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A twin convolutional neural 
network with hybrid binary 
optimizer for multimodal breast 
cancer digital image classification
Olaide N. Oyelade 1*, Eric Aghiomesi Irunokhai 2 & Hui Wang 1

There is a wide application of deep learning technique to unimodal medical image analysis with 
significant classification accuracy performance observed. However, real-world diagnosis of some 
chronic diseases such as breast cancer often require multimodal data streams with different modalities 
of visual and textual content. Mammography, magnetic resonance imaging (MRI) and image-guided 
breast biopsy represent a few of multimodal visual streams considered by physicians in isolating 
cases of breast cancer. Unfortunately, most studies applying deep learning techniques to solving 
classification problems in digital breast images have often narrowed their study to unimodal samples. 
This is understood considering the challenging nature of multimodal image abnormality classification 
where the fusion of high dimension heterogeneous features learned needs to be projected into a 
common representation space. This paper presents a novel deep learning approach combining a dual/
twin convolutional neural network (TwinCNN) framework to address the challenge of breast cancer 
image classification from multi-modalities. First, modality-based feature learning was achieved by 
extracting both low and high levels features using the networks embedded with TwinCNN. Secondly, 
to address the notorious problem of high dimensionality associated with the extracted features, 
binary optimization method is adapted to effectively eliminate non-discriminant features in the 
search space. Furthermore, a novel method for feature fusion is applied to computationally leverage 
the ground-truth and predicted labels for each sample to enable multimodality classification. To 
evaluate the proposed method, digital mammography images and digital histopathology breast 
biopsy samples from benchmark datasets namely MIAS and BreakHis respectively. Experimental 
results obtained showed that the classification accuracy and area under the curve (AUC) for the 
single modalities yielded 0.755 and 0.861871 for histology, and 0.791 and 0.638 for mammography. 
Furthermore, the study investigated classification accuracy resulting from the fused feature 
method, and the result obtained showed that 0.977, 0.913, and 0.667 for histology, mammography, 
and multimodality respectively. The findings from the study confirmed that multimodal image 
classification based on combination of image features and predicted label improves performance. 
In addition, the contribution of the study shows that feature dimensionality reduction based on 
binary optimizer supports the elimination of non-discriminant features capable of bottle-necking the 
classifier.

The challenge of addressing increasing cases of breast cancer has motivated widening and intensification of 
research in the domain. This is necessary considering that fact that breast cancer case count is racing up the 
ladder as it now currently being rated the second cause of death after cardiovascular  diseases1. The use of deep 
learning methods has been widely applied to addressing the problem of early detection of the disease. This 
approach has demonstrated outstanding performance in reporting impressive classification accuracy and also 
synthetization of data for supporting the training of the models. However, the use of the deep learning models has 
often been limited to single modality of breast cancer imaging. Studies which have addressed abnormality clas-
sification on single modality have often considered magnetic resonance imaging (MRI)2, digital mammography, 
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and ultrasound  technology3,  mammography4–7, contrast-enhanced  mammography8, digital  tomosynthesis9, 
 sonography10,  sonoelastography11,12, magnetic elastography, diffusion-weighted  imaging13, magnetic spectros-
copy, nuclear  medicine14,15, image-guided breast  biopsy16–18, optical  imaging19,20, and microwave  imaging21. The 
unimodal approach to detection of breast cancer disease is limited to using insufficient information in diagnos-
ing physical condition. This has led to improvement in the imaging technology using more advanced methods 
such as computed tomography (CT), positron emission tomography (PET), single-photon emission computed 
tomography (SPECT) and even the popular magnetic resonance imaging (MRI). However, it has been reported 
that the utilization of multimodal methods for information collection through data fusion in diagnosing the 
disease, provides richer information and separate views so that error resulting from process is  minimized22. 
Another study has shown that the combination of mammography and ultrasound modalities have helped to 
increase the sensitivity of deep learning models by 23%23. These further confirms that the use of multimodal 
method to characterization of abnormalities breast cancer will promote efficient treatment and therapies with 
increased survival rate and reduced adverse  effect24.

The need to extract relevant patterns suggesting the detection of the disease has now focused research using 
deep learning on multimodal data streams. It is assumed that such a multi-stream drawn up pattern can enhance 
the automation of complex operational processes with capability to improve the diagnosis of the disease. Moreo-
ver, it has been observed that the approach multimodal image analysis has traditionally the de-factor technique 
for zeroing on diagnosis for some severe diseases like  cancers25. This supports the notion that multimodal deep 
learning methods reflect the human cognitive use of several modalities features as yardstick to  predictions26. 
Single modality which are often annotated with labels for input to deep learning models for detection and clas-
sification purpose, suffers from inaccurate and incomplete procedure since the complexity and variability clinical 
features are  lacking27. As a result, single modality deep learning models underperforms when compared with 
deep fusion strategies which leverages on the combination of complex feature representations demonstrating the 
interactions of different levels of biological  processes28. Furthermore, the increasing nature of multimodality in 
biomedical data and the constrained information represented in a single modality are motivations for obtain-
ing sufficient information for disease  diagnosis29. With this, the unimodal learning is fast becoming obsolete 
so that the multimodal represents state-of-the-art owning to its capability to improve the robustness of models 
with the diversity of  data30, and this has been widely applied to speech recognition, image processing, sentiment 
analysis and forensic applications. The multimodal approach has the advantage of uniformly analyzing hetero-
geneous features and fuses them into a common representational space. The fused feature provides classifiers 
with input representing the contextual nature of the problem domain. This issue of feature fusion has therefore 
been approached from the perspectives of fusion of multimodal data, fusion deep learning methods, fusion 
by multimodal transfer learning, fusion by alignment, fusion by multitask learning, and fusion by zero-shot 
 learning31. These approaches notwithstanding, the fusion of multimodal sources still suffers conflicts between 
data sources. Some other challenges of multimodal learning relate to the issue of dimensionality reduction of 
large features set, confusion between various data sources, and unavailability of multimodal data for extraction 
of discriminative feature maps.

The challenge of dimensionality reduction of features extracted using deep learning methods has been 
addressed using optimization  methods4 for single modality image inputs. However, handling the problem 
of multimodality with respect to eliminating the bottlenecking effect of large features remains unaddressed. 
Although textual modality when served as input to machine learning classifiers have benefited from the use of 
binary optimization  methods32 in dimensionality reduction on features extracted. Research in the use of visual 
single modality such as the medical images, usually yields a staggering number of features as output from the 
convolutional-pooling layers of deep learning. The multimodality will therefore require a scalable and robust 
approach to managing fused features in a manner described for the textual modality. The use of metaheuristic 
algorithms as optimization methods remains desirable for addressing this, and which is one of the major issues 
addressed in this study.

Several studies have investigated the use of deep learning fusion methods on multimodal breast cancer inputs. 
One reoccurring method is the use of transfer learning to overcome the problem of inadequate heterogeneous 
data sources for demonstrating multimodality. Also, the use of attention-based multimodal deep learning and 
bi-modal attention have been used  in33. Similarly, the use of a weakly supervised clustering-constrained atten-
tion multiple instance learning (CLAM) method has been used to overcome the problem of insufficient data in 
multimodal feature  fusion34. Multimodal fusion framework (MFF) which relies on a weighted multimodal U-Net 
(WMM-UNet) have also been proposed with EmbraceNet used to ensemble multimodal  features35. Another 
approach to the use of transfer learning in multimodal fusion learning was demonstrated using social engineering 
optimization with deep transfer learning on photoacoustic multimodal imaging (PAMI)36. Another important 
deep learning technique suitable for aiding multimodal feature learning is the Siamese neural network. Unfor-
tunately, we found that most applications of Siamese networks are in unimodal situations with only a few uses 
cases nearing multimodal approach. For instance, Siamese network has been used to examine the location of 
disease and the site of change using medical images from a patient at different time  points37. Textual modality 
using a bidirectional gated recurrent unit (BiGRU) Siamese network, and another convolutional neural network 
based Siamese network was also reported  in38 for obtaining accurate medical answers. The unimodal Siamese 
networks described  in37  and38 serves as inspiration and base methods for solving multimodal classification 
problem described in this study. As a result, we studied other related Siamese networks to observe current gaps 
in literature with regards to solving feature fusion learning. For instance, triplet Siamese network have been 
applied to unimodal CT scan  images39, one-shot Siamese network have solved unimodal classification problem 
using hyperspectral  images40, Siamese neural network and k-nearest neighbor (K-NN) model have been used 
on unimodal brain MRI for neighborhood  analysis41. Also, the work  of42 have applied twin neural network in 
comparing a query versus database samples of optical coherent tomography (OCT) scans for similarity check. 
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The challenge with these methods is the unimodal approach to solving classification problems in medical images 
whereas multimodal approach presents a more accurate and acceptable classification model. Moreover, we con-
sider that the use of Siamese neural network technique in these studies is under-utilized considering the viability 
of the technique in measuring similarity distance between learned feature sets. This current gap in recent studies 
on multimodal medical image classification is the motivation for this study.

