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A modified shuffled frog leaping 
algorithm with inertia weight
Zhuanzhe Zhao 1,2, Mengxian Wang 1, Yongming Liu 1,2*, Yu Chen 1, Kang He 3* & Zhibo Liu 1,2

The shuffled frog leaping algorithm (SFLA) is a promising metaheuristic bionics algorithm, which 
has been designed by the shuffled complex evolution and the particle swarm optimization (PSO) 
framework. However, it is easily trapped into local optimum and has the low optimization accuracy 
when it is used to optimize complex engineering problems. To overcome the shortcomings, a novel 
modified shuffled frog leaping algorithm (MSFLA) with inertia weight is proposed in this paper. To 
extend the scope of the direction and length of the updated worst frog (vector) of the original SFLA, 
the inertia weight α was introduced and its meaning and range of the new parameters are fully 
explained. Then the convergence of the MSFLA is deeply analyzed and proved theoretically by a new 
dynamic equation formed by Z-transform. Finally, we have compared the solution of the 7 benchmark 
functions with the original SFLA, other improved SFLAs, genetic algorithm, PSO, artificial bee colony 
algorithm, and the grasshopper optimization algorithm with invasive weed optimization. The testing 
results showed that the modified algorithms can effectively improve the solution accuracy and 
convergence property, and exhibited an excellent ability of global optimization in high-dimensional 
space and complex function problems.

Optimization problem refers to the search for optimal solutions to some practical problems in the process of 
human production and life under a set of constraints. Meta-heuristic algorithm is one of the best methods to 
deal with this kind of problem1. It is simple and flexible in computation, and its optimization scope is not only 
suitable for specific fields, but also has no special requirements for objective function. In recent years, with the 
development of meta-heuristic optimization algorithms, many complex optimization problems can be solved 
easily and effectively, and natural meta-heuristic algorithms have become a research hot spot2,3. Most natural 
meta-heuristics are inspired by the behavior or physical phenomena of groups of organisms in nature. For 
example, the whale optimization algorithm (WOA)4 simulates humpback whale’s unique search method and 
rounding mechanism, which mainly includes three important stages: rounding up prey, bubble net hunting, 
and searching prey. The marine Predators Algorithm (MPA)5 was inspired by marine predators’ survival of the 
fittest theory, that is, marine predators chose the best foraging strategies by choosing between Levy and Brown-
ian movement. The dragonfly algorithm (DA)6 is mainly inspired by the static and dynamic group behavior of 
dragonflies in nature. The moth flame optimization algorithm (MFO)7 is inspired by the navigation mechanism 
of moths chasing flames in the direction of lateral flight. Atomic orbital search (AOS)8 is inspired by some of the 
principles of quantum mechanics and quantum-based models of the atom, taking into account the properties 
of electrons around the nucleus. The gazelle optimization algorithm (GOA)9 mainly simulates the behavior of 
antelopes escaping predators. Many natural meta-heuristic algorithms have excellent performance that is efficient, 
simple and avoids falling into locally optimal. However, the No Free lunch theory has stated that no algorithm 
can solve all optimization problems, nor can it perform well in all problems. Therefore, continuous improvement 
of algorithms is crucial to solve more practical optimization problems.

The shuffled frog leaping algorithm (SFLA) has been known as a metaheuristic population-based algorithm 
which was originally introduced by Eusuff and Lansey10. This algorithm was motivated by the predatory habit 
of frog groups in a small pond and contains elements of local search and global information shuffling10,11. Due 
to its advantages of fast computation and excellent convergence performance, SFLA has been widely applied in 
optimization domains, such as parameter estimation12, the unit commitment problem13, wireless sensor networks 
(WSNs) design14, integrated circuits design15, scheduling problem16, and machine learning17. However, with the 
increasing complexity and the dimension of the solving problem, the convergence speed and solution accuracy 
of SFLA decreases significantly, even the SFLA easily traps into local optima. Thus, researchers conducted various 
improvements on SFLA to develop new algorithms for the improvements in its performance. Four versions of 
SFLA were proposed by using the opposition-based learning (OBL) strategy in the SFLA to diversify the search 
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moves and accelerate search process18. A new differential operator was inserted in the evolutionary process of 
the SFLA to prevent a premature loss of genotypic diversity. An adaptive frog leaping rule based on the genetic 
mutation operator was suggested to enhance the local exploration and performance of the initial SFLA19. A com-
bination of non-local spatial information and quantum-inspired SFLA20 and a hybrid SFLA with antipredator 
capabilities to avoid the local minima21 have been proposed. A novel scheme based on quantum evolution strat-
egy and eigenvector evolution strategy was introduced. In this scheme, the frog leaping rule based on quantum 
evolution is achieved by two potential wells with the historical information for the local search, and eigenvector 
evolution is achieved by the eigenvector evolutionary operator for the global search12. By introducing accelera-
tion factors c1 and c2 into the basic SFLA22, the ability of the worst individual to learn from best individual within 
the sub-memeplexes or global best individual of the entire population was improved and the convergence rate 
of algorithm was accelerated. Meanwhile, some novel hybrid SFLA exhibited integrations in other intelligence 
algorithms, such as the genetic algorithm (GA)19, simulated annealing (SA)23, harmony search (HS)24, particle 
swarm optimization (PSO)25, which have been greatly advanced the hybridizing work of SFLA algorithms. 
Technically speaking, these improved algorithms or their variants can improve the SFLA’s performance, such as 
faster convergence speed, higher accuracy of solution, increased local exploration ability and so on. However, 
with more and more complex practical optimization problems and strict real-time requirements, it is necessary 
to find the SFLA with the relatively small computational complexity, the higher solution accuracy and better 
global optimization performance. Therefore, there is still much room for the improvement of the original SFLA.

