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Development of machine 
learning‑based predictors for early 
diagnosis of hepatocellular 
carcinoma
Zi‑Mei Zhang 1, Yuting Huang 1, Guanghao Liu 2,3, Wenqi Yu 1, Qingsong Xie 1, Zixi Chen 1, 
Guanda Huang 1, Jinfen Wei 1, Haibo Zhang 1, Dong Chen 4 & Hongli Du 1*

Hepatocellular carcinoma (HCC) remains a formidable malignancy that significantly impacts human 
health, and the early diagnosis of HCC holds paramount importance. Therefore, it is imperative 
to develop an efficacious signature for the early diagnosis of HCC. In this study, we aimed to 
develop early HCC predictors (eHCC-pred) using machine learning-based methods and compare 
their performance with existing methods. The enhancements and advancements of eHCC-pred 
encompassed the following: (i) utilization of a substantial number of samples, including an increased 
representation of cirrhosis tissues without HCC (CwoHCC) samples for model training and augmented 
numbers of HCC and CwoHCC samples for model validation; (ii) incorporation of two feature selection 
methods, namely minimum redundancy maximum relevance and maximum relevance maximum 
distance, along with the inclusion of eight machine learning-based methods; (iii) improvement in 
the accuracy of early HCC identification, elevating it from 78.15 to 97% using identical independent 
datasets; and (iv) establishment of a user-friendly web server. The eHCC-pred is freely accessible 
at http://​www.​dulab.​com.​cn/​eHCC-​pred/. Our approach, eHCC-pred, is anticipated to be robustly 
employed at the individual level for facilitating early HCC diagnosis in clinical practice, surpassing 
currently available state-of-the-art techniques.

Worldwide, liver cancer is the fourth most common cause of death from cancer according to the 2021 Global 
Cancer Statistics Report1. Approximately 90% of liver tumor cases are HCC patients. Cirrhosis of the liver from 
any cause is the most serious risk factor for HCC2,3, as over 80% of HCC are developed from liver on a cirrhotic 
background. Generally, HCC can be diagnosed either based on imaging or by biopsy. However, imaging criteria 
for HCC diagnosis are only applicable to high-risk patients, comprising those with chronic HBV infection or 
cirrhosis. Additionally, imaging is difficult to determine whether lesions with diameter of < 1 cm are HCC or 
not. Although most HCC patients have characteristic imaging manifestation, about 10% of tumors (up to 30% 
of tumors with diameters of 1–2 cm) lack imaging features of HCC4. If HCC is suspected clinically but imag-
ing findings are atypical, a biopsy or second examination should not be delayed, if the second examination is 
inconclusive, a biopsy is performed3. Whereas, biopsy may lead to misdiagnosis (false-negative results) when 
biopsy samples were obtained from inaccurate locations. For inaccurately sampled HCC biopsy specimens, with 
adjacent non-tumor (cirrhosis or normal) tissues, the diagnostic false-negative rate of small biopsy specimens is 
approximately 30–50%5,6. Thus, it is essential to design novel molecular signatures for diagnosis of early HCC, 
particularly when the locations of biopsy samples are inaccurate.

Over the past several years, based on gene expression profiles, different signatures for the early diagnosis of 
HCC have been proposed by researchers. Since within-sample relative expression orderings (REOs) of genes is 
less sensitive to experimental batch effects, qualitative transcriptional signatures constructed by REOs can be 
utilized to samples at an individual level7–11. Meanwhile, REOs is also robust to RNA degradation during speci-
men preparation and storage12. Some previous work adopted REOs to develop diagnostic marker of HCC13,14, 
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gastric carcinoma15, colorectal carcinoma16, pancreatic ductal adenocarcinoma10,11,17 and so on. Thus, it is credible 
to identify a REOs-based transcriptional signature for early diagnosis of HCC. Nevertheless, it is not yet possible 
to implement these existing gene signatures in clinical practice even though they have a powerful diagnostic 
ability for early HCC. That’s partially because these signatures were obtained from gene expression profiling data, 
which may not provide an accurate reflection of the changes in plasma proteins18–20. Since secreted genes can be 
translated into secreted proteins, which can be possibly used as tumor microenvironment or plasma signatures, 
we employed secreted genes for filtering feature.

Motivated by the establishment of various diagnostic signatures based on REOs to aid clinical HCC diagnosis 
decision, we designed robust and powerful predictors in this work. The developed predictors hybridized several 
algorithms, i.e., REOs, mRMR21, MRMD22, support vector machine (SVM)23,24, k-nearest neighbor (KNN)24, 
decision tree (DT)25,26, logistic regression (LR)26, extreme gradient boosting (XGBoost)24, logistic model trees 
(LMT)27, adaptive boosting M1 (AdaBoostM1)28 and naïve bayes (NB)29. The REOs method was used for feature 
construction, mRMR and MRMD were used for feature ranking and selection, 2902 secreted genes (genes encod-
ing secreted proteins) collected public database were used for feature filtering, and SVM, KNN, DT, LR, XGBoost, 
LMT, AdaBoostM1 and NB algorithms were used for classification purposes. Among the sixteen predictors, 
nine predictors (including mRMR + KNN, mRMR + SVM, mRMR + LR, mRMR + XGBoost, mRMR + LMT, 
MRMD + KNN, MRMD + SVM, MRMD + LR and MRMD + LMT) showed excellent results for all performance 
metrices in training set, and reached accuracy of 1, F1-score of 1 and AUC of 1, respectively. In validation 
datasets, the AUC value of mRMR + SVM predictor with the least number of 11 gene pairs (AUC = 0.9384) and 
MRMD + SVM predictor with 28 gene pairs (AUC = 0.9278) were higher among these nine predictors, and they 
were powerful predictors for HCC diagnosis even when the sampling location is not accurate. Simultaneously, 
mRMR + SVM predictor and MRMD + SVM predictor had a cross-platform effect and could be employed to 
diagnose early HCC at individual level. In addition, comparison results demonstrated that the performance 
of the established hybrid predictor mRMR + SVM and MRMD + SVM were much better when compared with 
Ao’s method14 and our previous work13. Importantly, a user-friendly web server was established, and it could be 
freely accessed at http://​www.​dulab.​com.​cn/​eHCC-​pred/ for aiding the early HCC diagnosis in clinical practice.