Motivated by the existing gaps in the related works, this study is aimed at improving methods for multimodal 
image fusion in breast cancer detection. In addition, the difficulty of handling very high-dimensional features 
resulting from multimodalities are addressed in the study. The study therefore seeks to address the deficiency 
observed in the use of Siamese neural network in  in37,42  and38 which uses visual and textual inputs respectively 
for solving unimodal classification problems. However, even multimodal feature learning presents another prob-
lem associated with dimensionality reduction, effective fusion of features, and computability of the similarity of 
learned features. In this study, a novel approach to addressing this problem using a single solution of TwinCNN 
framework is proposed. First, multimodal feature learning is achieved using a tunnel of feature learning repre-
sented in the Twin neural network. Secondly, to address the notorious problem of dimensionality reduction in 
the features resulting from the neural network operation, binary optimization method is adapted to effectively 
eliminate non-discriminant features with lower pixel value in the search space. This is aimed at ensuring that 
the similarity computation method is not overwhelmed with non-relevant inputs while also noting that the clas-
sifier is not bottlenecked with noisy extracted image features. Furthermore, a novel method for fusing features 
is proposed by taking consideration of the image label. This approach is completely new and represents state-
of-the-art in terms of using Twin neural network for addressing multimodal classification problems in medical 
image analysis. The following are the contribution of the study:

(a) Designed a novel TwinCNN architectures named by hsitoCNN and mammoCNN.
(b) Mechanized the interfacing of binary optimizer to optimize features of the TwinCNN architectures.
(c) Designed of a novel fusion layer which combines the multimodality probability map distribution.
(d) Applied data augmentation technique to multimodal data inputs to class-balance the samples.
(e) Used BEOSA method to a combinatorial and selection problem of 3-class probability map for the multi-

modal representation.

The remaining part of this paper is organized as follows: a review of related studies with emphasis on cur-
rent gap in literature is presented in section “Related works”; the methodology of the proposed application of 
multimodal framework design is presented in section “Proposed method”; In section “Experimentation and 
multimodal image datasets”, computational resources used, and the dataset applied to the experimentation are 
discussed. Results obtained from the experiment conducted are comparatively analyzed in section “Results and 
discussion”. In section “Conclusion”, conclusion on the study is presented, with emphasis made of the possible 
future works.

Related works
In this section, we focus on review of recent studies which have applied Siamese CNN architectures to solving 
unimodal, and some forms multimodal classification problems in medicine and some other domains. Also, a 
review is provided for studying the trends in the use of deep learning model for solving multimodal classifica-
tion problems for medical image analysis other than breast cancer. This is necessary because we found very little 
research effort which have investigated multimodal images relating with breast cancer using deep learning.

Hybrid and Twin/Siamese CNN architectures
The necessity of using Stochastic Gradient Descent (SGD) algorithm to train fully convolutional Siamese neural 
network was emphasized  in43 to solve the problem of online tracking using object detection in video. The aim 
of this approach was to ensure the weights of the network are well optimized. A closer use of Siamese network 
similar to solving the multimodal problem was reported  in37 where the neural network evaluates disease severity 
at single time points by using two medical imaging domains. Multimodal images based on retinopathy of prema-
turity (ROP) in retinal photographs and osteoarthritis in knee radiographs were compared to a pool of normal 
reference images to achieve the disease severity ranking. The study applied the Siamese model on paired images 
from the same patient as obtained at two different time points to localize the disease and find the site of changes 
in disease progression. An unrelated use of Siamese network to finding the similarity between online user’s 
medical question and medical answers have been reported  in38. Duplet Siamese networks were used consisting 
of a bidirectional gated recurrent unit (BiGRU) deep learning model, and another convolutional neural network 
based Siamese network. The first Siamese network was adapted to measure matching similarity for medical inter-
rogation, while the second Siamese network was applied to local information of interrogative sentences with 
the aim to capture local position invariance. Word vector processing was achieved by the study using Word2Vec 
method, and an attention mechanism for assigning weights values to keywords in questions. Similarly, a triplet 
Siamese neural networks which uses few-shot learning algorithms have been investigated  in39. The study lever-
ages on the benefit of few-shot learning which is capable of effectively learning features from small dataset, to 
address the problem of detecting COVID-19 CT scan images. In similar work, authors have proposed the use 
of one-shot single Siamese neural network which was designed with a handcrafted feature generation network 
that extracts discriminative features from hyperspectral images. The unimodal features extracted was applied 
to solve classification problem on hyperspectral images to exploit spatial context and spectral bands  jointly40. 
Another use of Siamese neural network combined with attention branch loss (ABL) to minimize the challenge 
of insufficient training  dataset44. Another use of unimodal approach on Siamese network for the classification 
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of abnormality in brain MRI images is reported  in41. The Siamese neural network was supported by a k-nearest 
neighbor (k-NN) model to achieve neighborhood analysis on feature extracted through the neural network 
while Euclidean and Mahalanobis distances were applied to measure the difference the features as well. Similarly, 
Siamese neural network was trained on binary diabetic retinopathy fundus image pair information for solving 
content-based medical image retrieval  task45. Also, the work  of42 have applied twin neural network in comparing 
a query versus database samples of optical coherent tomography (OCT) scans for similarity check.

A novel classification model for breast cancer diagnosis based on a hybridized CNN and an improved optimi-
zation algorithm, along with transfer learning, to help radiologists detect abnormalities efficiently was proposed 
 in46. The model was divided into four main phases: Data preprocessing and data augmentation, hyperparameters 
optimization, the learning phase and performance evaluation. Although the proposed improved marine preda-
tors algorithm (IMPA-ResNet50) model and achieved high classification performance in breast cancer detection 
from mammography images, however the limitations of the work is highly spent out as it; the IMPA algorithm 
success in determining the values of the hyperparameters of the ResNet50 architecture only, and it may not be 
generalized to other pretrained CNN architecture, secondly the IMPA-ResNet50 was only implemented to classify 
mammography images. These results are limited to a specific dataset, MIAS dataset, and CBIS-DDSM dataset and 
may not be generalized to the other dataset. Authors  in47 worked on a Hybrid Convolutional Neural Network 
Model Based on different evolution for medical Image classification, the proposed work use the global optimi-
zation ability of Differential Evolution algorithm to regulate the structure of CNN to reduce the optimization 
time of the classification network CNN when solving image classification problems and improves the accuracy 
of the algorithm classification. However, the work did not consider the impact of different optimizers on CNN 
network performance. A hybrid deep convolutional neural model for iris image recognition was presented  in48, 
it attempts to solve the problem of limited availability of datasets which affects accuracy of the classifiers as it 
explores the iris recognition problem via a basic convolutional neural network model and hybrid deep learning 
models. However, the limitation of the work was noted as the performance measures of the proposed methods are 
limited to the IIT Delhi database and the performance of the network may fail for other iris databases. Likewise, 
though the convolutional features are more distinct they consume more computation with deep structures and 
large data samples. Addressing breast cancer classification using deep convolutional neural networks(CNN) 
was proposed  in49, total composition of 9,109 breast tumor tissue microscopic images from breast Cancer His-
topathological image classification(BreakHis) dataset was used and the system helps to reduce image training 
process complexity and eliminate the over fitting problem. The model reported 95.4% of average accuracy of the 
image level and 96.48% accuracy of the patient level for all magnification factors. Authors  in50 developed data 
augmented –aided CNN for detection of abnormalities in digital mammography. It was carried out using Floyd 
server with the dataset from MIAS database, it successfully demonstrated and classified architectural distortion, 
asymmetric and macro-calcification abnormalities at 90.62% level of accuracy. However, a limitation was dis-
covered when whole images are applied to the proposed architecture as it was found incompatible.  In51 a CNN 
architecture for automatic classification of brain tumor into uncropped, cropped and segment region of interest 
was presented. However, the grading efficiency was not subjected to MR images with different weights and not 
applicable for larger image dataset though the work reported a performance with an accuracy of 98.93% and 
sensitivity of 98.18% for the cropped lesions, while the results for the uncropped lesions are 99% accuracy and 
98.52% sensitivity and the results for segmented lesion images are 97.62% for accuracy and 97.40% sensitivity.

Application of deep learning and image pre-processing techniques in detecting coronavirus infection was 
presented  in52. The study deployed a CNN architecture model that enhanced image preprocessing mechanism 
able to detect the presence of coronavirus from digital chest X-ray. The outcome of the research revealed that 
the proposed model achieved an accuracy of 0.1, recall/precision of 0.85, F-measure of 0.9, and specificity of 1.0 
However, the designed and deployed architecture incorporated parameters with high demanding memory. The 
research  in53 designed an A.I. based breast cancer detection model by combining mammograms and medical 
health record. The combination of deep learning and machine learning model could detect breast cancer and it 
demonstrates the advantage of combining mammography images and clinical data. Nevertheless, the study had 
some itemize limitations; only small dataset was used to train the model, the variability in the clinical factor in 
each population was different and many women with benign findings were imported into the study. A CNN 
based algorithm in object detection and semantic segmentation for the medical analysis was developed  in54. 
The work provides a great choice for accurate delineation of tumor margin. However, the model training stage 
needed a large medical image dataset which was not utilized likewise both object detection and segmentation 
belongs to supervised algorithms which required experienced doctors to label images. The work developed  in55; 
a deep learning base detection model for coronavirus using CT and X-ray image data. The system examines 
the efficiency of CNN, mixture of multiple trained CNNs to automatic identify coronavirus from CT scans and 
X-ray pictures. Moreover, the model was a theoretical framework which was not subjected nor verified in actual 
clinical practices. The authors  in56 proposed a novel wavelet decomposition and transformation CCN with data 
augmentation for breast cancer detection using digital mammogram. A hybrid algorithm of seam carving and 
wavelet decomposition to support feature enhancement in the image preprocessing was designed. Microscopic 
analysis for detecting and confirming cholera and malaria epidemic pathogen using CNN architecture was pro-
posed  in57. The CNN model achieved classification accuracy of 94%, with 200 Vibrio cholera images and 200 
Plasmodium falciparum images for training dataset and 80 images for testing data which can provide significant 
help epidemic crisis, nevertheless work is practically limited to small datasets. The authors  in58 proposed an 
automatic classification of medical image modality and anatomical location using CCN. Four groups of images 
were created: CT (computed tomography) of abdomen, CT of brain, MRI of brain and MRI of spine. The images 
were converted in JPEG and the proposed CNN architecture classified the medical images based on anatomic 
location and modality. The performance metrics on the classification accuracy in both validation and test set 
(> 99.5%) and F1 score (> 99%) in both diseased and normal image category of dataset. However, the study had 
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some limitations; the images were limited to JPEC image format for the proposed CNN architecture and there 
was no preprocessing medium for the images. In addition, only a small dataset was used while just two MRI 
classes were considered.