Animals have an instinctive ability to remember their past actions (for example, the path they have trave-
led, or an action). In the next similar activity, appropriate adjustments and changes will be made based on the 
previous behavior, rather than a complete restart. This kind of behavior is called inertial behavior, which is the 
inheritance and reference of past experience, and helps animals quickly achieve their own purpose. However, 
the current improved SFLA still has some shortcomings, such as too many improvement points but the effect 
is not obvious, the content is complex, the relevant papers lack mathematical theory. On this basis, introducing 
the inertia weight parameter into the meme evolution strategy not only effectively enhances the performance 
of the original algorithm, but also the concepts involved in MSFLA are relatively simple, easy to understand 
and flexible. In this paper, the convergence of the algorithm is analyzed theoretically and the value range of the 
inertia weight parameter is given, which provides a theoretical basis for the related research of SFLA. Moreover, 
compared with the original SFLA algorithm, the computation cost and time complexity are not increased, and 
the operation is more convenient.

The remainder of the paper is organized as follows. The original SFLA is briefly described in Sect. "Original 
shuffled frog leaping algorithm". In Sect. "Modified shuffled frog leaping algorithm (MSFLA)", "Inertia weight 
strategies of MSFLA", the MSFLAs with three different inertia weight strategies are presented to extend the scope 
of the direction and length of the worst frog, where the superiority of MSFLA over original SFLA is demon-
strated by the vector syntheses on 2-dimensional space. The reasonable range of new parameter was discussed in 
mathematical theory, and it was listed in detail. Three modified SFLA models and the original SFLA are applied 
for the seven typical benchmark test problems, as shown in Sect. "Experiment and discussions". Moreover, 
the simulation results demonstrate the effectiveness of the modified algorithms. Section "Engineering design 
problems" is the result of the improved algorithm in the engineering optimization case, and Sect. "Conclusions" 
summarizes this paper.

Original shuffled frog leaping algorithm
A frog population lives in a swamp or pond, and there are many discrete stones for frogs to jump when looking 
for food. Frog individuals are allowed to communicate with each other, so as to learn from the experience of 
other individuals to improve their own jumping direction and step size, and achieve the purpose of information 
sharing. In order to find food quickly and accurately, the frog population is divided into several memeplexes with 
the same number but different abilities to form a small group in a local range. The local elite individuals guide 
other individuals to search for food independently in different directions. After each memeplex has searched a 
certain number of times, different memeplex exchange information through each memeplex shuffling, which 
makes many frogs learn the new ideas of different memeplexes and realize the social sharing of information so 
that the whole frog population can quickly and successfully find the food source in the right direction. The basic 
concept of the SFLA is shown in Fig. 1.

The original SFLA is a combination of random and deterministic approaches. The deterministic strategy, 
the local and global explorations, could effectively ensure evolution guide of the algorithm toward the global 
optimum using the heuristic information (or fitness function). The random elements also could improve the 
flexibility and robustness of search pattern. Some main steps of the algorithm are shown below10,11.

Step 1 A virtual population of F different frogs is generated randomly in the feasible D-dimensional space. 
Each frog represents a candidate solution of optimization problem and D is the number of decision variables. 
So the ith frog is expressed by a vector Ui = (Ui1,Ui2, ...,UiD) . Each frog has an associated fitness value fi that 
measures the performance of the frog.

Step 2 All frogs are sorted in a descending order according to their fitness values and the entire population 
is partitioned into m memeplexes (communities)Y1,Y2,⋯Ym , each containing n frogs (i.e. F = m × n), such that

Record the frog with the best fitness value as Ug in the entire population.
Step 3 The memetic evolution of SFLA starts. Firstly, q distinct frogs are selected randomly from n frogs 

within the memeplex Ym to construct a submemeplex. The selection strategy is to give a higher probability of 
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being selected to the frogs that have higher performance values. The frogs within submemeplex are resorted in 
order of decreasing performance. For each submemeplex, the frogs with the worst and the best performance 
are identified as Uw and Ub , respectively. Then, the worst frog Uw in each submemeplex is updated as follows:

where S is the updated step size and is a D-dimensional vector; r is a random number between 0 and 1; Smax is 
the maximum step size allowed to be adopted by a frog after being infected. The new frog is then computed by

The evolution rule presented above is shown as Fig. 2a.
If the performance of the new U ,

w is better than the old Uw , it replaces the worst Uw . Otherwise, the calculations 
in Eqs. (2) and (3) are repeated with respect to the global best frog, i.e., Ub is replaced by Ug . If no improvement 
becomes possible in this case, then a new frog (solution) is randomly generated to replace the frog Uw . This 
operation is repeated by the required number of iterations Lmax . The search process above is called the local 
exploration of the SFLA.