Results
Derivation of HCC predictors
The whole procedure of analysis was designed as follows in Fig. 1. In present study, we used two feature selec-
tion methods and eight classification algorithms mentioned above to build sixteen predictors for HCC diag-
nosis by using gene expression profiles of 988 HCC and 332 CwoHCC accessed from the GEO database. First, 
on the basis of gene expression profiles of 988 HCC and 332 CwoHCC, 25,341,086 and 20,559,429 stable gene 
pairs were acquired, respectively. Among 25,341,086 and 20,559,429 gene pairs, there were 5765 stable reversal 
gene pairs between HCC tissues and CwoHCC tissues. Then, filtering gene pairs using 2902 secreted genes, 
we obtained 242 gene pairs, where gene i and gene j were secreted gene. Next, based on novel profiles with 242 
features (gene pairs) (see “Methods” section), we captured the optimal feature (see Fig. 2). Table 1 showed the 
comparison of classification performance of various predictors obtained based on accuracy, F1-Score fitness func-
tion and AUC value. The results presented in Table 1 illustrated that nine predictors, including mRMR + KNN, 
mRMR + SVM, mRMR + LR, mRMR + XGBoost, mRMR + LMT, MRMD + KNN, MRMD + SVM, MRMD + LR 
and MRMD + LMT, showed excellent results for all performance metrices, and reached accuracy of 1, F1-score 
of 1 and AUC of 1, respectively. Among these nine predictors, the predictor of mRMR + KNN and mRMR + SVM 
had the least number of 11 gene pairs (see Table 2).

Validation of HCC predictors
Subsequently, we used independent datasets (including testing set, GEO sets, ICGC set and TCGA set) to vali-
date the performance of various algorithms. In Table 3, for the 3057 HCC samples and 84 CwoHCC samples, 
MRMD + SVM predictor with 28 gene pairs (see Table S3) gained the highest accuracy and F1-score than other 
predictors in independent datasets, the accuracy, F1-score, and AUC were 0.9834, 0.9915, 0.9278 (95% CI is 
0.8915–0.9642), respectively. However, the results also indicated that mRMR + SVM predictor with 11 gene 
pairs gained the highest AUC than other predictors in independent datasets, the AUC was 0.9384 (95% CI 
0.9255–0.9514).

Since mRMR + SVM predictor and mRMR + KNN predictor with the least number of 11 gene pairs showed 
great results for all performance metrices in independent data, and MRMD + SVM predictor gained the highest 
accuracy and F1-score in independent datasets among 16 predictors, thus we focused on these three predictors 
in the next analysis. The detailed validation results of these three predictors in biopsy and surgery samples were 
shown in Table 4. For biopsy samples, both mRMR + SVM predictor and mRMR + KNN predictor yielded sensi-
tivity of 1, specificity of 1 by using testing set (29 HCC samples and 48 CwoHCC samples), while MRMD + SVM 
predictor yielded sensitivity of 1, specificity of 0.8542. In GEO biopsy sets, mRMR + SVM predictor correctly 
classified 96.18% of the 131 HCC samples (GSE121248, GSE47197), mRMR + KNN predictor correctly classi-
fied 66.41% of the 131 HCC samples as well as all (100%) of the 131 HCC samples were correctly classified by 
MRMD + SVM predictor. For surgery samples, in the testing set (220 HCC samples and 36 CwoHCC samples), 
the sensitivity and specificity of two predictors (mRMR + SVM predictor and mRMR + KNN predictor) were 
1. While, the sensitivity and specificity of MRMD + SVM predictor was 1 and 0.8889. This result demonstrated 
that mRMR + SVM predictor, mRMR + KNN predictor and MRMD + SVM predictor could discriminate HCC 
from CwoHCC correctly when using biopsy samples.