Multi-modal CNN architectures optimized using metaheuristic algorithms
Authors  in59 have proposed the use of deep learning and body map to classify wounds and their location in the 
body using multimodal approach. The study combined images with wounds and their corresponding images with 
location were applied to their model. The fusion of the features extracted from the two modalities was achieved 
so that both image-based and location-based features were supplied to the classifier. In another work, authors 
approach the use of multimodality with deep learning with the aim of solving image segmentation problems. The 
study focused on using self-attention mechanism on all modalities of inputs so that different anomalies features 
are extracted. The self-attention mechanism combined a deep learning encoder-decoder for the segmentation 
 task25. The need to eliminate noise and distortion in data stream associated with electrocardiography (ECG) 
has been addressed using multimodal deep learning method which combines other data streams for improved 
 diagnosis30. The fusion of data streams from several 3D neuroimaging into a pattern representing an informa-
tive latent embedding has been investigated. The study applied a deep learning architecture which was designed 
from the generative model’s approach which allows for separation of convolutional blocks in modular approach. 
The aim is to draw out patterns of phenotypic from brain images to support using biomarkers for charting 
spatio-temporal  trajectories27. The problem of inaccuracy in classification of brain tumor is being addressed 
using multimodal deep learning method. The combination of firefly Optimization algorithm and convolutional 
neural network which uses a modified fully connected layer was used to address this problem. Features extracted 
from different modalities were fused so that only the lower-level, middle-level, and higher-level image contents 
are  extracted29. The combination of extreme learning machines and convolutional neural network have been 
proposed for feature extraction and fusion on multimodal images to support the classification accuracy and 
localization of medical  images60. Another approach to multimodality is the consideration of multicolor imaging 
for the purpose of extracting features which reveal sufficient symptoms to arrive at the detection of diseases. 
Using deep learning networks, a study has shown that diabetic cases can be detected from fundus images when 
multimodal information bottleneck network (MMIB-Net) was applied to classify features extracted from the 
multicolored input  source61.

The design and implementation of an image segmentation system based on deep convolutional neural net-
works to contour the lesions of soft tissue sarcomas using multimodal images, including those from magnetic 
resonance imaging, computed tomography, and positron emission tomography was proposed  in62. The network 
trained with multimodal images shows superior performance compared to networks trained with single-modal 
images. Nevertheless, the framework was only tested on a single dataset using one set of simple network struc-
tures. Authors  in63 presented Breast cancer histopathological image classification using convolutional neural 
networks, used high-resolution histopathological images, however for training, only small patches of the images 
are used. Early diagnosis of oral cancers using three-dimensional convolutional neural networks was proposed 
 in64. The early diagnosis of oral cancers used 3DCNN, and then constructs a deep 2DCNN and 3DCNN, but 
the work was limited to a small amount of existing sample data. Authors  in65 proposed a deep learning approach 
based on a Convolutional Neural Network (CNN) model for multi-class breast cancer classification was pre-
sented, the study classify the breast tumors in non-just benign or malignant and able to predict the subclass 
of the tumors like Fibroadenoma, Lobular carcinoma but the work only made used of smaller dataset. Breast 
cancer histopathological image classification using a hybrid deep neural network was presented  in66 but suffers 
lack of pre-processing data.

The fusion learning using breast cancer image modalities have received considerable research attention. 
Authors  in33 have proposed the use of attention-based multimodal deep learning model by first extracting 
the features of different modalities using sigmoid gated attention convolutional neural network. Thereafter, 
bi-modal attention mechanism is applied to further identify subtle patterns or abnormalities to obtain insight-
ful patterns which can support the prognosis of the disease. In another study, authors investigated the perfor-
mance of a weakly supervised clustering-constrained attention multiple instance learning (CLAM) as combined 
with ResNet and EfficientNet-B0 architectures. The neural architectures were first trained on ImageNet dataset 
before being exposed to extract features from multi-view forms of mammography. The study showed that the 
attentional maps concentrated the workflow on relevant fused features, and with some measure of explain-
ability which can eliminate erroneous  predictions34. A multimodal fusion framework (MFF) which relies on a 
weighted multimodal U-Net (WMM-UNet) model has been proposed for segmenting lesions. The framework 
combines a decision network and an integrated feature network to learn multimodal features from B-mode and 
strain elastography mode when ultrasound images are supplied to multiple CNNs. The study uses multimodal 
EmbraceNet to fuse the features learnt using the CNN  models35. A two-level machine learning technique had 
been applied to separately extract unimodal information from two different images sources to classify and then 
predict breast cancer. The study combines ultrasound features with clinical and demographic information to 
achieve the  model67.  In36, the need to use social engineering optimization and transfer learning on enhancing 
photoacoustic multimodal imaging (PAMI) fusion was proposed. The authors noted that using social engineering 
optimization with deep transfer learning can improve the process. ResNet-18 and a lightweight LEDNet were 
first applied to feature extraction and segmentation tasks, while bilateral filtering (BF) was used to preprocess 
the image inputs. Furthermore, social engineering optimization was utilized on recurrent neural network (RNN) 
model to aid class labeling of the biomedical images. The multimodal nature of microscopic imaging which 
combines bright-field, auto-fluorescence and orthogonal polarization images presents a way for extracting, fus-
ing, and analyzing the multimodal features. The use of deep learning method has been proposed  in68 to obtain 
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rich information of tissue morphology, content, and structure of collagen in tissue slices from the fused features 
set. On the other hand, the multimodality of MR images has also been investigated when using the extracted 
features with clinical information to predict pathology complete response (pCR) to neoadjuvant chemotherapy 
(NAC). The approach also uses a deep learning model for the fusion of the multimodal features from clinical 
information, T1-weighted subtraction images, and T2-weighted  images69. In Table 1, we provide a summary of 
the review considered in this section.

In the nest section, a detailed design and discussion on the methodology applied to our proposed study is 
presented. This explains the difference between the summary of findings in the current state-of-the-art and what 
is proposed by the study as a means of closing the existing gap in literature.

Table 1.  Comparison of the related work showing the pros and cons.

Author and year Pros Cons
43, 2016 Ensure the weights of the network is well optimized
62, 2016 Breast cancer histopathological image classification Small patches of the images are used
56, 2018 Detecting and confirming cholera and malaria epidemic pathogen Practically limited to small datasets
64, 2018 Multi-class breast cancer classification able to predict the subclass of the tumors Ssmaller dataset was used

61, 2019 Improved performance on image segementation Framework was only tested on a single dataset using one set of simple network 
structures

63, 2019 Diagnosis of oral cancer Limited to small amount of existing sample data

24, 2020 Self-attention mechanism on all modalities of inputs so that different anomalies 
features are extracted

37, 2020 Evaluates disease severity at single time and find the site of changes in disease 
progression

46, 2020 Regulate the structure of CNN to reduce the optimization time and improves 
the accuracy of the algorithm classification

Account the impact of different optimizers on CNN network performance not 
considered

65, 2020 Breast cancer histopathological image classification Lack of pre-processing data
41, 2021 Classification of abnormality in brain MRI images

48, 2021 Reduce image training process complexity and eliminate the over fitting 
problem

50, 2021 Automatic classification of brain tumor into uncropped, cropped and segment 
region Not applicable for larger image dataset

51, 2021 Enhanced image preprocessing mechanism able to detect the presence of 
coronavirus from digital chest X-ray Deployed architecture incorporated parameters with high demanding memory

53, 2021 Great choice for accurate delineation of tumor margin Both object detection and segmentation belongs to supervised algorithms 
which required experienced doctors to label images

54, 2021 Detection model for coronavirus using CT and X-ray image data The model was a theoretical framework which was not subjected nor verified 
in actual clinical practices

57, 2021 Cclassified the medical images based on anatomic location and modality Images were limited to JPEG, no preprocessing medium for images and it was 
subjected to small dataset

68, 2021 Clinical information to predict pathology complete response (pCR) to neoadju-
vant chemotherapy (NAC)

39, 2022 Leverages on the benefit of few-shot learning, to address the problem of detect-
ing COVID-19 CT scan images

59, 2022 Multicolor imaging for the purpose of extracting features which reveals suf-
ficient symptoms to arrive at the detection of diseases

40, 2022 Solved classification problem on hyperspectral images to exploit spatial context 
and spectral bands jointly

44, 2022 Minimize the challenge of insufficient training dataset

46,2022 High classification performance in breast cancer detection from mammogra-
phy images

