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Entropy removal of medical 
diagnostics
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Shannon entropy is a core concept in machine learning and information theory, particularly in decision 
tree modeling. To date, no studies have extensively and quantitatively applied Shannon entropy in a 
systematic way to quantify the entropy of clinical situations using diagnostic variables (true and false 
positives and negatives, respectively). Decision tree representations of medical decision‑making tools 
can be generated using diagnostic variables found in literature and entropy removal can be calculated 
for these tools. This concept of clinical entropy removal has significant potential for further use to 
bring forth healthcare innovation, such as quantifying the impact of clinical guidelines and value of 
care and applications to Emergency Medicine scenarios where diagnostic accuracy in a limited time 
window is paramount. This analysis was done for 623 diagnostic tools and provided unique insights 
into their utility. For studies that provided detailed data on medical decision‑making algorithms, 
bootstrapped datasets were generated from source data to perform comprehensive machine learning 
analysis on these algorithms and their constituent steps, which revealed a novel and thorough 
evaluation of medical diagnostic algorithms.

The use of medical literature to guide clinical practice as part of evidence-based medicine can reduce the num-
ber of medical error-related deaths in the US, which is over 98,000 annually, per  IOM1,2. The assessment of 
the diagnostic accuracy of medical decision-making aids and tools is an important step towards this goal of 
improving patient safety and healthcare  provision3,4. Standard metrics, including sensitivity, specificity, negative 
predictive value (NPV), and positive predictive value (PPV), measure the predictive utility of medical decision-
making  tools5–9. The sensitivity and specificity of diagnostic tests, such as the chest x-ray for pneumothorax, are 
well-established for common illnesses. However, with the myriad of conditions and diagnostic tools available, 
clinicians often face challenges in selecting the most appropriate order of tests for specific, time-sensitive clini-
cal situations.

Shannon entropy is a core concept in machine learning and information theory, particularly in decision tree 
modeling of data analytics and machine  learning10. To date, numerous research-based biological and clinical 
solutions have been developed based on the principle of Shannon entropy, a measure of  uncertainty11–17, includ-
ing diagnostic accuracy evaluation. However, no diagnostic metrics that specifically measure the reduction of 
diagnostic uncertainty, which often leads to decision paralysis and the "shotgun" diagnostic  approach11, over-
testing, delayed diagnosis, and patient  harm11, have been extensively applied and explored.

Shannon entropy, defined by Eq. (1), offers a solution:

where pi ’s denote the probabilities of the possible outcomes of the event, and pi × log2
(

pi
)

 is taken to be zero 
when pi = 0, justified by the fact that the limit of pi × log2
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)

 is zero as pi → 0+. Shannon entropy is maximized 
for a uniform distribution. For binary events, in particular, as is the case in this study, the entropy H(x) is at its 
highest when the probabilities pi are exactly 0.5, that is, when there is the most uncertainty, and is at its lowest 
(zero) when the outcomes are certain, that is, when the outcome probabilities pi are one and zero, respectively. 
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This corresponds to its application in a clinical setting, where the entropy, or uncertainty of a patient with respect 
to their diagnosis is maximal when they enter the hospital with no testing or diagnostic evaluation. Various 
diagnostic tools subsequently reduce this clinical uncertainty, ideally to a definitive diagnosis.

In emergency medicine, removal of entropy using testing and imaging tools can clarify the patient’s presenta-
tion and optimize medical decision-making in time-sensitive settings. Quantifying entropy removal can elucidate 
the utility and sequence of diagnostic tools in removing uncertainty in those clinical settings and first exclude 
urgent, lethal pathology. In this study, we aim to characterize the utility and validity of Shannon entropy removal 
to reanalyze the performance of 623 clinical decision support tools in a publicly available  database18 compared to 
traditional validity tools including sensitivity, specificity, PPV/NPV, Youden’s index, and diagnostic odds ratio.

Materials and methods
IRB statement
This study is exempt from IRB review of Massachusetts General Hospital and Harvard Medical School as research 
involves collecting and studying existing data of which sources are publicly available, and subjects cannot be 
identified directly or through identifiers linked to the subjects.