Step 4 Once the local exploration is completed for the m memeplexes, the algorithm returns to the global 
exploration for shuffling. For a global information exchange, the frog population is rearranged in accordance with 
the new fitness values. Update the global best frog Ug . Then, the entire frogs are partitioned into m memeplexes 
and a new local search starts again. The local exploration and global shuffling process are carried out alternatively 

(2)S =

{

min[r(Ub − Uw), Smax], Ub − Uw ≥ 0

max[r(Ub − Uw),−Smax], Ub − Uw < 0

(3)U
′
w = Uw + S

Figure 1.   The basic concept of SFLA.
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(a) the original frog leaping rule (b) the modified frog leaping rule

Figure 2.   The vector syntheses on 2- dimensional space.
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until the iteration numbers Gmax or convergence criteria are satisfied. The updated Ug is the optimal solution of 
optimization problem.

The main parameters of the SFLA are: number of frogs F, number of memeplexes m, number of frogs in each 
memeplex n, number of frogs in each submemeplex q and the maximum local search number of evolutionary 
iterations Lmax before shuffling. The last parameter is the stop criteria of algorithm. It can be the maximum itera-
tions number of global shuffling Gmax or the solution accuracy ɛ.

Modified shuffled frog leaping algorithm (MSFLA)
The original frog leaping rule is inspired by this natural memetics (see Fig. 2a). As can be seen from the figure, 
the possible position of the updated new frog U ,

w is restricted in the narrow area between its old position and the 
best frog’s position Ub (or Ug ), and its length and direction will never surpass the best one. Therefore, it indicates 
that the performance of U ,

w is not better than the performance of Ug in the process of evolution26.
Clearly, this frog leaping rule limits the local search space in the memetic evolution process and might fall 

into the local optimum. To overcome this limitation, a modified frog leaping rule is introduced in this study. 
From the perspective of social cooperation, the second part of Eq. (3) represents its social ability to learning 
from others. Meanwhile, the first part represents the ability to self-diagnose in the evolution step. In SFLA, the 
evolution process is only applied to update the frog with the worst performance (i.e. not all frogs) within each 
submemeplex, which is obviously different from the other swarm intelligence algorithms. Therefore, in the ideal 
case, the updated new frog should inherit and increase the advantages of the better one, while reducing the impact 
of the old worst frog as far as possible. On the basis of the analysis mentioned above, a new parameter called the 
inertia weight α is introduced to improve the original frog leaping rule by controlling the inherited share from 
the worst frog. The new frog leaping rule is expressed as:

This new parameter α displays roles in balancing the self-cognitive ability and team learning capability of 
the worst frog. Besides, the new parameter α can not only make the worst frog maintain the leaping inertia, but 
it also greatly increases the diversity of the solution. If α = 0, the worst frog has no self-cognitive ability and the 
algorithm would be trapped into the complete random state. If α > 1, the newly updated frog would keep the much 
gene of the worse performance and the convergence speed will slow down greatly. When α = 1, it is the same as 
Eq. (3). So the reasonable range of inertia weight α is in the range 0–1. The 2-dimensional vector syntheses of 
the modified frog leaping rule is demonstrated in Fig. 2b. It can be seen that the new rule can extend the direc-
tion and the length of each frog’s jump. Through widening the local search space, the MSFLA helps to prevent 
premature convergence and effectively improve the solution performance.

Theoretically, the inertia weight can be a positive constant or even a positive linear or nonlinear function of 
time. If α is a constant, especially set as an unreasonable value, the diversity of MSFLA could decrease. Thus, it 
is contrary to the original improved intention. Therefore, in this research, the three time-varying strategies for 
determining the value of inertia weight are proposed and form the different modified models of SFLA, which 
are inspired by the inertia weight strategies of the PSO.

To better analyze, assuming the number of frog memeplex is m = 1, then the Ub=Ug . At the same time, assum-
ing the maximum step size Smax of frog-leaping can be allowed infinite as long as it does not exceed the domain 
of definition. Then the updating formula of the worst frog MSFLA (Eq. (4)) and Eq. (2) can be combined and 
simplified to the following form

where k is the iteration number of global search. We can obtain Eq. (6) by simplifying the Eq. (5):

Suppose the MSFLA is convergent, then with the iteration number k increasing, Uw(k) and Ub(k) are formed 
as two discrete time sequences with global convergence. Now their z-transform exist and can be noted as Uw(z) 
and Ub(z) . Perform z-transform onto both sides of Eq. 6 under zero initial condition.

Therefore, the system (MSFLA) described by Eq. (7) can be considered as a discrete time dynamic causal 
system whose reference input is Ub(z) and system output is Uw(z) . Therefore, the system transfer function is 
shown below

And the precondition of the system convergence is that the system must be stable. The necessary and suf-
ficient condition of system stability is that the poles of H(z) are all in the unit circle. That is satisfied with the 
following condition:

For 0 < α < 1 , the inequality (9) is clearly established. That is because when 0 < r < 1 , the inequality 
0 < |α − r| < 1 is satisfied. So the original hypothesis is established, that is, MSFLA must be convergent.