May not be generalized to other pretrained CNN architecture and limited to a 
specific dataset

47, 2022 Iris image recognition
The performance measures of the proposed methods are limited to the IIT 
Delhi database and the performance of the network may fail for other iris 
databases

49, 2022 Demonstrated and classified architectural distortion, assymetric and macro-
calcification abnormalities Proposed architecture not compatible to whole image

58, 2022 Wounds and their location in the body using multimodal approach

28, 2023 Feature extraction and fusion on multimodal images to support the classifica-
tion accuracy and localization of medical images

29, 2023 Eliminate noise and distortion in data stream associated with electrocardiog-
raphy

33, 2023 Eliminate erroneous predictions

52, 2023 Demonstrates the advantage of combining mammography images and clinical 
data Only small dataset was used to train the model
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Proposed method
The methodology describing the design of the proposed multimodal CNN framework is discussed in this sec-
tion. Here, the complete overview of the framework is presented with every component integrated in a manner 
as to describe the flow of data from input to output. Furthermore, each integral part of the framework is isolated 
for an elaborate design and discussion. First, the binary optimization, namely the BEOSA method, is presented 
showing the algorithmic design and optimization process of the approach. Secondly, the layout of TwinCNN 
architectures is modeled for understanding of how features are being extracted on the multimodal inputs using 
convolutional layers. In addition to this, we show how the BEOSA method is applied to optimize the features 
extracted. Thirdly, the novel probability map fusion layer is designed and discussed. The following subsections 
address these three major components in addition to the overview layout of the approach.

Technically speaking, the proposed framework adapts CNN architectures to a combinatorial problem of 
learning abnormalities features in breast digital images. The modalities of digital images considered are the 
histology and mammography samples based on their high detection rates of all categories of abnormalities. To 
ensure that the curse of dimensionality does not interfere in the feature fusion leading to classification, a novel 
approach using binary optimization algorithm was applied to address this common problem. Furthermore, a 
novel method to fusing multimodalities images based on features and predicted label, is also described.

The multimodal TwinCNN framework
The framework demonstrating the adaptability of the use of scalable multimodal networks to addressing multi-
media sources for breast cancer diagnosis is considered in this subsection. In Fig. 1, the pipeline effect of the 
framework is outlined with each integral parts showing how the flow branches out to achieve the overall aim of 
solving classification problem. The figure has nine (9) components which are logically integrated starting from 
the input right through to the output of the framework these components are: the layered image preprocess-
ing techniques; the CNN networks for feature extraction comprising of the histoCNN and mammoCNN; the 
feature buffer purposed for storing features drawn from the convolutional layers; the BEOSA method applied 
for optimization of the features extracted; the buffer for keeping the optimized features; a classifier applied to 
first classify the optimized features at the level of single-modality; a mapping mechanism for re-representation 
of the probability distribution of the single-modality to a unified multi-modality aware probability distribution; 
a probability map fusion layer; and lastly the use of BOESA method for a second level of optimization process.

TwinCNN can extract multimodal features sets. However, this feature representation is high dimensional 
and contains both discriminant and non-discriminant features which might bottle-neck the performance of 
the classifier. As result, the features are formalized into a search space so that the BOESA algorithm iteratively 
optimizes this search space by evaluating and computing an optimal combination of features which yields good 
classification accuracy. This evaluation is achieved using Softmax, multi-layer-perceptron, KNN and decision 
tree classifiers (as shown in Fig. 1). The optimized feature set represents a reduction in dimensionality, which 
then gets supplied as input to the classifier of TwinCNN.

The stack of image preprocessing methods applied to the inputs to the framework includes the contrast-
limited adaptive histogram equalization (CLAHE), wavelet decomposition, and  Reinhard70 methods. The CLAHE 
and wavelet decomposition methods were applied to the mammography datasets while the Reinhard method was 
applied to the histopathology images. The use of the CLAHE method on the samples is to ensure that the con-
trast of the images is enhanced to improve performance. Moreover, this also supports the attainment of samples 
with high quality to enable the process of image extraction. The wavelet decomposition method as applied to 
the samples allows for compression of the pixel representation of images so that non-discriminant features are 

Figure 1.  The proposed multimodal TwinCNN framework with BEOSA optimization method for improved 
classification and characterization of breast cancer abnormalities in digital images.
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excluded leaving significantly discriminatory features to pass through the convolutional layers. The use of the 
Reinhard method on the histopathology samples is to support the image normalization process to position the 
samples suitably for use. In addition to this, the study applied image enhancement and noise removal methods 
to the histopathology samples to complete the preprocessing phase.

Once the input is preprocessed, the framework pipes the inputs to their respective feature extraction and 
buffering phase. This ready the features for application of binary optimization method which serves to blind-out 
features that are not computed to have little relevance to the classification process. Blind-out features are elimi-
nated leaving the relevant for to be fed to the classifier, while the probability distribution of the batch samples is 
passed as input to the fusion layer. In the following subsections, the approach of the fusion layers and the BEOSA 
method on this layer and the CNN feature extraction phase, are discussed.

BEOSA method
The binary optimizer is popular with use in the feature selection on binary classification problem. Binary Ebola 
optimization search algorithm (BEOSA) is one of recent state-of-the-art  methods32,71 derived from the continu-
ous metaheuristic method namely Ebola optimization search algorithm (EOSA)4,72. In this subsection, a brief 
discussion on the optimization process of the BEOSA is presented, with emphasis on the use of this method to 
address the optimization of features extracted during the convolutional operations.

The binary representational approach to the search space of BEOSA requires that only 0 s|1 s are expected in 
the dimension of an individual so that the entire population is represented by Eq. (1). Where p is the population 
size, indi represents an arbitrary individual in the population S , and dim is the dimension of each indi,

An optimized state of S is achieved after a reasonable number of iterations on it using the BEOSA method 
which applies Eq. (2) to the process search for best solution in an explorative and locally traversed manner. The 
use of the rand , � , and best notations represent randomly generated uniform distribution satisfying [−1, 1] , 
a scaler value for change factor of an individual, and the current best solution in the population respectively.

BEOSA optimizer applies S-function and V-function styles as transfer function to transform and smoothen 
the composition of indi across its dimension. Note that this smoothening maintains the binary nature of the 
search space by using the approach described in Eq. (3). Here each item in the dimension of indi is traversed 
and new values a computed a random float number r satisfies some condition say r > S

(

indki
)

 or r > T
(

indki
)

 , 
where indki  is an item along the dimension of indi , k is 0, 1, . . . dim.

The binary optimizer described is adapted to solve two different combinatorial and selection problems. 
The first is the optimization of the features extracted by the convolutional layers, and the second is the combi-
natorial problem of probability distribution at the fusion layer. The algorithmic representation describing the 
flow of procedure for the BEOSA method is outlined in Algorithm 1. The algorithm demonstrates how the 
binary optimizer branches into to solving either of the problems depending on the setting of a variable Boolean 
is_feature_optimized , this is in addition to three other variables namely the maxIter, srate, and lrate. Output from 
the algorithm is expected to be the classification result of the optimized probability map distribution.
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1 Input: maxIter, srate, lrate, is_featured_optimized

2 Output: classification results | mapped probability distribution

3 begin
4       if is_featured_optimized

5 X, Y= readfeatures()
6 Initialize the population size dim(X) as S using eq(1)
7 else
8 probs=readprobs()
9 Initialize the population size dim(probs) as S using eq(1)

10 Assign first item in population to first infected case (I)
11 Make newly infected case global best
12 while maxIter > 0 and size (I) > 0 do:
13 for i in 1 to size(I) do:
14 generate new infected (nI) case from S

15 for i in 1 to size(nI) do:
16 randomly generate d between 1|0
17 if displacement(nI[i]) > 0.5 do:
18 update size of nI using srate
19 s = use S2(nI[i]) to transform all dimension if d is 1, otherwise use S1(nI[i])
20 if s >= rand do:
21 nI[i]=1
22 else:
23 nI[i]=0
24 else:
25 update size of nI using lrate
26 t = use T2(nI[i]) to transform all dimension if d is 1, otherwise use T1(nI[i])
27 if t >= rand do:
28 nI[i]=1
29 else:
30 nI[i]=0
31 Evaluate new fitness of nI[i]
32 add (nI) cases to (I) cases
33 Update all compartment
34 Update best solution so far
35 decrement maxIter
36 End while
37 if is_featured_optimized

38 map solution space to X
39 result=classifier(X, Y)
40 else
41 map solution space to probs
42 result=compare real probs and mapped probs

43 Return result

Lines 4–9 of the algorithm shows how the checking for the solution set and space will be configured depend-
ing on if the optimization problem is on extracted features or on probability distribution. This is followed by the 
identification of the current best solution after the fitness of each individual in the solution space must have been 
computed as seen on Lines10-11. Between Lines 12–36, the iterative training of the binary optimizer is shown 
where Lines 17–24 illustrates how the S-style-function is being applied, and 25–30 demonstrates V-style-function 
usage, and at the same time showing exploration and intensification respectively. Variable updates are computed 
and outlined on Lines 31–36. Between Lines 37–39, the condition for classification of the optimized feature is 
checked and executed while on Lines 40–42, the optimized combinatorial solution to distribution of probability 
maps is output. Finally, the result for the algorithm is returned on Line 43. In the following two subsections, we 
show how each of the concepts described therein apply Algorithm 1.