Data compilation
Diagnostic metrics (true and false positives and negatives, respectively) were compiled from an established online 
database of diagnostic accuracy, known as “Get the Diagnosis”, totaling 533 studies of 623 decision-making tools 
of 267  diagnoses18. Data collection was performed from November 17, 2022 through January 22, 2023. PubMed 
was utilized when studies cited from the online database were unable to be accessed directly; concomitant diag-
nostic tools were also separately explored for elements included in the database as applicable (for example, if 
studies that evaluated the diagnostic accuracy of mammography for breast cancer screening were included in the 
database, data was also compiled for low-dose computerized tomography (CT) scans for breast cancer screen-
ing; see Data availability statement for details). This data was used to calculate sensitivities, specificities, NPVs, 
and PPVs. In addition, the data was used to generate decision tree representations for each decision-making 
tool from which Shannon entropy and entropy removal were calculated (see “Decision tree representation” and 
Fig. 1 in addition to “Entropy calculation”).

In this study, patient-derived datasets were systematically bootstrapped using the decision tree data previously 
reported in the literature (see “Machine learning modeling and analysis”). This data was specifically derived from 
the “Step-By-Step Approach to Febrile Infants” and the “Pediatric Emergency Care Applied Research Network 
(PECARN) Pediatric Head Injury/Trauma Algorithm”19–21.

Similar methods have been performed in other studies to generate health data for the evaluation of healthcare 
solutions from datasets, such as HES, A&E, and  MIMIC22,23. In each case, synthetic datasets that preserved the 
statistical properties of the original real data were  generated24. This was accomplished by using the decision tree 
data provided in the original and validation papers of the respective studies and synthesizing a binary dataset of 

Figure 1.  Decision tree representation of 2 × 2 diagnostic table. Diagnostic variables (TP/FP/FN/TN) are 
utilized to represent a 2 × 2 table and its corresponding medical decision-making tool as a decision tree for 
entropy analysis.
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the relevant metrics of each respective algorithm (ex. leukocyturia, age less than 21 days, loss of consciousness, 
etc.) and their binary value (0 for absence, 1 for presence). Thus, the original data used in the study was recreated 
with each patient in the respective studies being simplified to only their characteristics relevant to the study in 
addition to being reduced to a set of binary values for machine learning modeling.

Decision tree representation
Decision trees are constituted of parent nodes that split to yield children nodes; these nodes and decision splits 
are able to be generated to produce decision tree representations for diagnostic tools by using the diagnostic 
metrics for medical decision-making tools from 2 × 2 diagnostic tables as in Fig. 1, where N is the sample size 
of the study, TP is the number of true positives, FP is the number of false positives, FN is the number of false 
negatives, and TN is the number of true negatives.

Entropy calculation
Using diagnostic metrics (N, TP, FP, etc.), Shannon entropy was calculated as below in Eqs. (2) through (4) for 
the parent node and children nodes, with  npositive and  nnegative representing the number of positive and negative 
tests, respectively:

Entropy removal was calculated by Eq. (5), where entropy removal equals the difference between the entropy 
of the parent node (the total entropy of the system) and the weighted average entropy of the children nodes 
(proportional to  npositive and  nnegative, respectively):

Data provided in the validation study by Gomez et al. was utilized to generate a patient dataset for analysis 
of the Step-By-Step Approach to Febrile  Infants19. Data provided in the original study by Kupperman et al. was 
similarly utilized to generate two separate patient datasets for analysis of the PECARN Pediatric Head Injury/
Trauma Algorithm: one for patients less than 2 years of age and another for patients greater than or equal to 
2 years of  age20.

Machine learning modeling and analysis
The Python MATLAB and scikit-learn packages were utilized in this study to generate, analyze the performance, 
and visualize machine learning models developed from the synthetic patient datasets (for more details regarding 
the machine learning models developed)25,26. Decision tree-based diagnostic algorithms pose unique applications 
for Shannon entropy analysis of the decision-making tool in its entirety and its constituent steps/nodes, allowing 
for evaluation of each feature in the algorithm. A decision tree was produced for each patient dataset and these 
decision trees were subsequently analyzed for the entropy removal and feature importance of each step within 
the algorithm. In the context of machine learning, feature importance is defined as the relative importance of 
each feature when making a prediction and is calculated as the decrease in entropy weighted by the probability 
of reaching that node, as shown below in Eqs. (6) and (7):

(nij = the importance of node j,  wj = weighted number of samples reaching node j,  Cj = the impurity value of 
node j, left(j) = child node from left split on node j, right(j) = child node from right split on node j).

(fii = the importance of feature I,  nij = the importance of node j,  nik = the importance of node k).