For surgery samples, in GEO surgery sets, 84.1% of the 2063 HCC samples were correctly classified by 
mRMR + SVM predictor, 70.04% of the 2063 HCC samples were correctly classified by mRMR + KNN predictor 
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and 98.01% of the 2063 HCC samples were correctly classified by MRMD + SVM predictor. Moreover, among 
2063 HCC samples, based on mRMR + SVM predictor, 79.76% of the 657 formalin-fixed paraffin-embedded 
(FFPE) HCC samples (GSE109211, GSE62743, GSE46444, GSE10141, GSE164760, GSE19977) were correctly 
recognized as HCC; while 58.14% of the 657 FFPE HCC samples was correctly classified by mRMR + KNN 
predictor and 99.85% of the 657 FFPEHCC samples was correctly classified by MRMD + SVM predictor. This 
result demonstrated that mRMR + SVM and mRMR + KNN predictor were available to the FFPE samples with 
RNA degradation. For the RNA-seq expression data obtained from TCGA and ICGC, the 11 gene pairs based 

Figure 1.   The workflow of analyses.
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on mRMR + SVM predictor could correctly identify 99.19% of the 371 HCC and the 98.77% of the 243 HCC 
samples, respectively.

While the 11 gene pairs based mRMR + KNN predictor could correctly identify 98.11% of the 371 HCC 
RNA-seq and the 97.94% of the 243 HCC RNA-seq samples. And MRMD + SVM predictor with 28 gene pairs 
could correctly identify all 371 HCC RNA-seq and all 243 HCC RNA-seq samples. This result demonstrated that 
mRMR + SVM predictor, mRMR + KNN predictor and MRMD + SVM predictor had a cross-platform ability. In 
summary, these three predictors had a cross-platform ability and could discriminate HCC from CwoHCC when 
using surgery samples, including FFPE samples with RNA degradation.

Furthermore, in Table S4, 82.86% of the 741 normal tissues in patients with HCC samples (NwHCC) samples 
and 82.04% of the 334 cirrhosis tissues in patients with HCC samples (CwHCC) samples were correctly classi-
fied by mRMR + SVM predictor, 67.48% of the 741 NwHCC samples and 57.49% of the 334 CwHCC samples 
were correctly classified by mRMR + KNN predictor, and 99.87% of the 741 NwHCC samples and 97.01% of the 
334 CwHCC samples were correctly classified by MRMD + SVM predictor. This result showed that these three 
predictors could identify HCC adjacent tissues (CwHCC and NwHCC) from CwoHCC when using biopsy and 
surgery samples.

Figure 2.   A plot to show the IFS curve. Through adding features (gene pairs) ranked by mRMR and MRMD 
feature selection method one by one, the optimal feature was obtained when the highest accuracy was achieved.

Table 1.   Comparison of various predictors based on accuracy and F1-score fitness function with feature 
selection in training set. NO.Opt number of optimal signature, NO.HCC number of HCC samples, NO.
CwoHCC number of CwoHCC samples, ACC​ accuracy.

Predictors NO.Opt NO.HCC NO.CwoHCC ACC​ F1-score AUC​ 95% CI

mRMR + KNN 11 988/988 332/332 1 1 1 1–1

mRMR + SVM 11 988/988 332/332 1 1 1 1–1

mRMR + LR 15 988/988 332/332 1 1 1 1–1

mRMR + XGBoost 26 988/988 332/332 1 1 1 1–1

mRMR + LMT 26 988/988 332/332 1 1 1 1–1

mRMR + AdaboostM1 60 987/988 330/332 0.9977 0.9985 0.9965 0.9922–1

mRMR + J48 66 987/988 329/332 0.997 0.998 0.995 0.9898–1

mRMR + NB 24 980/988 330/332 0.9924 0.9949 0.9929 0.9879–0.998

MRMD + KNN 28 988/988 332/332 1 1 1 1–1

MRMD + SVM 28 988/988 332/332 1 1 1 1–1

MRMD + LR 30 988/988 332/332 1 1 1 1–1

MRMD + LMT 74 988/988 332/332 1 1 1 1–1

MRMD + J48 59 987/988 329/332 0.997 0.998 0.995 0.9898–1

MRMD + AdaboostM1 160 985/988 330/332 0.9962 0.9975 0.9955 0.991–1

MRMD + XGBoost 96 982/988 326/332 0.9909 0.9939 0.9879 0.9804–0.9955

MRMD + NB 28 963/988 328/332 0.978 0.9852 0.9813 0.9737–0.989
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In conclusion, for biopsy and surgery samples, these three predictors could identify HCC and its adjacent 
tissues (CwHCC and NwHCC) from CwoHCC even when sample location is not accurate and samples are FFPE 
samples with RNA degradation. Additionally, these three predictors had a cross-platform ability. Importantly, 
the performance of HCC diagnostic signature based on MRMD + SVM is superior to mRMR + KNN predictor 
and mRMR + SVM predictor in some independent datasets.

Comparison with previous predictors
To further verify the performance of mRMR + SVM, mRMR + KNN and MRMD + SVM predictor developed 
in current study, we compared with the existing predictors. Two published studies about finding REOs-based 
signature for early HCC diagnosis have been completed by Ao et al. and our previous work. In 2018, combining 
rank difference with majority voting rule, Ao et al. presented a signature by applying 491 HCC samples and 149 
CwoHCC samples. This signature, including 19 gene pairs, was chosen from 72 reversal gene pairs. And it yiled 
the accuracy of 0.9969. In 2020, we identified an early diagnostic signature of HCC from 857 reversal gene pairs 
on the basis of mRMR and SVM. Using 1091 HCC samples and 242 CwoHCC samples, 11 gene pairs were derived 
and denoted as the signature, which achieved 1 of accuracy. Due to the difference of training data, a comparison 
of current results in this paper with existing results in previous studies is an unfair comparison. Therefore, we 
utilized the same evaluation criteria. To further assessed effectiveness of presented predictors, experimental 
results in independent datasets were used to perform comparison objectively.