TwinCNN architectures
The TwinCNN network used for the feature extraction phase of the design is aimed at two modal features sets. 
However, the design of the framework allows for scaling up the number of CNN architectures for feature extrac-
tion tasks. In this study, abnormality features apply for the classification problem is focused on the histology and 
mammography samples as computed from digital histopathology and digital mammography images. In Fig. 2, 
the mammoCNN architecture is illustrated with four (4) blocks of convolutional-pooling operations consisting 
of two convolutional layers and as appended with a max-pooling layer in each block. Filter size consistently 
across all blocks remained at 3 × 3 while the filter count follows the order of 2n where n = 5, 6, 7, 8 . These five 
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blocks of convolutional-pooling operations are followed by two flatten layers and a dense layer having dropout 
layer at the rate of 0.5.

Like the twin network, the histoCNN architecture which is illustrated by Fig. 3 assumes the same five con-
volutional-pooling operations. Unlike mammoCNN which allows input with 1 channel, the histoCNN accept 
input having 3-channels. We note that configuration of each block of the convolutional-pooling layer derives its 
number of filters count like what is obtained for mammoCNN which is 2n where n = 5, 6, 7, 8 . This implies that 
the filter count of 32, 64, 128, and 256 were applied to convolutional operations in layers 1, 2, 3, and 4 respectively. 
Meanwhile, in the case of the histoCNN and mammoCNN, a uniform kernel size of 3 × 3 was implemented in all 
convolutional layers. The two composing neural architectures of the TwinCNN have their convolutional layers 
laced with a max-pooling operation with a kernel size of 2 × 2 and stride of 1. Meanwhile, stride size of 1 was 
applied to every convolutional operation occurring in histoCNN and mammoCNN with input sizes of 224 × 224 
and 299 × 299 respectively. This block of convolutional-pooling operations is applied for feature extraction in a 
multi-level approach as typical of CNN models. This therefore implies that the convolutional-pooling block in 
mammoCNN is expected to detect discriminant high-level and low-level mammography features through the 
pipeline. In the same way, histoCNN will extract histopathology features consistent with breast cancer abnormali-
ties in with of the 3-channel modality through the pipeline of convolutional-pooling operations.

Appended to both mammoCNN and histoCNN are feature optimization functionality which turns over 
the extracted mammography features and histology features respectively to the BEOSA optimizer. The binary 
optimizer is expected to apply its operations on the feature load in a manner as to return an optimized version of 
the solution space. The feature load is represented in Eq. (4) where a row represents the feature extracted for an 
image sample while each column is an indication of pixel representation of the feature contained in it, and where 
i = 1, 2, . . . ,N . Equation (5) shows the fitness function applied by the binary optimizer to check the relevance 
of each feature as represented in the column of each instance. Where clf  is the KNN classifier used, and |F| is an 
absolute representation of feature counts obtained from an individual indi.

Figure 2.  MammoCNN architecture for the feature extraction and feature optimization using digital 
mammography.

Figure 3.  HistoCNN architecture for the feature extraction and feature optimization using digital 
mammography.
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It is desirable that the effect of the optimization on S will output something like what is seen in Eq. (6). Fea-
tures optimized to 0 in the solution space by the binary optimizer are blinded out and not passed onto the pool 
of optimized feature sets.

The optimized features from mammoCNN and histoCNN are then passed on for a complete classification 
task in a multi-class classification problem using the softmax classifier shown in Eq. (7).

The outcome of the classification is a probability distribution according to class-labels of digital mammog-
raphy and histopathology. The distribution is passed on to the fusion layer described in the next subsection.

Probability map fusion with BOESA
Traditional fusion of CNN architectures often merges the extracted features or combines the neural network 
layers. In this study, we demonstrate a new approach for combining outcome from two CNN architectures as 
described in this subsection. In Fig. 4, we show a hierarchical flow of concept and data leading to the composition 
of the search space and the application of the BEOSA method to optimize the binary search space in a unique 
way. Using a bottom-up method, the multi-class probability distribution generated from the classification of 
the optimized feature sets from mammoCNN and histoCNN are combined into a stack of set of probabilities. 
Note that the class-label for histoCNN follows a five-class-label distribution while that of the histoCNN follows 
12-class-label with both neural network outputting M and N samples respectively. The multimodal class-labels 
are scaled down and uniformed into 3-class-label to allow for the fusion layer work with it by concatenating each 
item in the 3-class-label representation in histoCNN and then concatenate with an item in the mammoCNN with 
the same abnormality. This concatenation operation includes the real and predicted label for the two modalities 
to form NxM items probability map distribution. In the next upper level, the search space is configured in a 
binary manner for NxM items to constitute the solution space.
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Figure 4.  Representation of the fusion layer for the histoCNN and mammoCNN population space and the 
optimized solution space.
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The representation of each item in the solution space follows according to Eq. (8), where the first item in 
the tuple is the positional index of the individual, followed by a 3-element list defining the composition of the 
individual. The 3-element list has the binary positional representation for the individual, the fitness as computed, 
and the corresponding 3-class-label for true and prediction of the two modalities.

At the initial stage preceding the optimization cycle, the positional representation of an individual is denoted 
by Eq. (9), while the computation of the fitness function when the BEOSA method is applied for the optimiza-
tion process follows Eq. (10).

where s = 3 and t = 3 is the maximum number of probability maps in the two modalities, since the varying 
multi-class labels in the two modalities have been mapped into a 3-class-label. The notations pi and pj represents 
corresponding probability values in histoCNN and mammoCNN.

The binary optimizer operates on the solution space to derive a new solution which transforms the default 
composition of the pos into an optimal representation which allows for best selection and combination of prob-
ability maps. This combination leads to computing the projected classification which considers the abnormality 
in both modalities. In the next section, we present the system configuration and the datasets applied for the 
experimentation phase of this study.

Experimentation and multimodal image datasets
In this section, we provide details on the machine configuration which was set up for implementing the proposed 
system. Meanwhile, the parameter settings for the binary optimizer and those for the histoCNN and mam-
moCNN are also listed to support reproducibility of the experimentation described in the study.

Computational setup for experimentation
The implementation of the framework and algorithmic process described in the last section was achieved using 
Python. In addition, some python-based libraries were also used including deep learning libraries tensorflow 
and keras, numpy, and matplotlib. The computational setup which allows for the experimentation was achieved 
using the Google collaboration (Google Colab) platform. This platform provided us with 12 GB memory and 
disk size of 100 GB, both connected with Python 3 Google computer engine backend with a graphical process-
ing unit (GPU). Further experimentation was then carried out using the Google cloud compute engine with an 
instance spawned using the following configurations: machine type of n1-highmem-8 on the Intel Broadwell 
central processing unit (CPU) platform of Intel Broadwell, boot disk of 200 GB, 8 vCPUs, and 50 GB memory. 
Furthermore, the multimodal model was trained on a system with the following configuration: Intel Silver Xeon 
4210, 10 CPU scores, 20 threads, 256 GB RAM, 4 TB HDD, 960 GB SSD, Tesla V100 32 GB * 2 GPU.

Implementation of the histoCNN and mammoCNN were based on the combination of python libraries 
which includes the TensorFlow, Keras, NumPy, Matplotlib, and the Sklearn where classifiers such as the KNeigh-
borsClassifier, MLPClassifier, and DecisionTreeClassifier were utilized. For the BEOSA algorithm, several of those 
libraries such as the Numpy, Scipy.stats.expon, Pandas, and basic libraries such as the math and random. These 
form the major libraries used for the implementation of the TwinCNN framework, though other very popular 
libraries were also used where necessary.

Parameter settings
In Table 2 is a listing of parameter settings for the experimentation with histoCNN, mammoCNN, and the 
BEOSA method, as applied for the optimization process. The table provides a description for every parameter, and 

(8)indi =
(

index,
[

pos, fit,
[

p1, p2, p3, p4, p5, p6
]])

(9)pos = [1, 1, 1, 1, 1, 1]
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Table 2.  Parameter settings for the histoCNN, mammoCNN, and BEOSA method.

Method Parameter Value Description

histoCNN and mammoCNN ∂ ,α,β1, and β2 1e−06, Adam, 0.5 and 0.999 respectively The learning rate, optimizer algorithm, beta1 and beta2 
respectively

ε, τ , and ϕ 1e−08, 0.0002, and 32 respectively Epsilon, L2 regularizer rate, and batch size respectively

wh × hh and wm × hm
224 × 224, and 299 × 299 for histoCNN and mammoCNN 
respectively Image input sizes for histoCNN and mammoCNN

ts,es and ps 0.75, 0.15, and 0.10 Train split, evaluation split and test split for the datasets

BEOSA N 0.1 Recruitment rate

p1, p2, p3 and p4 0.1, 0.1, 0.1, and 0.1 Contact rate of infected individuals, of the host, with the 
dead, and with the recovered individuals
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a corresponding value applied for that parameter. Notations were adopted for representation of each parameter 
as used in the framework.

In the following subsection, detailed information on the multimodal datasets used for the experimentation 
are described.

