method has been 
evaluated using two distinct benchmark datasets. Additionally, in order to demonstrate the improvement of 
the suggested method, the acquired findings are contrasted with a few other traditional processes. According 
to the evaluation, the GBSO-TAENN approach raised the accuracy to 99%, specificity to 99.5%, and sensitivity 
to 99%. These findings then demonstrated that, for both datasets, the GBSO-TAENN methodology performs 
better than the other methods. By using cutting-edge deep learning models for the medical diagnosis systems, 
this study can be expanded in the future.

Data availability
The datasets used and/or analysed during the current study available from the corresponding author on reason-
able request.
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