In Table 2, for training set, both mRMR + SVM predictor with 11 gene pairs and mRMR + KNN predictor 
with 11 gene pairs achieved accuracy of 1, F1-score of 1, as well as the number of gene pairs is the least. Also, 

Table 2.   The 11 gene pairs’ signature ranked by mRMR. Gene i has a higher expression level than Gene j in 
HCC patients compared with CwoHCC patients.

Order

Feature (gene pair)

Gene i Gene j

1 PCOLCE2 DBH

2 RPLP2 FCN3

3 THY1 DPT

4 GDF15 CHST4

5 PTPRA DBH

6 RPLP2 ADAMTSL2

7 PPIC C7

8 EIF2AK1 F8

9 KDSR FCN2

10 PRDX4 C7

11 KDSR ASAH1

Table 3.   The performance of various predictors in independent datasets. NO.Opt number of optimal 
signature, NO.HCC samples, number of HCC samples, NO.CwoHCC samples, number of CwoHCC samples, 
ACC​ accuracy.

Predictors NO.Opt NO.HCC NO.CwoHCC ACC​ F1-score AUC​ 95% CI

mRMR + KNN 11 2383/3057 83/84 0.7851 0.8759 0.8838 0.87–0.8976

mRMR + SVM 11 2717/3057 83/84 0.8914 0.941 0.9384 0.9255–0.9514

mRMR + LR 15 2155/3057 83/84 0.7125 0.8268 0.8465 0.8323–0.8607

mRMR + XGBoost 26 2204/3057 83/84 0.7281 0.8377 0.8545 0.8404–0.8687

mRMR + LMT 26 2078/3057 82/84 0.6877 0.809 0.828 0.8096–0.8463

mRMR + AdaboostM1 60 2213/3057 83/84 0.731 0.8397 0.856 0.8419–0.8701

mRMR + J48 66 2023/3057 84/84 0.6708 0.7965 0.8627 0.8487–0.8767

mRMR + NB 24 2254/3057 83/84 0.744 0.8486 0.8309 0.8225–0.8393

MRMD + KNN 28 2334/3057 83/84 0.7695 0.8657 0.8758 0.8619–0.8897

MRMD + SVM 28 3016/3057 73/84 0.9834 0.9915 0.9278 0.8915–0.9642

MRMD + LR 30 2337/3057 83/84 0.7705 0.8664 0.8301 0.8117–0.8485

MRMD + XGBoost 56 2508/3057 82/84 0.8274 0.901 0.8983 0.8805–0.9161

MRMD + LMT 74 2285/3057 84/84 0.7542 0.8555 0.8763 0.8624–0.8902

MRMD + J48 59 2297/3057 83/84 0.7577 0.8579 0.8697 0.8558–0.8837

MRMD + AdaboostM1 160 2412/3057 82/84 0.794 0.8817 0.8737 0.866–0.8814

MRMD + NB 28 2091/3057 82/84 0.6918 0.812 0.8826 0.8647–0.9005
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MRMD + SVM predictor with 28 gene pairs achieved accuracy of 1, F1-score of 1. As shown in Table 3, for a total 
of 3057 HCC samples and 84 CwoHCC samples, mRMR + SVM predictor was the best predictor, which yielded 
AUC of 0.9384, and its accuracy and F1-score were 0.8914 and 0.9351, respectively. In Table 4 and Table S4, 
for biopsy samples, based on the mRMR + SVM predictor, 96.18% of the 131 HCC samples from 2 datasets 
(GSE121248, GSE47197) could be correctly identified as HCC. Moreover, 75.26% of the 97 NwHCC samples 
from 2 datasets (GSE121248 and GSE64041) and all 80 CwHCC samples in GSE54236 were classified as HCC. 
While, based on MRMD + SVM predictor, all of 131 HCC samples could be correctly identified as HCC, all 97 
NwHCC samples and all 80 CwHCC samples were classified as HCC. For surgery samples, 1800 HCC samples 
from 24 datasets were used to perform evaluation and 657 of them were FFPE HCC samples from 6 datasets. 
Thus, mRMR + SVM predictor could correctly discriminate 1800 HCC samples and 657 FFPE HCC samples 
with the sensitivity of 0.8428 and 0.7976, respectively. Also, MRMD + SVM predictor could correctly discrimi-
nate 1800 HCC samples and 657 FFPE HCC samples with the sensitivity of 0.9872 and 0.9985, respectively. 
This result demonstrated that mRMR + SVM predictor and MRMD + SVM predictor had the potential to clas-
sify FFPE samples with partial RNA degradation. Moreover, based on mRMR + SVM predictor, 614 out of 741 
NwHCC samples from 9 datasets and 229 out of 334 CwHCC samples from 6 datasets were predicted as HCC. 
While based on MRMD + SVM predictor, all 741 NwHCC samples and all 334 CwHCC samples were predicted 

Table 4.   The performance of the 11 gene pairs’ signature in independent datasets. NO.HCC, number of HCC 
samples, NO.CwoHCC, number of CwoHCC samples, Sn sensitivity, Sp specificity.