The multimodal image dataset
The medical image datasets combined includes those from the histology and mammography modalities. The 
histology samples were sourced from two major publicly accessible databases namely the  BreakHis73,74 dataset, 
and the  BACH75. The combination of samples from these two datasets provided us with a rich and enough 
image samples to train and evaluate the histoCNN model. The training of the mammoCNN was achieved using 
hybrid datasets collected from the publicly accessible database named Mammographic Image Analysis Society 
(MIAS)76 and Curated Breast Imaging Subset (CBIS) of the Digital Database for Screening Mammography 
(DDSM + CBIS)77, which we obtained the samples in numpy representation. For the histology, a total of 7441 sam-
ples were applied with adenosis (A) having 456 samples, (B) having 100 samples, malignant carcinoma (DC) hav-
ing 2749 samples, fibroadenoma (F) having 1127 samples, in situ carcinoma (IS) having 100 samples, malignant 
invasive carcinoma (IV) having 100 samples, malignant lobular carcinoma (LC) having 426 samples, malignant 
mucinous carcinoma (MC) having 495 samples, (N) having 96 samples, malignant papillary carcinoma (PC) 
having 348 samples, phyllodes tumor (PT) having 469 samples, and tubular adenona (TA) having 630 samples. 
For the MIAS samples, a total of 3104 samples were sourced with the class labels distributed according to the fol-
lowing: normal (N), benign with calcification (BC), benign with mass (BM), calcification (CALC) and mass (M).

Figure 5 displays some digital mammography samples having normal representation of breast images. But 
in Fig. 6, we captured samples of the same modality having both benign and malignant abnormalities, and with 
characterization consistent with calcification and micro mass reported in the MIAS database.

In Fig. 7, we show an array of samples with benign abnormalities and listing all the types of benign forms 
are represented in the BACH and BreakHis datasets. Similarly, Fig. 8 shows a listing of some selected samples 
having different types of malignant cases as reported in the BACH and BreakHis datasets.

Considering the difficulty of addressing multimodality problems due to challenging visual learning process, 
we applied transformational data augmentation technique to enrich and class-balance the datasets. Horizontal 
and vertical flips, and image angular rotation operations were applied to derive new samples to balance the image 
counts per class category. In total, mammoCNN architecture was trained using 107,346, while histoCNN was 
trained with 95,581 samples. The composition of histology datasets follows 51,511 original samples and 44,070 
augmented samples, and while that of digital mammography comprises of 75,658 original samples and 31,688 
augmented samples. The image data samples described here were applied for the full experimentation of the 
multimodal framework described in this study. In the next section, a detailed report on the results obtained is 
presented and discussed. Samples drawn from each modality were further resized to a 224 × 224 and 299 × 299 
pixels for histology and mammography respectively. Furthermore, performance evaluation of the proposed 
framework is carried out for comparative analysis with state-of-the-art methods.

Figure 5.  Four different samples with the normal (N) features of a healthy digital mammography.

Figure 6.  Samples of images to be extracted from a combined datasets sourced from DDSM + CBIS and MIAS 
databases. Image labels follows: (a) Mass abnormality (M), (b) calcification abnormality (CALC), (c) benign 
calcification (BC), and (d) benign with mass.
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Results and discussion
The results obtained for the complete experimentation are discussed in this section. First, the composing neural 
networks in TwinCNN are isolated and their performances investigated. This is to allow for understanding the 
suitability of the models in addressing the visual feature learning particular to the modality of input supplied. 
Furthermore, the study examined the effect on the binary optimization method supporting the histoCNN and 
mammoCNN retain discriminant features for an improved classification performance. Thirdly, and most impor-
tantly, the performance of the TwinCNN framework is studied and reported to demonstrate how the proposed 
fusion layer demonstrates suitability and good performance while solving the multimodal problem. The section 
is concluded by discussing the findings from the results obtained and outlying the contribution of the study.

Performance of the histoCNN and mammoCNN on the features not optimized
The histoCNN and mammoCNN models are understudied to investigate their suitability to function well in the 
TwinCNN architecture. This is necessary to ensure that the feature learning process adequately yields outputs 
which will contribute to the multimodal classification fusion output. In Fig. 9, the history classification accura-
cies for training and validation of histoCNN and mammoCNN over 40 epochs are plotted in two graphs. The 
observation made on the histoCNN model showed that the classification accuracy is significant both for train-
ing and validation with the highest values obtained in both cases are 0.709 and 0.729 respectively. Similarly, the 
performance of mammoCNN based on the classification accuracy of the training and validation were observed. 

Figure 7.  Samples drawn from a combination of BACH and BreakHis datasets showing benign abnormalities 
with (a) adenosis (A) from BreakHis, (b) phyllodes tumor (PT) from BreakHis, (c) benign (B) from BACH, (d) 
fibroadenoma (F) from BreakHis, and (e) tubular adenona (TA) from BreakHis.

Figure 8.  Samples drawn from a combination of BACH and BreakHis datasets showing malignant 
abnormalities with (a) carcinoma as malignant from BreakHis, (b) in situ carcinoma from BACH, (c) invasive 
carcinoma from BACH, (d) lobular carcinoma from BreakHis, (e) mucinous carcinoma from BreakHis, and (f) 
papillary carcinoma from BreakHis.

Figure 9.  A plot showing the pattern of classification accuracy obtained for the training and validation of the 
(a) histoCNN and (b) mammoCNN when taken in isolation.
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Results obtained were plotted and they showed that only a slight difference exist between the training and vali-
dation result, with the value of 0.805 returned for the latter, while 0.802 for the former. This performance by the 
participating models of TwinCNN presents a motivation for addressing the multimodal problem.

The history of the loss function values was also monitored, and results collected for graphing as shown in 
Fig. 10. Performance demonstrating the learning pattern for histoCNN is impressive when the curves for train-
ing and validation are jointly considered. The best loss function values obtained for the histoCNN training and 
validation are 1.103 and 1.006 respectively. When these same best loss function values were observed for the 
mammoCNN model, the learning curves for training and validation also confirmed the suitability of the model 
for the multimodality task with the former yielding the lowest loss function of 0.781, and the latter returned 0.774.

Furthermore, to understand the suitability of the participating models in TwinCNN for achieving multimodal 
fusion task, we investigated the partially trained histoCNN and mammoCNN on different classifiers. Using the 
random forest (RF), K-Nearest Neighbor (KNN), multilayer perceptron (MLP) and the traditional Softmax func-
tion, this study evaluates the classification accuracy and area under curve (AUC) for the models. In Table 3, a 
summary of the results obtained are listed with the performance of the binary and multiclass classifiers compared 
and well performance classifier appears in bold font. The results obtained showed that all the classifier confirmed 
the suitability of models consisting of the TwinCNN with the MLP yielding the best classification accuracy of 
0.952187 for histology modality while the RF yielded 0.799797 for mammography modality. In a similar vein, 
the MLP reported best AUc of 0.932702 while the RF has 0.673917 as the best. Meanwhile, those performance 
in terms of classification accuracy and AUC for other classifiers under the dual modalities are competitive. The 
average classification accuracy obtained for histology and mammography are 0.755325 and 0.791024 respectively, 
those for AUC 0.861871 and 0.637924 in that order. The implication of this performance evaluation is that the 
histoCNN and mammoCNN are very suitable and compactable for the TwinCNN operation. Moreover, further 
training of the models under higher epoch holds a promise of increasing the classification and accuracy and 
the AUC scores.

Furthermore, Fig. 11 shows the confusion matrix obtained for the histoCNN and mammoCNN when applied 
for feature extraction and prediction in the TwinCNN framework. We found an interesting performance resulting 
from the histCNN, while the mammoCNN showed some difficulty in correctly learning features. As a result, we 
the model was further fine-tuned for better performance.

Considering the significant visual feature learning for the two modalities observed in this study, in the next 
subsection, the joint performance of the TwinCNN model is evaluated. Furthermore, the impact and performance 
output of the proposed fusion technique is also examined and reported.

Figure 10.  A plot showing the pattern of classification loss values obtained for the training and validation of the 
(a) histoCNN and (b) mammoCNN when taken in isolation.

Table 3.  Comparative analysis of the classification performance of the trained TwinCNN using the Softmax, 
KNN, RF, MLP and DTree algorithms.

Classifier

Histology Mammography

Accuracy AUC Accuracy AUC 

KNN 0.788806 0.83349 0.780933 0.607248

RF 0.938817 0.917418 0.799797 0.673917

MLP 0.952187 0.932702 0.791684 0.632857

DTree 0.341491 0.763873 0.791684 0.637675

Softmax 0.708698 – 0.794726 –

Avg 0.755325 0.861871 0.791024 0.637924
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Performance of the TwinCNN with optimized features
The fused operation proposed in this study follows the non-traditional method which either fuses multimodal 
samples at neural architectural level or those that fuse at feature level. This subsection evaluates the adapt-
ability of TwinCNN for fusion of the logits obtained from the individual model in the combined network. The 
approach reported here assumes that labels of the histology samples can be remapped from the original 12-label 
classes to a 3-label classes. Similarly, the mammography class labels were remapped from the 5-label classes to 
a 3-label classes. The remapping allows for standardization of the labels across all modalities for a fair fusion. 
Mammography label fusion resulted in = {“N”:[‘N’], “B”:[‘BC’, ’BM’], “M”:[‘CALC’, ‘M’]}, and the histology fusion 
resulted in {“N”:[‘N’], “B”:[ ‘B’, ‘A’, ‘F’, ‘PT’, ‘TA’], “M”:[‘IS’, ‘IV’, ‘DC’, ‘LC’, ‘MC’, ‘PC’]}. Note that the ‘N’, ‘B’, and ‘M’ 
denote the normal, benign, and malignant classes respectively. To allow for understanding the fusion process, we 
observed the probability values of the actual label and predicted labels for histology and mammography samples 
separately under their original 12 and 5 modal regimes respectively, and then carry out the fusion operation for 
further observation still under single modality. Finally, we applied multimodal fusion to understand what the 
final effect and strength of the classification is.