(2)
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Results
Entropy removals
Entropy removal was calculated in addition to sensitivity, specificity, NPV, and PPV as well as diagnostic odds 
ratio and Youden’s index for 533 studies to evaluate the 623 medical decision-making tools.

Entropy removal displayed significant but weak positive correlations with sensitivity and NPV and showed 
significant moderate positive correlations with specificity and PPV (p < 0.001). Entropy removal exhibited sig-
nificant strong positive correlations with comprehensive clinical diagnostic metrics, such as Youden’s index 
and logged diagnostic odds ratio (p < 0.001). Z-score calculation for differences in correlations revealed signifi-
cant differences between the respective correlations of Youden’s index and logged diagnostic odds ratio with 
entropy removal as compared to the correlations of the other explored diagnostic metrics with entropy removal 
(p < 0.001). Figures 2 and 3 illustrate the correlation between different diagnostic metrics and entropy removal. 
Tables 1 and 2 provide the Pearson and Spearman correlation coefficients for entropy removal and the different 
diagnostic metrics, respectively. Tables 3 and 4 provide examples of comparisons of the different diagnostic accu-
racy metrics of tests evaluating for pneumothorax and thoracic aortic dissection, respectively. Table 5 displays 
the results of entropy removal analysis of decision tree-based clinical algorithms and their constituent steps.

The diagnostic metrics of different diagnostic tools that assess patients for the same pathology were able to 
be compared as in Tables 3 and 4.

Figure 2.  Scatterplot of removed entropy and tool sensitivity and specificity. 623 medical decision-making tools 
were analyzed. (A) Sensitivity exhibits a 0.46 Pearson correlation and 0.55 Spearman correlation with entropy 
removal (p < .001). (B) Specificity exhibits a 0.61 Pearson correlation and 0.74 Spearman correlation with 
entropy removal (p < .001).

Figure 3.  Scatterplot of removed entropy and tool positive predictive value and negative predictive value. 623 
medical decision-making tools were analyzed. (A) Positive predictive value exhibits a 0.60 Pearson correlation 
and 0.71 Spearman correlation with entropy removal (p < .001). (B) Negative predictive value exhibits a 0.41 
Pearson correlation and 0.46 Spearman correlation with entropy removal (p < .001).
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Table 1.  Pearson correlation coefficients of diagnostic metrics and entropy removal. 623 diagnostic tools 
were analyzed (p < .001). Note: diagnostic odds ratio was logged for correlation analysis because it displayed an 
exponential relationship with entropy removal.

Metric Pearson coefficient

Sensitivity 0.465

Specificity 0.607

PPV 0.600

NPV 0.407

Logged diagnostic odds ratio 0.909

Youden’s index 0.780

Table 2.  Spearman correlation coefficients of diagnostic metrics and entropy removal. 623 diagnostic tools 
were analyzed (p < .001). Note: diagnostic odds ratio was logged for correlation analysis because it displayed an 
exponential relationship with entropy removal.

Metric Spearman coefficient

Sensitivity 0.550

Specificity 0.741

PPV 0.712

NPV 0.456

Logged diagnostic odds ratio 0.945

Youden’s index 0.890

Table 3.  Comparison of diagnostic metrics of tests for pneumothorax. Chest ultrasound (US) for 
pneumothorax diagnosis showed greater entropy removal than supine anterior–posterior (AP) chest x-ray 
(CXR).

Pneumothorax evaluation Entropy removal Sensitivity (%) Specificity (%) NPV (%) PPV (%)

Chest US 82.38% 95.12 98.87 96.89 98.20

Supine AP CXR 40.94% 55.83 100 100 86.02

Table 4.  Comparison of diagnostic metrics for thoracic aortic dissection evaluation. Helical CT scan had the 
greatest entropy removal for thoracic aortic dissection when compared with transesophageal echocardiogram 
(TEE) and magnetic resonance imaging (MRI).

Thoracic aortic dissection evaluation Entropy removal (%) Sensitivity (%) Specificity (%) NPV (%) PPV (%)

TEE 83.69 94.80 99.28 98.76 96.92

Helical CT 87.23 97.64 98.90 99.31 96.28

MRI 81.36 93.33 99.30 98.32 97.13

Table 5.  Results of machine learning analysis for medical decision-making algorithms. Three medical 
decision-making algorithms were analyzed using bootstrapped data, revealing their robust diagnostic value 
and providing in-depth insight on each algorithm’s individual steps. PECARN: Pediatric Emergency Care 
Applied Research Network Pediatric Head Injury/Trauma Algorithm.