Dataset NO.HCC NO.CwoHCC

mRMR + KNN mRMR + SVM MRMD + SVM

Sn Sp Sn Sp Sn Sp

Testing set (biopsy) 29 48 1 1 1 1 1 0.8542

Testing set (surgery) 220 36 1 1 1 1 1 0.8889

GEO (biopsy)

 GSE121248 70 – 0.9286 – 0.9429 – 1 –

 GSE47197 61 – 0.3607 – 0.9836 – 1 –

GEO (surgery)

 GSE109211 140 – 0.7214 – 0.7786 – 0.9929 –

 GSE62743 132 – 0.6288 – 0.8636 – 1 –

 GSE46444 88 – 0.3409 – 0.5227 – 1 –

 GSE10141 80 – 0 – 0.9875 – 1 –

 GSE164760 53 – 0.0755 – 0.2453 – 1 –

 GSE19977 164 – 1 – 0.9939 – 1 –

 GSE112790 183 – 0.9836 – 0.9945 – 1 –

 GSE102079 152 – 0.9737 – 0.9934 – 1 –

 GSE76427 115 – 0.7826 – 0.9478 – 1 –

 GSE78737 103 – 0.2427 – 0.3301 – 0.8544 –

 GSE9843 91 – 0.9231 – 0.9231 – 1 –

 GSE43619 88 – 0.7273 – 0.8523 – 1 –

 GSE62232 81 – 0.9506 – 0.9753 – 1 –

 GSE39791 72 – 1 – 1 – 1 –

 GSE15765 70 – 0.9571 – 1 – 1 –

 GSE87630 64 – 0 – 1 – 1 –

 GSE36411 42 – 0.8095 – 0.881 – 1 –

 GSE89377 40 – 0 – 0.2 – 0.825 –

 GSE57957 39 – 1 – 0.9744 – 1 –

 GSE14323 38 – 0.0789 – 0.1579 – 0.5263 –

 GSE6764 35 – 0.8 – 0.8286 – 1 –

 GSE101685 24 – 1 – 1 – 1 –

 GSE84598 22 – 1 – 1 – 1 –

 GSE41804 20 – 0.9 – 1 – 1 –

 GSE17548 17 – 0.7059 – 0.7059 – 1 –

 GSE84402 13 – 0 – 0.0769 – 1 –

 GSE115018 12 – 0 – 0.9167 – 1 –

 GSE98383 11 – 0.9091 – 1 – 1 –

 GSE29721 10 – 0.8 – 0.8 – 1 –

 GSE116174 64 – 0.9063 – 1 – 1 –

ICGC (surgery) 243 – – – – – – –

TCGA (surgery) 371 – – – – – – –
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as HCC. For RNA-seq data, based on mRMR + SVM predictor, 368 out of 371 HCC samples from TCGA and 
11 out of 50 NwHCC tissues were correctly identified as HCC. While based on MRMD + SVM predictor, all 371 
HCC samples and all 50 NwHCC tissues were correctly identified as HCC. In addition, 240 out of 243 HCC 
samples from TCGA were also correctly identified as HCC. While based on MRMD + SVM predictor, all 243 
HCC samples were also correctly identified as HCC.

Results in Table S4 displayed the identification of both HCC and its adjacent non-cancer (NwHCC and 
CwHCC) from CwoHCC by biopsy and surgery samples. For 131 HCC biopsy samples, the sensitivity of pro-
posed mRMR + SVM predictor with 11 gene pairs (18 secreted genes) and MRMD + SVM predictor with 28 gene 
pairs was 0.7526 and 1, which were higher than Ao’s method (0.6031). The identification ability of proposed 
mRMR + SVM predictor was also better than Ao’s method in 80 CwHCC samples. Additionally, among these 
methods, mRMR + SVM predictor and MRMD + SVM predictor displayed the better classification in 657 HCC 
FFPE samples, 1800 HCC surgery samples (657 HCC FFPE samples were included) and all 1931 HCC samples 
(1800 HCC surgery samples and 131 HCC biopsy samples were contained). For 657 HCC FFPE samples, the 
accuracy of Ao’s method, our previous method (11 gene pairs, 2020), proposed mRMR + SVM predictor and 
MRMD + SVM predictor in this study was 0.172, 0.3973, 0.7976, 0.9985, respectively. For 1800 HCC samples, 
the accuracy of Ao’s method, our previous method, proposed mRMR + SVM predictor and MRMD + SVM pre-
dictor was 0.6639, 0.7656, 0.8428, 0.9872, respectively. For 1931 HCC samples, the accuracy of Ao’s method was 
0.6572, the accuracy of our previous method was 0.7815, while the accuracy of the proposed mRMR + SVM 
predictor and MRMD + SVM predictor could increase to 0.8503 and 0.97, respectively. Above result suggested 
that mRMR + SVM predictor and MRMD + SVM predictor displayed the better performance when comparing 
with Ao’s method and our previous method.

In conclusion, methods developed in this paper produced higher accuracy and had superior prediction 
and diagnosis abilities compared to other published methods, especially for FFPE samples. Therefore, the 
mRMR + SVM predictor and MRMD + SVM predictor were deemed superior and more suitable predictors for 
facilitating early HCC diagnosis in clinical practice.