The results obtained are detailed and outlined in Table 4 where actual and predicted probability values for 
histology and mammography are listed. The first column lists the multimodal samples numbering. Here, ran-
domly selected fused multimodal images of histology and mammography are used for the evaluation. The second 
and third columns are the values representing probability map for the true label and the label predicted by the 
histoCNN, while the fourth and fifth columns contains the probability values for the true labels and the predicted 
labels of randomly selected samples on mammoCNN. Under the category of columns titled fusion labels, the 
value for remapping the original 12-class regime for histology samples and the original 5-class regime for the 
mammography are listed in the first and second columns respectively. The values obtained for the class label 
remapping are foundational to the process of achieving multimodal fusion described in this study. Recall that to 
flatten their different labels counts representing different modalities, we need to find a collection of labels which 
can accurately represent all modalities. Hence the need to use the ‘N’, ‘B’, and ‘M’ labels. For the histology label 
remapping probabilities, we obtain 0.97702 for all randomly selected samples. For the mammography samples 
an interesting variation is reported for the randomly selected samples though this variation is not significant but 
demonstrates a similitude of what is obtainable with real samples.

The last column in the category of the section labeled fusion labels, we have the probability values for the 
multimodal fusion reported. Here the values fuse the probability of the remapped histology and that of the 
remapped mammography for the randomly selected samples. An interesting result is obtained with most show-
ing that probability values range between 0.60 and 0.68 and an average computed for these randomly selected 
samples is 0.667219.

In Fig. 12, the probability values obtained for the remapped histology samples, mammography samples and 
the multimodal fusion are graphed to visualize any significant differences. The curves drawn on the graph show 
that all samples have values that fall within range with no weird point noticed. Again, this is important to under 
study the consistency of the mapping and fusion operations.

The aim of the fusion is to be able to jointly look at the result of different modalities and take an informed 
decision in deciding what the result to report to patients is—if a diagnosis is normal, benign, or malignant. In 
Table 5, we show that all randomly selected samples of histology were malignant, and the prediction also correctly 
labeled them as malignant. Similarly, original labels for the mammography samples selected for the evaluation 
were originally normal with the prediction labeling them as normal. Furthermore, we explored the labeling 
of the remapping. Interestingly, we noticed that the remapping models used also showed a consistency in the 
cases of histology and mammography samples correspondingly to those of actual and predicted. Now the most 
important stage in the pipeline is the fusion label. The ‘M–N’ label is displayed with a corresponding probability 
value to confirm the justification for the new label obtained.

Figure 11.  A confusion matrix plot for the (a) histoCNN using the learning rate of 0.001 and (b) mammoCNN 
when a learning rate of 1e−06 was applied for the experimentation.
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The ‘M–N’ label is a fusion label describing the high possibility of the presence of malignancy in the reported 
samples and some form of normal classification also. However, the corresponding probability values justifies that 
the malignancy is more dominant than the normal label, thereby helping to explain the fusion label.

Discussion of findings
In this section, a closer examination of the findings from the study is conducted from two perspectives: statisti-
cal analysis and comparative analysis of performance of the proposed multimodal neural network with similar 
state-of-the-art methods.

Table 4.  Comparing the performance of the probability fusion method with the actual and predicted labels of 
histoCNN and mammoCNN in the TwinCNN of ten (10) randomly selected fused samples.

Multimodal sample #

Histology label Mammography label Fusion labels

Actual Predicted Actual Predicted Histology Mammography Fused

1 1.0 0.954039 1.0 0.826078 0.97702 0.913039 0.683539

2 1.0 0.954039 1.0 0.826073 0.97702 0.913037 0.683538

3 1.0 0.954039 1.0 0.811109 0.97702 0.905555 0.679797

4 1.0 0.954039 1.0 0.755488 0.97702 0.877744 0.665892

5 1.0 0.954039 1.0 0.671327 0.97702 0.835664 0.644851

6 1.0 0.954039 1.0 0.742093 0.97702 0.871046 0.662543

7 1.0 0.954039 1.0 0.793881 0.97702 0.89694 0.67549

8 1.0 0.954039 1.0 0.756792 0.97702 0.878396 0.666218

9 1.0 0.954039 1.0 0.751871 0.97702 0.875935 0.664987

10 1.0 0.954039 1.0 0.711373 0.97702 0.855687 0.654863

11 1.0 0.954039 1.0 0.803643 0.97702 0.901821 0.67793

12 1.0 0.954039 1.0 0.799792 0.97702 0.899896 0.676967

13 1.0 0.954039 1.0 0.65444 0.97702 0.82722 0.64063

14 1.0 0.954039 1.0 0.826077 0.97702 0.913038 0.683539

15 1.0 0.954039 1.0 0.822246 0.97702 0.911123 0.682581

16 1.0 0.954039 1.0 0.789946 0.97702 0.894973 0.674506

17 1.0 0.954039 1.0 0.826076 0.97702 0.913038 0.683539

18 1.0 0.954039 1.0 0.722376 0.97702 0.861188 0.657613

19 1.0 0.954039 1.0 0.567527 0.97702 0.783764 0.618901

20 1.0 0.954039 1.0 0.757711 0.97702 0.878855 0.683539

Avg 1.0 0.954039 1.0 0.826078 0.97702 0.913039 0.667219

Figure 12.  An illustration of the distribution of fused probability map values for 20 randomly selected single 
images with multimodal representation.
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Statistical analysis
To statistically investigate the outcome of the multimodal fusion achieved using our TwinCNN, a t-test analysis 
was carried out. In this case, the analysis is based on the two modalities namely histology and mammogram to 
examine what differences exist in their extracted and predicted features that were used for the fusion. Specifi-
cally, the independent two-sample t-test was used for the analysis. Meanwhile, the null hypothesis considered 
to be tested is that there is not any difference between the two features using alpha = 0.05. The aim is to show 
that if there is no difference, then the outcome of the TwinCNN fusion model is not relevant. However, where a 
difference exists, then it implies that outcome from the fusion of the two modalities as reported by our experi-
mentation is very valid.

First, an F-test to check the equality of the two modalities was analyzed as reported on Table 6. Results 
obtained showed that F > F Critical one-tail, therefore leading to the rejection of the consideration that both 
modalities are equal. For instance, the value 2.27E + 28 > 2.168252 is significant, demonstrating a necessary 
need for multimodality fusion. Furthermore, a two-tail test inequality analysis on the two modalities revealed 
an important finding which led to the rejection of the null hypothesis. To justify this, result in Table 7 confirms 
that the conditions tStat <− tCritical two-tail and tStat > tCritical two-tail do not hold. Supporting this argument 
is − 2.093024 < − 12.57598067 < 2.093024 condition which is true. Moreover, the observed difference between 
the sample means 0.88039795 and 0.97702 shows that a significant difference exists between the features from 
the two modalities.

In summary, considering the result of the statistical analysis, the confirmation of significant difference 
between the multimodal features demonstrates that the result of the TwinCNN fusion framework is impressive 

Table 5.  Comparing the performance of the class-based probability map fusion method with the actual and 
predicted labels of hisoCNN and mammoCNN in the TwinCNN of ten (10) randomly selected fused samples.

Multimodal sample #

Histology Label Mammography label Fusion labels Probability of fused 
labelActual Predicted Actual Predicted Histology Mammography Fused

1 M M N N M N M–N 0.683539

2 M M N N M N M–N 0.683538

3 M M N N M N M–N 0.679797

4 M M N N M N M–N 0.665892

5 M M N N M N M–N 0.644851

6 M M N N M N M–N 0.662543

7 M M N N M N M–N 0.67549

8 M M N N M N M–N 0.666218

9 M M N N M N M–N 0.664987

10 M M N N M N M–N 0.654863

11 M M N N M N M–N 0.67793

12 M M N N M N M–N 0.676967

13 M M N N M N M–N 0.64063

14 M M N N M N M–N 0.683539

15 M M N N M N M–N 0.682581

16 M M N N M N M–N 0.674506

17 M M N N M N M–N 0.683539

18 M M N N M N M–N 0.657613

19 M M N N M N M–N 0.618901

20 M M N N M N M–N 0.666447

Table 6.  F-test result.

F-Test two-sample for variances

Mammo Histology

Mean 0.880398 0.97702

Variance 0.001181 5.19E−32

Observations 20 20

Df 19 19

F 2.27E+28

P(F <  = f) one-tail 1.9E−265

F Critical one-tail 2.168252
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and relevant. In the next sub section, the approach proposed in this study is then compared with other similar 
related studies.

Comparison with similar studies
The comparison of our study with the state-of-the-art is first focused on emphasizing the differentiator between 
our approach and those similar studies on either twin or Siamese neural networks. Secondly, using performance 
metrics, results obtained from this study I compared with results from similar studies.

In Table 8, recent twin and Siamese neural networks are compared with our method by highlighting the differ-
entiator existing between the two corresponding approaches. The works  of40,41,44,45,78  and37 are all Siamese neural 
networks. A major differentiator with our approach lies in the use of the binary optimization algorithm as a basis 
for reduction of extracted feature, and as well for finding discriminant features supportive of the classification 
process. We consider this to be very important to obtain good prediction which can support the fusion process 

Table 7.  t-Test outcome.

t-Test: two-sample assuming unequal variances

Mammo Histology

Mean 0.880398 0.97702

Variance 0.001181 5.19E−32

Observations 20 20

Hypothesized Mean Difference 0

Df 19

t Stat − 12.576

P(T <  = t) one-tail 5.85E−11

t Critical one-tail 1.729133

P(T <  = t) two-tail 1.17E−10

t Critical two-tail 2.093024

Table 8.  Approach-based comparative analysis of the proposed method with some selected related studies.