MDM algorithm ML model prediction accuracy Entropy removal (percentage)
Most important metric (as defined 
by entropy removal)

Most important metric (as defined 
by feature importance)

Step-by-step approach to febrile 
infants 0.963 0.0295 (11.9%) Abnormal pediatric triangle assess-

ment/ill-appearing (0.0117)
Abnormal pediatric triangle assess-
ment/ill-appearing (0.395)

PECARN (age < 2 years) 0.994 0.0130 (16.5%) Altered mental status (0.00783) Altered mental status (0.302)

PECARN (age ≥ 2 years) 0.990 0.0111 (16.8%) Altered mental status (0.00729) Altered mental status (0.655)
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Bootstrapping and stepwise entropy calculation
Decision tree machine learning analysis of the generated patient datasets yielded the exact decision trees of 
the original algorithms, supporting the validity of the clinical algorithms. Table 5 shows the results of machine 
learning analysis.

Discussion
Our study demonstrates the potential utility of quantified entropy removal of medical diagnostic decision-making 
tools. Diagnostic tools that are 100% sensitive and 100% specific (or definitively diagnostic) also have an entropy 
removal of 100% as all entropy (uncertainty) is completely removed with regard to a particular pathology. In cases 
in which diagnostic tools are less than 100% sensitive and/or specific, our entropy removal calculations provide 
further insight into how much diagnostic value the tool provides. In other words, entropy removal may be used as 
a “meta-metric” to assess existing clinical diagnostic metrics. The strong positive correlations of entropy removal 
with established comprehensive measures of diagnostic accuracy (Youden’s index and logged diagnostic odds 
ratio) may support its validity while its distinctive advantages support its novelty. Entropy removal provided 
unique insight on the diagnostic value of medical decision-making tools beyond the limitations of Youden’s index 
and diagnostic odds ratio (which include the omission of disease prevalence in calculation as well as inherent 
limitations of calculation in the respective formulas), demonstrating its clinical utility with particular potential 
in the setting of Emergency Medicine where exclusion of critical diagnoses within time-limited emergencies is 
critical. This utility of entropy removal in assessment of the diagnostic value of medical decision-making tools 
can be also seen in comparing different tools that evaluate for the same pathology.

Traditional measures of test quality, such as sensitivity and specificity, are not as easily used for comparing 
diagnostic strategies as entropy removal. For example, evaluation for thoracic aortic dissection via helical CT 
scan has a sensitivity of 97.64% and a specificity of 98.90%, whereas evaluation by way of MRI has a slightly lower 
sensitivity (93.33%) but a higher specificity (99.30%). Entropy removal calculation reveals that helical CT scan 
removes 87.23% of all entropy with respect to thoracic aortic dissection while MRI removes 81.36%, revealing the 
superior overall diagnostic value of a helical CT scan in assessment for thoracic aortic dissection. This demon-
strates the ability of entropy removal to provide clarification and stratification that sensitivity and specificity do 
not offer. This advantage of entropy removal calculation can also be seen in the comparison between chest x-ray 
and low-dose CT scan for lung cancer screening, with CXR having a greater sensitivity (88.89% versus 73.38%) 
and low-dose CT having a greater specificity (92.60% versus 97.00%) but CXR having greater entropy removal 
(32.03% versus 28.20%).The superior imaging test for pneumothorax can also be identified by entropy removal 
calculations, as chest ultrasound yields a superior sensitivity (95.12% versus 55.83%) while supine AP chest x-ray 
provides a greater specificity (98.87% versus 100%), but chest ultrasound has greater entropy removal over supine 
AP chest x-ray (82.38% versus 40.94%). Entropy removal thus has the potential to provide an evidence-based 
foundation for the dynamic evaluation of patients, as it can potentially serve as the basis for guiding medical 
decision-making in the context of performing certain tests or utilizing particular tools in time restricted order 
to most effectively eliminate uncertainty regarding a patient’s acute care presentation.