Conclusions
In this study, we developed eHCC-pred, a machine learning-based predictor for early diagnosis of HCC, using 
REOs and two feature selection methods (mRMR and MRMD). The eHCC-pred comprised of two machine 
learning predictors: MRMD + SVM predictor and mRMR + SVM predictor. In the training set consisting of 988 
HCC samples and 332 CwoHCC samples, both MRMD + SVM predictor and mRMR + SVM predictor achieved 
perfect accuracy, F1-score, and AUC values of 1. Subsequently, the performance of these predictors was evaluated 
on independent datasets comprising 3057 HCC samples and 84 CwoHCC samples. The mRMR + SVM predic-
tor exhibited a higher AUC value (0.9384) compared to the MRMD + SVM predictor (AUC = 0.9278), while 
the latter attained the highest accuracy of 0.9834 and F1-score of 0.9915. Finally, we compared our results with 
previous methods in this field. It is important to note that the data preprocessing level of our previous method 
2020 (involving 11 gene pairs) is equivalent to the current work. The accuracy of early HCC identification has 
significantly improved, with a remarkable increase from 78.15 to 97%, based on identical independent datasets. 
Our approach, eHCC-pred (http://​www.​dulab.​com.​cn/​eHCC-​pred/), is expected to be robustly utilized at an 
individual level to facilitate early diagnosis of HCC in clinical practice surpassing currently available state-of-
the-art techniques.

Discussion
High accurate and early diagnosis is the key point to hepatocellular carcinoma patients. Current work devel-
oped and validated machine learning-based predictors to aid early HCC diagnosis in clinical practice. Among 
the sixteen predictors, the mRMR + SVM predictor comprising of 11 gene pairs (18 secreted genes) and the 
MRMD + SVM predictor consisting of 28 gene pairs (34 secreted genes) exhibited superior predictive capability 
in validation datasets, thereby potentially enhancing the precision of decision-making during HCC diagnosis.

Database PubMed was searched, and GDF15 included in 11 gene pairs (mRMR + SVM predictor) and 
HTATIP2 included in 28 gene pairs (MRMD + SVM predictor) had been reported to be related to HCC. GDF15 
is also called MIC-1 and HTATIP2 is also named TIP30. GDF1530,31 and HTATIP232 are effective serum signa-
tures for the diagnosis of HCC. Then, we searched HPA database and found three (GDF15, FCN3, FCN2) of 18 
genes (11 gene pairs) were detected by blood-based immunoassay, fourteen (FCN2, GDF15, FCN3, DPT, THY1, 
ADAMTSL2, ASAH1, C7, DBH, F8, PCOLCE2, PPIC, PRDX4, RPLP2) of 18 secreted genes were detected in 
plasma by mass spectrometry, and four (FCN2, GDF15, DPT, THY1) of 18 secreted genes were detected in 
plasma by proximity extension assay (see Table 5). Thus, combining Table 2 with Table 5, we concluded that six 
(PCOLCE2 & DBH, RPLP2 & FCN3, THY1 & DPT, RPLP2 & ADAMTSL2, PPIC & C7, PRDX4 & C7) of 11 gene 
pairs were detected in blood. Similarly, for 34 genes (28 gene pairs), three genes (FCN3, CXCL12, FCN2) were 
detected by blood-based immunoassay, nineteen genes (RPLP2, PCOLCE2, PRDX4, MLEC, DNASE2, THY1, 
SNTB1, PON2, GLA, TPST2, FCN3, DBH, ADAMTSL2, C7, CXCL12, DPT, FCN2, F8, PAMR1) were detected 
in plasma by mass spectrometry, and seven genes (THY1, IFNGR1, PON2, CXCL12, DPT, FCN2, PAMR1) 
were detected in plasma by proximity extension assay (see Table S5). Thus, combing Table S3 with Table S5, we 
concluded that eighteen (RPLP2 & FCN3, PCOLCE2 & DBH, RPLP2 & ADAMTSL2, PRDX4 & C7, MLEC & 
CXCL12, KDSR & DPT, EIF2AK1 & CHST4, THY1 & DPT, SNTB1 & SFRP5, KDSR & FCN2, EIF2AK1 & F8, 
IFNGR1 & CXCL12, PON2 & C7, GLA & CHST4, TPST2 & FCN3, THY1 & PAMR1, THY1 & CHST4, IFNGR1 
& C7) of 28 gene pairs were detected in blood.

Over the past decade, there has been a significant growth in the application of machine learning in the field 
of medicine, particularly in oncology. However, constructing machine learning models often encounters various 

http://www.dulab.com.cn/eHCC-pred/
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challenges, including limited data availability, inadequate representation of real-world scenarios in training data, 
poor data quality encompassing irrelevant features and potential overfitting risks. Our study aimed to effectively 
train the model by maximizing sample utilization while ensuring a balanced distribution between positive and 
negative samples. Additionally, we employed feature selection techniques to identify relevant features and elimi-
nate irrelevant ones before evaluating them using independent datasets.

In clinical practice, timely diagnosis is crucial for patients seeking medical attention. Specifically, biopsy and 
surgery samples obtained from various body tissues were subjected to RNA sequencing and microarray analyses, 
followed by the generation of TPM or FPKM profiles using the RNA sequencing data. Subsequently, the generated 
TPM, FPKM, and microarray datasets were employed as inputs for eHCC-pred. By utilizing the eHCC-pred web 
server, users can access predicted outcomes for patients to facilitate HCC diagnosis.