(4)U
′
w = αUw + S

(5)Uw(k + 1) = αUw(k)+ r[Ub(k)− Uw(k)]

(6)Uw(k + 1)−[α−r]Uw(k) = rUb(k)

(7)zUw(z)−[α−r]Uw(z) = rUb(z)

(8)H(z) =
Uw(z)

Ub(z)
=

r

z − (a− r)

(9)z = |α − r| < 1
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For 1 ≤ α < 2 , the inequality (9) has the possibility of existence, that is, there is the possibility of convergence 
of MSFLA, but this will add a number of unstable factors to the stability of MSFLA; But for α ≥ 2 , the inequal-
ity |α − r| > 1 is satisfied and the system H(z) is unstable. it means that the MSFLA will be no longer converge.

Inertia weight strategies of MSFLA
Random inertia weight
In the solution process of the actual question, the required value of inertia weight could be different in each 
memetic generation. Usually, α can come from a certain function distribution, such as the uniform distribution, 
random distribution, and normal distribution. A random value of inertia weight is used to enable the MSFLA 
to track the global optima. The formula is as follows27:

where r is a random number in [0, 1] and it is the same in Eq. (2); α is then a uniform random variable in the 
range [0.5, 1]. The modified SFLA model with the random inertia weight strategy is denoted as the MSFLA-R.

Linear time‑varying inertia weight
In most of the PSO variants, the inertia weight value is determined by the iteration number, which is called the 
time-varying inertia weight strategy. A linear decreasing time-varying inertia weight was first introduced in 
Shi’s and Eberhart’s studies28 and experimental results show that the strategy is an effective approach. In view 
of this, the same strategy of inertia weight is applied to the MSFLA model according to the following equation:

where iter is the current iteration of local exploration within each memeplex; αmax and αmin are the maximum 
value and the minimum value of the inertia weight α. In this method, the inertia weight value is linearly decreased 
from the initial value ( αmax ) to the final value ( αmin ) according to the local iteration number within each meme-
plex. The modified SFLA model with the linear time-varying inertia weight strategy is denoted as the MSFLA-L.

Nonlinear time‑varying inertia weight
The memetic evolution (or search) process is very complex and nonlinear in most intelligent algorithms. Some 
researchers proposed nonlinear adjustment strategies of inertia weight in the PSO variants. A typical nonlinear 
strategy of inertia weight is used in the MSFLA model as the following quadratic function29:

where α1 and α2 are the initial and final values of inertia weight. In each local exploration process, the inertia 
weight starts from α1 and ends at α2. The modified SFLA model with the quadratic weight strategy is denoted 
as the MSFLA-Q.

Based on the above formula and relevant theories, the flow charts about the global exploration and local 
exploration (memetic evolution) of 3 MSFLAs are shown in Fig. 3

Time complexity analysis
For SFLA, the number of individuals in each iteration is unchanged. Assuming that the number of individuals 
in the algorithm is m, the number of global iterations is Gmax , the time required for the last update of a single 
individual in one dimension is T, and the spatial dimension of an individual is D, the time complexity of SFLA 
can be obtained as O (m × Gmax×T × D). For MSFLAs, the inertia weight w is a fixed value in one iteration, and 
no repeated calculation is required. Therefore, the effect of introducing w on the time T required for individual 
renewal is small and can be ignored. Therefore, the time complexity of MSFLAs s is also O(m × Gmax×T × D). To 
sum up, the three algorithms of SFLA and MSFLA are the same in terms of time complexity, but MSFLAs obtain 
better optimization performance due to the optimization and improvement in update strategy.

Experiment and discussions
In order to evaluate the performance of the MSFLA models, seven well-known benchmark functions are used 
for testing to assure a reliable comparison30. The functions f1–f3 and f7 belong to the unimodal functions which 
are used to evaluate the exploitation capability of MSFLAs. The f4–f6 simulate multi-modal functions to test the 
exploration performance of MSFLAs. Table 1 shows the basic information of the benchmark functions.

All the experiment are performed on a machine with a Core i7 1065G7 CPU, 8-GB memory, and 64 bits Win-
dows 10 operating system. Each algorithm repeats 30 runs independently for eliminating random discrepancy. 
The algorithm is written based on MATLAB 2019b. For a fair comparison, the base parameters of SFLA and 
MSFLAs are selected as the same as follows. The number of memeplexes m = 25, the number of frog individuals 
in each memeplex n = 25, the number evolved individuals selected from each memeplex q = 20, the local iteration 
number within each memeplex Lmax = 50. The solution accuracy ɛ, as one of two stop criteria of algorithms above, 
are the same in each problem and is less than 1.00E−6 (except f7 is 30), and another Gmax is equal to 3000 ( Gmax

=100D). These parameters are set to make a tradeoff between computation time and accuracy. At the same time, 
the parameters αmax and αmin are set to 0.9 and 0.4 in MSFLA-L, α1 and α2 are set to 0.9 and 0.2 in MSFLA-Q 
respectively. The internal parameters of each algorithm are set as shown in Table 2.

(10)α = 0.5+ r
/

2

(11)α(iter) = αmax − (αmax − αmin)iter
/

Lmax

(12)α(iter) = (α1 − α2)

(

iter − Lmax

Lmax

)

2 + α2
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Figure 3.   The flow chart of MSFLAs.

Table 1.   The benchmark functions.