Quantifying the entropy removal capability of medical diagnostics also opens the door for further exploration 
in healthcare innovation, such as the quantification of the impact of clinical guidelines by analyzing and compar-
ing the diagnostic value of decision-making tools and tests. Entropy removal calculation also has potential use in 
financial analysis of healthcare costs, as metrics such as entropy removal per cost could be calculated and used 
to evaluate healthcare cost efficiency. For example, metrics such as the percent entropy removed per US dollar 
(USD) by a diagnostic tool can be calculated. Using publicly available Medicare  costs27, a chest x-ray screening 
for lung cancer was found to remove 1.28% entropy per USD while a low-dose CT scan screening for lung cancer 
removed 0.27% entropy per USD. Similarly, a chest US evaluating for pneumothorax removes 3.30% entropy 
per USD while a CXR evaluating for pneumothorax removes 1.64% entropy per USD. As a final example, an US 
of the abdomen evaluating for nephrolithiasis removes 0.13% entropy per USD and a CT scan of the abdomen 
evaluating for nephrolithiasis removes 0.11% entropy per USD.

With respect to entropy removal, in the examples above, it would be more cost-effective to pursue chest x-ray 
imaging to screen for lung cancer screening as well as to evaluate for pneumothorax as opposed to low-dose CT 
and ultrasound, respectively. With regard to nephrolithiasis assessment, a CT scan removes marginally more 
entropy than ultrasound, but has inferior cost-effectiveness (as measured by entropy removal per USD) com-
pared to ultrasound. All these results have the potential to inform medical decision-making in various contexts, 
providing an alternative means of cost-effectiveness analysis in assessing the efficiency of healthcare systems.

Furthermore, entropy removal can be used to evaluate the diagnostic quality of entire departments or systems. 
For example, the diagnostic performances of expert radiologists and residents regarding COVID-19 identification 
on chest x-rays was evaluated in a 2021 study, which found that attending radiologists diagnosed COVID-19 at a 
sensitivity of 78.98% and a specificity of 80.45% as opposed to resident radiologists (75.09% and 57.89%, respec-
tively)28. Entropy removal calculations can be used to further evaluate the diagnostic quality of each respective 
subgroup, revealing that attending radiologists removed 24.55% of clinical uncertainty regarding COVID-19 via 
chest x-rays while residents only removed 7.55%.

Shannon entropy, proposed as a big data  metric29, can evaluate diagnostic quality across entire hospitals or 
health networks, not just specific pathologies. The utility of Shannon entropy can be extended to other research 
applications where data points of true and false positives and negatives are reported. Beyond individual groups, 
entropy removal can gauge the performance of whole departments and networks, indicating healthcare innova-
tion and quality. Additionally, it can highlight healthcare disparities by comparing diagnostic efficiency across 
various regions and patient groups.



7

Vol.:(0123456789)

Scientific Reports |         (2024) 14:1181  | https://doi.org/10.1038/s41598-024-51268-4

www.nature.com/scientificreports/

The generation of synthetic patient datasets from medical decision-making algorithms and subsequent analy-
sis of these algorithms by decision tree machine learning analysis as performed in this study showed potential 
utility, as well, though with limitations (see limitations below). The resultant machine learning decision trees and 
calculated metrics from the algorithms evaluated in this study were in line with the medical decision-making 
algorithms used in practice and the results of this analysis can be understood to support and further validate 
these current clinical guidelines. The results also quantified the effectiveness of the individual constituent steps 
of the algorithms, providing measurable insight on the most clinically relevant information for patient assess-
ment in the algorithms. If more data are provided in literature for the development and validation of medical 
decision-making algorithms, deeper analysis can be performed on these diagnostic tools in order to more thor-
oughly evaluate them.

The limitations of this study include the fact that the findings outlined in this study are statistical and math-
ematical modeling that will require further application to clinical practice. While the application of Shannon 
entropy to medical diagnostics, as in this study, is a limited implementation of established information theory 
and machine learning concepts to publicly available data, the need for clinical validation still remains. For 
example, the presence of differences in entropy removal from established metrics does not necessarily establish 
that such differences are clinically meaningful or accurately reflect the performance of the decision support tools 
unless some prospective testing is done. While this was outside of the scope of this study, further investigation 
and validation exploring these phenomena is warranted. Furthermore, the stepwise evaluation of algorithms as 
described in the latter portions of this paper made use of bootstrapped (resampled) data, which is very internally 
consistent but also requires prospective and external validation. Larger data sets from healthcare electronic 
medical records could provide valuable insight using our entropic approach.

Data availability
All data (including the specific studies and figures utilized in compiling diagnostic variables) have been uploaded 
into a publicrepository which can be accessed at the following URL: https:// data. mende ley. com/ datas ets/ hgwdb 
4mtpw/ 2 3.030.
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