Methods
A total of 46 datasets (Table S1) used in this study were collected from three public databases, including GEO 
(https://​www.​ncbi.​nlm.​nih.​gov/​geo/), ICGC (https://​dcc.​icgc.​org/) and TCGA (https://​portal.​gdc.​cancer.​gov/). 
In total, 5586 tissue samples, consisting of 4045 HCC samples, 416 CwoHCC samples, 334 CwHCC samples and 
791 NwHCC samples, were enrolled in this study, the detail of all datasets was shown in Table S1.

The 44 GEO transcriptome datasets contained 3431 HCC samples, 416 CwoHCC samples, 334 CwHCC 
samples and 741 NwHCC samples. Gene expression profiles from GEO were mainly detected by Affymetrix, 
Agilent and Illumina platforms. In case of Affymetrix array datasets, raw data (.CEL) files were pre-processed 
with background correction and normalization by using robust multi-array averaging (RMA) method. In case 
of Agilent and Illumina array datasets, the processed data (series matrix files) were utilized. Then, the arithmetic 
mean of multiple probes calculated that correspond to an individual gene for each dataset singly. The RNA-Seq 
gene expression data of ICGC dataset (the Liver Cancer-RIKEN JP) and TCGA dataset were derived from the 
ICGC database and TCGA database, respectively. The ICGC transcriptome dataset contained 243 HCC sam-
ples, the TCGA transcriptome dataset contained 371 HCC samples and 50 NwHCC samples. Additionally, 2902 
secreted genes downloaded from Human Protein Atlas (HPA, https://​www.​prote​inatl​as.​org/) were also used in 
this study and it were listed in Table S2.

Training and validation datasets
In clinical practice, tissue samples were usually obtained through two methods: surgical resection specimens or 
tissue biopsy samples. In our study, surgery samples and biopsy samples were used. The datasets used to derive 
the diagnostic signature consisted of a total of 1237 HCC samples, including 141 biopsy samples (D1) and 1096 
surgery samples (D2), as well as 416 CwoHCC samples, consisting of 236 biopsy samples (D3) and 180 surgery 
samples (D4). Subsequently, we randomly divided the dataset (D1, D2, D3, D4) into two subsets: a training set 
(80%) and a testing set (20%). The training set comprised 988 HCC samples (112 biopsy samples and 876 surgery 
samples) along with 332 CwoHCC samples (188 biopsy samples and 144 surgery samples). Similarly, the testing 
set included 249 HCC samples (29 biopsy sample and 220 surgery sample) in addition to 84 CwoHCC samples 
(48 biopsy and 36 surgery samples). The training set was for the development of the prediction predictors, while 
testing set and other independent gene-expression datasets (array and RNA-seq) were used as validation datasets 

Table 5.   Detection of 18 secreted genes in blood from HPA database.

Gene name Gene description Blood-based immunoassay Mass spectrometry Proximity extension assay

FCN2 Ficolin 2 Detected Detected Detected

GDF15 Growth differentiation factor 15 Detected Detected Detected

FCN3 Ficolin 3 Detected Detected No

DPT Dermatopontin No Detected Detected

THY1 Thy-1 cell surface antigen No Detected Detected

ADAMTSL2 ADAMTS like 2 No Detected No

ASAH1 N-Acylsphingosine amidohydrolase 1 No Detected No

C7 Complement C7 No Detected No

DBH Dopamine beta-hydroxylase No Detected No

F8 Coagulation factor VIII No Detected No

PCOLCE2 Procollagen C-endopeptidase enhancer 2 No Detected No

PPIC Peptidylprolyl isomerase C No Detected No

PRDX4 Peroxiredoxin 4 No Detected No

RPLP2 Ribosomal protein lateral stalk subunit P2 No Detected No

CHST4 Carbohydrate sulfotransferase 4 No No No

EIF2AK1 Eukaryotic translation initiation factor 2 alpha 
kinase 1 No No No

KDSR 3-Ketodihydrosphingosine reductase No No No

PTPRA Protein tyrosine phosphatase receptor type A No No No

https://www.ncbi.nlm.nih.gov/geo/
https://dcc.icgc.org/
https://portal.gdc.cancer.gov/
https://www.proteinatlas.org/
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for evaluating the performance of the prediction predictors. Validation datasets contained 3057 HCC samples 
(202 HCC biopsy samples and 2855 HCC surgery samples) and 84 CwoHCC samples (48 CwoHCC biopsy 
samples and 36 CwoHCC surgery samples).

Feature construction method
REOs was a feature construction method which has been applied to acquire a dependable and robust signature 
from gene expression profiling. In case of a gene pair (gene i and gene j), Gi > Gj represented that the expression 
of gene i was higher than the expression of gene j, Gi < Gj represented that the expression of gene i was lower than 
the expression of gene j. Stable gene pairs meant that the pattern of Gi > Gj or Gi < Gj was kept in at least 85% 
samples. One stable gene pairs which kept Gi > Gj in HCC tissues and Gi < Gj in CwoHCC tissues was denoted 
as a reversal stable gene pair, and then this gene pair would be selected as the candidate REO-based qualitative 
diagnostic signature. After obtaining reversal gene pairs between HCC and CwoHCC tissues, 2902 secreted 
genes were used for filtering gene pairs. Next, based on the reversal gene pairs and gene expression profiling, 
new profiles encoded by 0, 1, and − 1 were generated, where 1 represented Gi < Gj, 0 represented Gi > Gj, − 1 
represented other cases (Gi or Gj does not exist), respectively.