Name Function Range Dim Optimal value

Sphere f1(x) =
D
∑

i=1

x2i |xi | ≤ 100 30 0

Schwefel’s Problem 2.22 f2(x) =
D
∑

i=1

|xi | +
D
∏

i=1

|xi | |xi | ≤ 10 30 0

Schwefel’s Problem 1.2 f3(x) =
D
∑

i=1

(
i
∑

j=1

xj)
2

|xi | ≤ 100 30 0

Rastrigin’s f4(x) = 10D +
D
∑

i=1

(

x2i − 10 cos(2π · xi)
)

|xi | ≤ 5.12 30 0

Griewangk’s f5(x) =
1

4000

D
∑

i=1

x2i −
D
∏

i=1

cos

(

xi√
i

)

+ 1 |xi | ≤ 600 30 0

Ackley
f6(x) = −20e

−0.2

√

1
D

D
∑

i=1

x2i
− e

1
D

D
∑

i=1

cos 2π ·xi
+ 20+ e

|xi | ≤ 32 30 0

Rosenbrock’s Valley f7(x) =
D−1
∑

i=1

[

100(xi+1 − x2i )+ (xi − 1)2
]

|xi | ≤ 30 30 0
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The Fig. 4 shows the mean convergence curves (30 independent runs) based on four different algorithms to 
seven benchmark functions. As can be seen from Fig. 4g, the precision and the convergence speed of the solution 
based on the three MSFLAs are much better than those of original SFLA. In the solving process of the benchmark 
function except f6 and f7, the values of fitness function using three MSFLAs have been completely converged to 
the global optimal point when the global iteration number is far less than Gmaxx, but the errors of solution based 
on the original SFLA is relatively large under the same condition. Among of three MSFLAs, the performance 
of MSFLA-Q and MSFLA-L are similar and both are better than MSFLA-R. There is no notable different in the 
coordinate values of the tipping points B and C. On the early phase of solution to the f6, the convergence curve 
based on MSFLA-L coincides with that based on MSFLA-Q, while on the later phase it coincides with that based 
on MSFLA-R.

To make a comprehensive comparison for the 3 MSFLAs’ performance, the calculation results of 30 independ-
ent runs are summarized in Tables 3 and 4. In the two tables, the abbreviation “Std Dev” stands for standard 
deviation and it can be used to measure the stability of algorithms.

Table 3 shows the calculation speed of four algorithms to those benchmark functions under the same solution 
precision ɛ. Even for the simple unimodal benchmark functions, the original SFLA also needs at least hundreds of 
operations (global shuffling or iteration numbers) to achieve the required precision. For example, in the process 
of the solution to the f1, the fastest speed (the least global iteration number) is 342, while the slowest one is 436, 
and the mean is 369.4. For some complex or multimodal benchmark functions, they need more global iteration 
numbers and most of them are even more than 3000. However, these modified SFLAs are used to solve these 
benchmark functions, the actual global iteration number is often no more than 10. At the same time, the stability 
of three MSFLAs is far better than the original SFLA.

Table 4 shows the experimental results of four SFLA algorithms in dimension D = 30, 50, 100. It can be seen 
from Table 3 that for f1–f5, MSFLAs can reach the theoretical optimal value in three different evaluation indexes 
and dimensions, while SFLA’s convergence accuracy decreases with the increase of dimensions, which indicates 
the effectiveness of the inertia weight strategy and the suitability of MSFLAs for high-latitude unimodal func-
tions. However, for f6 and f7, finding the global optimal solution is quite challenging. The Ackley function f6 is 
a classical continuous, rotated and non-separable multimodal function. The topological structure feature of f6 
is that it is almost everywhere flat on the outer region, but has a non-smooth hole or peak in the middle. f6 has 
many local optimal values, which can easily cause the algorithm to stall. The most sought advantage is generally 
8.88E-16. With the increase of dimensions, the best and std of MSFLA-Q remain unchanged, and the perfor-
mance is stable. Secondly, MSFLA-L and MSFLA-R are easy to fall into Local optimization. SFLA performed the 
worst. The Rosenbrock’s valley function f7 is a typical ill-conditioned, nonconvex and unimodal function that is 
difficult to minimize, and there is an obvious correlation between variables. It is a classic optimization problem 
also known as the banana function. Because this function provides little information for search, it is difficult for 
many algorithms to identify the search direction when solving, and there is little chance to find the global best. 
Therefore, this function is also commonly used to evaluate the execution efficiency of optimization algorithms. 
f7 is a fixed peak function, when D = 30, MSFLAs is better than SFLA, and when D = 50, the result is opposite, 
but when D = 100, the results of the four algorithms tend to be similar. This shows that the improved algorithm 
is less effective in the environment of fixed peak function. In general, for other different types of test functions, 
MSFLAs is at the bottom of the iteration curve most of the time. The results show that the algorithm has high 
convergence efficiency, which verifies the effectiveness of the algorithm optimization strategy.

Table 5 shows a comparison of the accuracy of the seven benchmark functions based on other optimization 
algorithms. The experimental data of these algorithms are derived from references, and the data obtained may 
vary slightly due to different computer configurations. The data comparison in Table 5 shows that the three 
MSFLAs proposed in this paper have better robustness and generalization abilities. Even for the function f6, the 
precision of solution based on three modified SFLAs are 4–6 orders of magnitude higher than that of the origi-
nal SFLA and 14–15 orders higher than the three algorithms (ASFLA, FSFLA, and DSFLA), which is basically 
equivalent to the accuracy of BFCEA algorithm. For the ill-conditioned and nonconvex unimodal function f7, 
the accuracy of the improved algorithms is basically the same as that of the original SFLA except the BFCEA 
and LSHADE algorithm, which shows that they fall into difficulties in solving. Although the LSHADE algorithm 

Table 2.   Algorithm parameter setting.