Studies Approach Domain of application Differentiator with proposed study

78

Siamese convolutional neural network architecture 
called CNN-Siam, was applied to learn the feature 
representation of drug pairs from multimodal data of 
drugs

Prediction of drug-to-drug interactions (DDIs) based 
on modalities of chemical substructures, drug targets 
and enzymes

The RAdam and LookAhead optimization algorithms 
were relied on for improving accuracy based on 
ffeatures learned using the CNN-Siam, whereas our 
proposed model leverages a metaheuristic-based 
algorithm to select discriminant features learned using 
TwinCNN

41
Siamese neural network (SNN) is proposed for 
classification purpose in conjunction with k-nearest 
neighbour (k-NN) model

Applied to classification of MRI images samples for 
brain tumor detection

The study aimed at reducing feature space using shal-
low neural network as against the CNN architecture. 
On the contrary, our proposed TwinCNN is based on 
deep neural network capable of extracting rich features 
while a novel binary optimizer is applied for the 
feature space reduction

44 Deep learning-based Siamese neural network is design 
with attention mechanism

Detection of abnormality in product data at manufac-
turing site

The attention mechanism supports their feature 
extraction, it however introduces a very high represen-
tation of feature space
Moreover, training of the model on small dataset 
contradicts our approach which leverages sufficient 
dataset to ensure that features space represents a good 
generalization

39 Triplet Siamese CNN based on benchmark architec-
tures Few-shot learning for detection of COVID-19

Ensemble of benchmark neural architectures were 
composed to build a triplet Siamese network. How-
ever, our proposed model is based on a dual neural 
architecture

45 Siamese CNN (SCNN) with minimal supervised 
learning

Applied for content-based retinopathy fundus image 
retrieval

Our proposed model combines features with predicted 
label for fusion which determines the multimodal 
classification

40 Siamese neural network based to enable one-shot 
classification

Handcrafted features were used to initiate the extrac-
tion of discriminant features

The study we propose leverages of binary optimizer 
with TwinCNN for feature extraction and selection of 
discriminant features

37 Siamese neural network for single modality image pair 
with two time points Applied to monitor progression of disease

Our proposed TwinCNN is aimed at multimodal 
images combining histology and mammography 
samples

42 Twin CNN for extraction of feature maps based a 
content-based retrieval

Used for retrieval of Optical Coherent Tomography 
(OCT) scans

The TwinCNN proposed in our study is aimed for 
multimodality image classification with a novel feature 
extraction and reduction algorithm
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which depends on the predicted label and the multimodality features. On the other hand, the work reported  in39 
is rather an ensemble of neural networks used to build triplet Siamese network. While ensemble method has 
reported good performance in literature, we note that this can result in a very staggering dimension of features 
which needs to be considered during multimodality fusion. Interestingly, our method leverages a dual neural 
network approach for effectively extraction of the needed multimodal features. Furthermore, a very related work 
is that  of42 which uses a twin neural network as in the case of our TwinCNN. However, our study differs from, 
and surpasses this related work because the multimodality investigated using TwinCNN is not the same as the 
multimodality reported in their study. Our consideration of multimodality is typical of a real-life medical image 
analysis on multiple modalities when detecting breast cancer.

The performance-based comparison listed in Table 9 shows how the proposed method competes with simi-
lar studies using some classification related metrics. Whereas most studies focused on single modality whose 
classification accuracies peaked higher our results, we consider such performance gain as non-comparable with 
combining the accuracy of multimodal classification. Moreover, the difficulty of finding studies which have 
proposed multimodality neural networks on histology and mammography datasets makes it challenging to draw 
a parallel performance comparison. Most importantly, we consider the unavailability of studies using the same 
combination of modalities as considered in our study on detection of breast cancer as confirmation of novelty.

Summary of results obtained in the study demonstrates that combining similar architectures for multimodal 
classification task is very important for good accuracy. Representing our approach as a twin network, we first 
evaluated the contributing models in TwinCNN and noted that each model supported the single-modality clas-
sification. Furthermore, the study demonstrates that inefficient models when combined as a twin architecture will 
impair the combined result of the hybrid neural architecture. Therefore, we motivate for studies on Siamese and 
Twin neural network to always examine their participating architectures individually and adjust or retrain them 
until they are suitable for participating in the joint twin/Siamese relationship. Secondly, the two models twined 
for fusion of samples from different modalities were adapted to remap their logits to a 3-class regime. Findings 
from this showed that mismatch representation of class in twin or Siamese network will lead to an imbalance 
multimodal classification. Therefore, it is good to find a baseline categorization of labels which allows for all 
participating modalities to be evaluated under the same type and number of labels. Finally, findings from the 
study demonstrate that the logits of neural architecture are also very useful in achieving fusion of such models 
when being used in twin or Siamese network architectures. Traditionally, all studies in literature have only limited 
their fusion levels to the architectural layers and the feature fusion levels. But this study, as far as we know, is the 
first attempt to investigate and experimentally show that the logits of twined or Siamese neural networks can 
also help in fusion of multimodal samples for a single classification report. This fusion probability is significant 
to whole pipeline of achieving a TwinCNN multimodal classification of breast cancer in images.

Conclusion
This study is aimed at applying a novel TwinCNN framework to the task of extracting relevant heterogene-
ous patterns from multimodal datasets with the aim of addressing the difficult problem of multimodal image 
classification. We proposed an interesting technique for embedding binary optimization method to solve the 
problem of dimensionality reduction on the expected high volume of features extracted using the deep learn-
ing approach. Most studies which have addressed the challenge of feature optimization using metaheuristic 
algorithms have focused their methods on the application of continuous optimization algorithm. This study 
approached this problem from a different perspective using binary optimization algorithm. It represents a new 
direction from the popular method. It also motivates for a novel way to formalize the features as representatives 
of 1’s and 0’s only so that discriminant features are represented by 1’s while the non-discriminant are denoted by 
0. Experimental results confirm the suitability of the approach proposed. Furthermore, the study presented a new 
fusion method contrary to the popular and deficient ones which are obtained in the literature. This framework 
addresses the issue of effectively extracting a common feature representation space from fused heterogeneous 
features. The TwinCNN architectures allowed for obtaining discriminant features from multimodal samples, 

Table 9.  Performance-based comparative analysis of the proposed method with single/multiple neural 
networks for multimodality in detection of breast cancer detection.

Studies Approach Modalities Performance

79 Two 3D ResNet-50 were combined for multimodal 
feature extraction and fusion

High-dimensional MRI features and clinical 
information AUC = 0.827

80 Integration of residual block with inception block 
to form a single CNN architecture

B-mode ultrasound, elastic ultrasound, pure elastic 
ultrasound, and H-channel images

Classification accuracy rates of breast lump detec-
tion is 94.76%

81 A single CNN architecture on B-mode and SE-
mode ultrasound image B-mode and elastography ultrasound images sensitivity of 100 ± 0.00% and specificity of 

94.28 ± 7.00%

33
A single neural architecture model for extracting 
stacked features using a sigmoid gated attention, 
and dense layer for bi-modality

Text-based, gene expression data and copy number 
alteration (CNA) data

Reported performance improvement for AUC, 
accuracy, precision, and sensitivity at 0.5%, 8.6%, 
9.2% and 34.8% respectively

82 A single CNN architecture applied independently 
for extraction of multimodal features Grey-scale images samples Obtained 96.55%, 90.68%, and 91.28% on MIAS, 

DDSM, and INbreast datasets

This proposed study
A TwinCNN and binary optimization algorithm 
framework for multimodal classification using 
histology and mammography digital images

RGB-image and grey scale image samples
Classification accuracy for histology modal-
ity = 0.977, mammography modality = 0.913, and 
fused multimodalities = 0.684
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and to further fuse the features based on the class distribution prediction. However, this detection and harness-
ing of discriminant features came at the computational cost of a binary optimizer algorithm. In addition, the 
approach proposed helps to eliminate the challenge of single supervised deep learning models which often rely 
on large datasets for training. Findings from the study showed that the classification accuracy of the multimodal 
method competes with state-of-the-art unimodal deep learning method. Secondly, the study also demonstrated 
that the combination different data streams to understanding the representation of a disease support the deci-
sion process and improves explainability of the performance of deep learning models solving medical image 
analysis. This is necessary considering the role of artificial intelligence in characterization of abnormalities in 
medical images. In future, recommend that research effort be directed towards investigating the integration of 
explanation facility which draws input from the learned features sets to provide evidence for the result obtained 
from the TwinCNN framework. Finally, the increasing use of attention mechanism in both visual and textual 
neural networks has gained research focus. We consider the possibility of integrating an attention mechanism 
into TwinCNN to make it more efficient.

Data availability
The datasets generated and/or analysed during the current study are available in the MIAS and BreakHis reposi-
tories https:// wiki. cance rimag ingar chive. net/ pages/ viewp age. action? pageId= 22516 629 and https:// web. inf. ufpr. 
br/ vri/ datab ases/ breast- cancer- histo patho logic al- datab ase- break his/.
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