Feature selection method and incremental feature selection
To pick out valid gene pairs for HCC diagnosis, mRMR21 and MRMD22 algorithms were applied for feature selec-
tion. Here, a gene pair was considered as a feature. The principle of mRMR algorithm is simple: to find maximum 
correlation while removing redundant features, which is equivalent to obtaining a set of “purest” feature subset 
(features differ greatly from each other and are also highly correlated with the target variable). It is based on infor-
mation theory and can be computed by mutual information (MI), MI and mRMR were formulated as follows:

where f  represents the vector of feature, T  represents disease type, � represents the set of ranked features, 
MI(fi ,T) represents MI between feature fi and class T , and MI(fi , fj) represents MI between fi and fj.

MRMD is to select feature subsets that are strongly correlated with class label and have low redundancy 
among features. MRMD feature selection method is mainly determined by the following two parts. The first is 
the correlation between feature and class label. MRMD calculates the correlation between feature and class label 
by Pearson correlation coefficient. The larger the Pearson correlation coefficient is, the closer the relationship 
between features and class label is. The second is the redundancy between features. Three distance functions 
(Euclidean distance, Cosine distance and Tanimoto coefficient) are used to calculate the redundancy between 
features. And the larger the distance is, the lower the redundancy between features is. More details about MRMD 
can be found in Zou’s paper22. In this study, Cosine distance was used.

Based on the new encoding profiles and two feature selection methods, we obtained a list of ranked gene pairs. 
Subsequently, using incremental feature selection (IFS) strategy33, the optimal gene pairs which could produce 
the best diagnosis for HCC was chosen from 242 mRMR and MRMD gene pairs.

Classification through machine learning methods
Machine learning techniques included SVM, KNN, DT, LR, XGBoost, LMT, AdaboostM1 and NB were adopted 
to establish predictive diagnostic predictors of early HCC. Notably, XGBoost and and NB were performed by 
using R package “xgboost” and “naivebayes”, respectively. For XGBoost model, The parameters of XGBoost model 
are nrounds = 25 and objective = “binary:logistic”. Another six classification methods were performed by using 
R package “RWeka”, the function of SMO, IBk, J48, LR, LMT and AdaBoostM1 was used. And SMO provides 
a support vector classifier using RBF kernels with a non-default gamma parameter (argument ‘-G’), G = 2. IBk 
generates a k-nearest neighbors classifier, J48 provides unpruned or pruned C4.5 decision trees, LR produces 
logistic regression model and LMT carries out “Logistic Model Trees”. The AdaBoost M1 method of Freund and 
Schapire is implemented by AdaBoostM1 function and decision stumps (trees with a single split only) are used 
as base learners for AdaBoostM1.

Performance evaluation of predictors
In the current study, we assessed the performance of our prediction predictors on independent cohorts that 
include testing set and other independent datasets (array and RNA-seq gene-expression data) obtained from 
GEO, ICGC and TCGA (see Table S1), which were not used for training. Five popular indexes were calculated to 
evaluate the diagnostic ability of the gene pair signature for early HCC. They are sensitivity, specificity, accuracy, 
F1-score and area under receiver operating characteristic curve (AUC).

(1)MI(fi ,T) =

∫

P(fi ,T) ln

(

p(fi ,T)

p(fi)P(T)

)

dfidT ,

(2)mRMR =
1

|�|

∑

fi∈�

MI(fi ,T)−
1

|�|2

∑

fi fj∈�

MI(fi , fj),

(3)



















Sensitivity = TP
TP+FN

Specificity = TN
TN+FP

Accuracy = TP+TN
TP+FP+TN+FN
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,



10

Vol:.(1234567890)

Scientific Reports |         (2024) 14:5274  | https://doi.org/10.1038/s41598-024-51265-7

www.nature.com/scientificreports/

where P and N represent the scale of positive (HCC) and negative (CwoHCC) samples, respectively. T and F 
represent sets of true and false predicted results, respectively.

Receiver operating characteristic (ROC) curve is a tool to analyze the classification performance of binary 
classification model. The ROC space defines the false positive rate (FPR) as the X-axis and the true positive rate 
(TPR) as the Y-axis. And the area under the curve is calculated to compute AUC value. AUC is used to measure 
ranking ability. AUC with 95% CI (confidence intervals) is the Area Under the ROC Curve and a probability 
value. The larger the AUC is, the better the classification performance is.

Data availability
The datasets generated and/or analysed during the current study are available in the GEO repository (https://​
www.​ncbi.​nlm.​nih.​gov/​geo/), ICGC repository (https://​dcc.​icgc.​org/) and TCGA repository (https://​portal.​gdc.​
cancer.​gov/). Additionally, 2902 secreted genes downloaded from Human Protein Atlas (HPA, https://​www.​
prote​inatl​as.​org/).
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