Algorithm Parameter setting

MSFLA-L αmax = 0.9, αmin = 0.4

MSFLA-Q α1 = 0.9, α2 = 0.2

ASFLA19 a = 0.2,c1 ∈ [12]

FSFLA31 genetic mutation probability pm ∈ [0.01, 0.1]

DSFLA32 random number � ∈ [0, 2]

BFCEA33 the number generated randomly based on Cauchy:β

LSHADE34 Pbest = 0.1, Arcrate = 2

JADE3434 p = 0.05, c = 0.1, crossoverprobabilityµCR = 0.5,CauchydistributionµF = 0.5

MPA5 P = 0.5, FADs = 0.2

WOA4 Convergence constant α ∈ [02]
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adopts a more complex construction form to improve the solution results, there are still many gaps compared 
with the theoretical value. for nonconvex multimodal and even ill-conditioned functions such as f7, although the 
convergence accuracy of the four algorithms is almost the same, the number of global iterations when meeting 
the specified accuracy requirements is significantly reduced and the convergence speed is accelerated. Compared 
with other intelligent optimization algorithms such as MPA and WOA, three improved SFLAs have obvious 
advantages in solution accuracy for both unimodal and multi-mode functions. Even the actual results of the three 

Figure 4.   Convergence curves of algorithms on benchmark functions.
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improved SFLAs are exactly the same as the theoretical values (except f6 and f7). This should be attributed to the 
good ability of local search and global exploration and the potential parallelism of SFLAs algorithm themselves.

The Wilcoxon Signed-Rank test is the most popular non-parametric test in statics and it can be applied to 
determine if two sets of solutions (population) are different statistically significant or not35. Each set of pairs 
in both populations are compared to calculate and analyze their numerical differences based on this method. 
In short, the Wilcoxon Signed-Rank test returns a numerical result called p-value. The p-value determines the 
significance level of two different algorithms. An algorithm is statistically significant if and only if it results in 
the p-value less than 5%. The p-values in Table 6 also show that this superiority is statistically significant since 
the all p-values are much less than 5%, which further reflect the robustness of the proposed MSFLA algorithms.

In general, the foregoing simulation results reveal that three proposed algorithms with different inertia weight 
strategy are superior over original SFLA in terms of adaptability, stability, and the rapid global search ability.

Engineering design problems
To verify the feasibility of MSFLAs in solving constrained optimization problems in engineering design, three 
MSFLAs and the SFLA algorithm are applied to the case for the optimal design of tension/compression spring 
and cantilever beam. They are both multi-constrained and single-objective functions. The algorithm parameters 
and population size are constant, and the maximum number of iterations is 1000. Each algorithm was run 30 
times independently.

Tension/compression spring design problem
The goal of tension/compression spring optimization is to minimize the weight of the spring in Fig. 5. The 
variable is the average diameter of the spring coil d (x1/cm), the diameter of the spring wire D (x2/cm) and the 
effective number of coils of the spring N (x3). The constraint conditions are the minimum deflection (g1), shear 
stress (g2), impact frequency (g3) and outer diameter limit (g4) 36. The specific mathematical model is as follows:

Function:

Table 3.   Speed comparison of solution to 7 benchmark functions based on four algorithms. The symbol ‘–’ 
indicates that the actual global iteration number is more than 3000 if the accuracy of solution is achieved the 
specified ɛ.

Function Index

Algorithms

SFLA MSFLA-R MSFLA-L MSFLA-Q

f1

Fastest 277 4 4 4

Slowest 366 5 4 4

Mean 313.8 4.97 4 4

Std Dev 22.20 0.18 0 0

f2

Fastest 287 7 6 5

Slowest 400 7 6 5

Mean 336.6 7 6 5

Std Dev 25.13 0 0 0

f3

Fastest 1882 6 4 4

Slowest 2658 7 5 5

Mean 2164.6 6.2 4.93 4.6

Std Dev 205.45 0.4068 0.2537 0.4983

f4

Fastest – 5 4 4

Slowest – 5 4 4

Mean – 5 4 4

Std Dev – 0 0 0

f5

Fastest 271 5 4 4

Slowest – 5 5 4

Mean – 5 4.03 4

Std Dev – 0 0.1026 0

f6

Fastest 468 7 6 6

Slowest 584 7 6 6

Mean 497.63 7 6 6

Std Dev 22.57 0 0 0

f7

Fastest 98 2 2 2

Slowest 539 3 2 2

Mean 207.7 2.3 2 2

Std Dev 91.70 0.4661 0 0
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Subject to:

Table 7 records the comparison experiments of the optimal values of the tension/compression spring design 
problem. The data in the table are average values. The results of all three MSFLAs are better than the basic 
SFLA, which indicates that MSFLAs have better optimization accuracy in solving this problem (Supplementry 
information).

min f (x) = (x3 + 2)x2x
2
1

g1(x) = 1−
x32x3

71785x41
≤ 0;

g2(x) =
4x

2
2
− x1x2

12566
(

x2x
3
1
− x

4
1

) +
1

5108x
2
1

− 1 ≤ 0;

g3(x) = 1−
140.45x1

x22x3
≤ 0;

g4(x) =
x1 + x2

1.5
− 1 ≤ 0;

0.05 ≤ x1 ≤ 2, 0.25 ≤ x2 ≤ 1.3, 2 ≤ x3 ≤ 15

Table 4.   The results of the algorithm in test functions in different dimensions.

Func Algorithm

D = 30 D = 50 D = 100

Best Mean Std Best Mean Std Best Mean Std

f1

SFLA 5.61E−53 7.11E−50 1.46E−49 2.30E−32 4.05E−31 5.07E−31 1.73E−16 3.98E−16 1.74E−16

MSFLA-R 0 0 0 0 0 0 0 0 0

MSFLA-L 0 0 0 0 0 0 0 0 0

MSFLA-Q 0 0 0 0 0 0 0 0 0

f2

SFLA 1.06E−41 1.06E−41 3.33E−40 8.63E−27 8.26E−25 2.42E−24 6.08E−13 2.52E−10 6.56E−10

MSFLA-R 0 0 0 0 0 0 0 0 0

MSFLA-L 0 0 0 0 0 0 0 0 0

MSFLA-Q 0 0 0 0 0 0 0 0 0

f3

SFLA 2.68E−08 4.27E−07 6.59E−07 1.71E−03 4.22E−.3 2.24E−03 6.76E+00 1.12E+01 2.33E+00

MSFLA-R 0 0 0 0 0 0 0 0 0

MSFLA-L 0 0 0 0 0 0 0 0 0

MSFLA-Q 0 0 0 0 0 0 0 0 0

f4

SFLA 2.98E+00 6.80E+00 2.40E+00 9.95E+00 1.83E+01 5.60E+00 1.39E+01 2.91E+01 1.17E+01

MSFLA-R 0 0 0 0 0 0 0 0 0

MSFLA-L 0 0 0 0 0 0 0 0 0

MSFLA-Q 0 0 0 0 0 0 0 0 0

f5

SFLA 9.99E−16 1.90E−02 2.57E−02 3.22E−15 1.26E−02 2.34E−02 4.55E−15 3.70E−03 5.51E−03

MSFLA-R 0 0 0 0 0 0 0 0 0

MSFLA-L 0 0 0 0 0 0 0 0 0

MSFLA-Q 0 0 0 0 0 0 0 0 0

f6

SFLA 3.87E−12 4.56E−11 4.18E−11 1.28E−11 4.51E−11 3.93E−11 3.84E−09 3.35E−08 8.09E−08

MSFLA-R 8.88E−16 4.32E−15 6.49E−16 4.44E−15 4.44E−15 0 4.44E−15 4.44E−15 0

MSFLA-L 8.88E−16 3.73E−15 1.45E−15 4.44E−15 4.44E−15 0 4.44E−15 4.44E−15 0

MSFLA-Q 8.88E−16 8.88E−16 0 8.88E−16 8.88E−16 0 8.88E−16 8.88E−16 0

f7

SFLA 1.60E+01 2.55E+01 2.16E−01 3.65E+01 4.57E+01 2.37E+00 8.88E+01 9.89E+01 1.27E+01

MSFLA-R 2.79E+01 2.77E+01 2.80E+01 4.80E+01 4.82E+01 1.14E−01 9.80E+01 9.83E+01 8.34E−02

MSFLA-L 2.80E+01 2.82E+01 2.82E+01 4.82E+01 4.84E+01 7.90E−02 9.84E+01 9.85E+01 4.54E−02

MSFLA-Q 9.04E−02 1.47E−01 1.12E−01 4.81E+01 4.84E+01 1.05E−01 9.85E+01 9.85E+01 3.61E−02
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Table 5.   Precision comparison of solution to 7 benchmark functions based other optimization algorithms.

Func Index

Algorithms

ASFLA FSFLA DSFLA BFCEA LSHADE JADE WOA MPA

f1

Best 4.24E−220 9.84E−62 6.44E−05 0 – – – 1.17E−52

Mean 5.21E−214 4.06E−57 1.23E−02 5.89E−315 1.12E−90 0 1.41E−30 5.84E−50

Std 0 1.19E−56 2.51E−02 0 6.44E−90 0 4.91E−30 6.46E−50

f2

Best 1.44E−121 1.26E−38 7.83E−02 4.04E−204 – – – 4.27E−30

Mean 5.20E−120 1.26E−37 1.60E+00 1.39E−196 2.09E−42 2.09E−42 1.06E−21 5.43E−28

Std 6.99E−120 2.05E−37 1.84E+00 0 1.03E−41 1.03E−41 2.39E−21 8.81E−28

f3

Best 8.00E−08 4.47E−04 6.61E+02 0 – – – 1.27E−23

Mean 5.95E−07 2.41E−03 1.40E+03 3.88E−302 3.85E−81 3.58E−49 5.39E−07 2.50E−12

Std 6.70E−07 1.55E−03 7.53E+02 0 1.74E−80 7.53E−49 2.93E−06 3.71E−12

f4

Best 1.49E+01 1.09E+01 1.30E+01 0 – – – 0

Mean 2.51E+01 1.41E+01 1.70E+01 2.47E−13 1.74E−16 0 0 0

Std 6.73E+00 3.17E+00 3.76E+00 7.81E−13 6.35W-16 0 0 0

f5

Best 0 0 7.43E−04 0 – – – 0

Mean 3.20E−03 1.64E−02 4.47E−02 1.24E−15 0 1.55E−03 2.89E−04 0

Std 5.54E−03 2.32E−02 2.92E−02 5.52E−15 0 3.81E−03 1.59E−03 0

f6

Best 3.82E−01 1.55E+00 1.49E+00 7.88E−16 – – – 8.88E−16

Mean 2.59E+00 1.47E+01 1.18E+01 8.78E−16 4.00E−15 4.76E−15 7.40E+00 3.85E−15

Std 6.12E+00 8.53E+00 9.64E+00 3.16E−17 2.37E−30 1.46E−15 9.90E+00 1.35E−15

f7

Best 3.21E−05 8.51E−03 2.93E+01 1.88E−05 – – – 2.29E+01

Mean 4.28E+00 1.16E+01 7.22E+01 5.16E−05 1.40E−25 1.85E+01 2.79E+01 2.40E+01

Std 1.51E+01 2.15E+01 2.96E+01 2.49E−05 9.70E−25 1.01E+01 7.64E−01 5.38E−01

Table 6.   Thirty times P-values of Wilcoxon Signed-Rank test.

Function

Algorithms

MSFLA-R MSFLA-L MSFLA-Q

f1 1.21E−12 1.21E−12 1.21E−12

f2 1.21E−12 1.21E−12 1.21E−12

f3 1.21E−12 1.21E−12 1.21E−12

f4 1.21E−12 1.21E−12 1.21E−12

f5 1.21E−12 1.21E−12 1.21E−12

f6 1.21E−12 1.21E−12 1.21E−12

f7 2.32E−06 2.32E−06 1.86E−06

Figure 5.   Tension/compression spring design problem.
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Cantilever beam design problem
The cantilever beam design is shown in Fig. 6, which consists of five hollow members. The objective is to reduce 
the weight of the cantilever beam. The variable is the cross-sectional width xi (i = 1,2,…, 5/cm). The constraint 
is the deflection of the cantilever beam37. The mathematical model is as follows:

Function:

Subject to:

It can be seen from Table 8 that MSFLAs provide the best value in the cantilever beam design problem, and 
the variable solutions of MSFLAs are reduced sequentially, while the gap between the variable solutions of SFLA 
is too small for practical design difficulties. The result shows that the search performance of MSFLAs is more 
powerful than the original algorithm.

Conclusions
In this paper, a modified shuffled frog leaping algorithm (MSFLA) has been developed by introducing the inertia 
weight. According to different inertia weight strategies, three improved SFLAs are formed. The global conver-
gence of the original SFLA has been proved through establishing the Markov chain model, as long as the global 
iteration (shuffling) number is large enough in the literature38. In the proposed MSFLAs, the update strategies 

min f (x) = 0.0624(x1 + x2 + x3 + x4x5)

g1(x) =
61

x31
+

37

x32
+

19

x33
+

7

x34
+

1

x35
− 1 ≤ 0;

0.01 ≤ xi ≤ 100, i = 1, 2, 3, 4, 5

Table 7.   Comparison of results for tension/compression spring design problem.

Algorithm

Optimal values for variables

Optimal weightx1 x2 x3
SFLA 0.06113 0.59251 4.97670 0.01355

MSFLA-R 0.05734 0.50712 6.05552 0.01294

MSFLA-L 0.05865 0.54109 5.60096 0.01325

MSFLA-Q 0.05877 0.54162 5.63351 0.01326

Figure 6.   Cantilever beam design problem.

Table 8.   A comparison of results for the cantilever beam design problem.

Algorithm

Optimal values for variables

Optimal weightx1 x2 x3 x4 x5

SFLA 5.18404 5.02278 4.75330 4.60001 4.60786 1.42472

MSFLA-R 6.00314 5.34248 4.50443 3.52910 2.13445 1.34112

MSFLA-L 6.05465 5.28922 4.55112 3.52522 2.16234 1.34675

MSFLA-Q 6.03504 5.41168 4.52976 3.53117 2.16483 1.34350
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with inertia weight only appropriately increase the diversity of candidate solutions (frogs) to obtain the optimal 
solution as earlier as possible. Essentially, the computational complexity about the two classes of algorithms, 
namely SFLA and MSFLAs, are the same, i.e. Therefore, the global convergence of three modified SFLAs can be 
ensured. The results of seven typical testing functions show that the proposed MSFLAs have the excellent global 
optimization ability, the local exploration ability and the generalization abilities. Furthermore, it can effectively 
improve the solution precision of complex functions in a high-dimensional space, and accelerate the convergence 
speed. Among of them, the performance of MSFLA-Q is the best and it means that the nonlinear time-varying 
inertia weight strategy is the most effective.

The present work has some limitations. Firstly, the scale of the simulation functions applied in this paper is 
relatively small, some large-scale and higher-dimensional studies should test our improved algorithm. Second, 
in terms of solution accuracy, the advantage of the 3 MSFLAs algorithm for seriously ill conditioned nonconvex 
functions is not obvious, and the improvement needs to be further studied. Finally, further research can focus 
on verifying the modified SFLA with inertia weight in terms of the practice optimization problems in industrial 
production and other applications.

Data availability
All data generated or analysed during this study are included in this published article [and its supplementary 
information files.
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