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Construction of a predictive model 
for blood transfusion in patients 
undergoing total hip arthroplasty 
and identification of clinical 
heterogeneity
Jicai Deng 1,2,5, Chenxing Zhou 3,5, Fei Xiao 1, Jing Chen 1, Chunlai Li 1 & Yubo Xie 1,4*

A precise forecast of the need for blood transfusions (BT) in patients undergoing total hip arthroplasty 
(THA) is a crucial step toward the implementation of precision medicine. To achieve this goal, 
we utilized supervised machine learning (SML) techniques to establish a predictive model for BT 
requirements in THA patients. Additionally, we employed unsupervised machine learning (UML) 
approaches to identify clinical heterogeneity among these patients. In this study, we recruited 224 
patients undergoing THA. To identify factors predictive of BT during the perioperative period of THA, 
we employed LASSO regression and the random forest (RF) algorithm as part of supervised machine 
learning (SML). Using logistic regression, we developed a predictive model for BT in THA patients. 
Furthermore, we utilized unsupervised machine learning (UML) techniques to cluster THA patients 
who required BT based on similar clinical features. The resulting clusters were subsequently visualized 
and validated. We constructed a predictive model for THA patients who required BT based on six 
predictive factors: Age, Body Mass Index (BMI), Hemoglobin (HGB), Platelet (PLT), Bleeding Volume, 
and Urine Volume. Before surgery, 1 h after surgery, 1 day after surgery, and 1 week after surgery, 
significant differences were observed in HGB and PLT levels between patients who received BT and 
those who did not. The predictive model achieved an AUC of 0.899. Employing UML, we identified two 
distinct clusters with significantly heterogeneous clinical characteristics. Age, BMI, PLT, HGB, bleeding 
volume, and urine volume were found to be independent predictors of BT requirement in THA 
patients. The predictive model incorporating these six predictors demonstrated excellent predictive 
performance. Furthermore, employing UML enabled us to classify a heterogeneous cohort of THA 
patients who received BT in a meaningful and interpretable manner.
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THA  Total hip arthroplasty
ML  Machine learning
SML  Supervised machine learning
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PLT  Platelet
ASA  American society of anesthesiologists
CVD  Cardiovascular disease
COPD  Chronic obstructive pulmonary disease
PAH  Pulmonary arterial hypertension
TXA  Tranexamic acid
SP  Systolic pressure
DP  Diastolic pressure
HR  Heart rate
RBC  Red blood cell
HGB  Hemoglobin
HCT  Hematocrit
PLT  Platelet
TBIL  Total bilirubin
TP  Total protein
ALB  Albumin
ALT  Alanine aminotransferase
AST  Aspartate aminotransferase
CREA  Creatinine
BUN  Blood urea nitrogen
Cys-C  Cystatin C
Ccr  Creatinine clearance rate
Hs-CRP  Hypersensitive C-reactive protein
PT  Prothrombin time
APTT  Activated partial thromboplastin time
FIB  Fibrinogen
DD  D-Dimer
SC  Silhouette coefficient
AUC   Area under the curve

Total hip arthroplasty (THA) is a common surgical intervention for treating various hip joint diseases, includ-
ing osteonecrosis of the femoral head, hip ankylosis caused by ankylosing spondylitis, and hip  osteoarthritis1,2. 
Effective blood management is a critical component of the perioperative care of THA  patients3. Previous stud-
ies have indicated that blood transfusion is independently linked to higher morbidity and mortality in THA 
 patients4,5. Strategies aimed at reducing perioperative blood loss and minimizing the need for allogeneic red 
blood cell transfusions encompass various measures, including addressing preoperative  anemia6, administering 
anti-fibrinolytic  therapy7, and utilizing intraoperative cell salvage  techniques8,9. Effective implementation of the 
aforementioned measures relies on our ability to accurately predict the need for perioperative blood transfusion 
(BT) in THA patients. It is crucial to develop a precise predictive model to forecast the need for perioperative 
BT in THA, which holds significant clinical value. Furthermore, if BT events occur during the perioperative 
period of THA patients, clinicians need to pay closer attention to the perioperative blood management of such 
patients, preventing adverse events arising from hemodynamic abnormalities. Therefore, it is crucial to identify 
clinical heterogeneity among THA patients requiring transfusion and ascertain the presence of clusters with 
significantly characteristic risks among this patient population. This is essential for comprehensive perioperative 
blood management and the prevention of adverse events in patients undergoing THA.

In recent times, the rapid advancement of artificial intelligence has led to the increased application of machine 
learning (ML), a subfield of AI, in disease classification, diagnosis, and treatment. Notably, ML has been employed 
in addressing conditions like heart failure and pediatric  dermatitis10. Precision medicine has emerged as a leading 
approach in modern medical practice, offering improved medical efficiency and reduced incidence of complica-
tions during medical  procedures11. Precision medicine necessitates the precise identification and classification 
of patients, followed by the implementation of distinct medical interventions tailored to each patient’s specific 
 needs10. The incorporation of artificial intelligence and ML algorithms has ushered in a new era for precision 
medicine. ML comprises two principal categories, namely supervised machine learning (SML) and unsupervised 
machine learning (UML). SML employs large accurately labeled training datasets and iterative  algorithms12; UML 
aims to cluster patients based on their clinical features. The integration of SML and UML techniques enables 
the identification of specific categories and the grouping of patients, facilitating the analysis of characteristics 
among similarly clustered individuals. This approach may aid in the identification of novel disease subtypes and 
accelerate the adoption of precision medicine.

In this study, we gathered clinical data from THA patients and utilized SML to establish a predictive model 
for perioperative blood transfusion requirements in these patients. Independent predictors linked to transfusion 
requirements were identified. We subsequently employed UML to classify THA patients who received blood 
transfusions during the perioperative period, ultimately identifying two distinct clusters. Finally, we conducted a 
differential analysis to explore the heterogeneity of these clusters. The study aims to integrate both supervised and 
unsupervised machine learning techniques to enhance perioperative blood management in patients undergoing 
THA. This integration aims to enable timely medical interventions by clinicians, mitigating the occurrence of 
adverse events during the perioperative period.
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Materials and methods
Patients and data collection
We conducted a retrospective analysis of clinical data (Table 1) collected from 224 patients who underwent total 
hip arthroplasty at the First People’s Hospital of Nanning between 2015 and 2022. Figure 1 shows the graphical 
abstract of this study. Inclusion criteria were (1) age ≥ 18 years old; (2) ASA Grade II-IV13; (3) Unilateral, total 
hip arthroplasty had been performed. Exclusion criteria were (1) patients undergoing revision hip surgery, and 
(2) patients undergoing, bilateral hip replacement at the same time. We collected 44 perioperative variables in 
the clinical data, which were age, gender, body mass index (BMI), American Society of Anesthesiologists (ASA) 
grade, hypertension, pulmonary infection, diabetes, cerebral infarction, cardiovascular disease (CVD), chronic 
obstructive pulmonary disease (COPD), renal failure (RF), pulmonary arterial hypertension (PAH), hip fracture, 
operation time, bleeding volume, autotransfusion, tranexamic acid (TXA), anesthesia method, systolic pressure 
(SP), diastolic pressure (DP), heart rate (HR),  SpO2, colloid, crystalloid, urine volume, drainage volume, red blood 
cell (RBC), Hemoglobin (HGB), hematocrit (HCT), platelet (PLT), total bilirubin (TBIL), total protein (TP), albu-
min (ALB), alanine aminotransferase (ALT), aspartate aminotransferase (AST), creatinine (CREA), blood urea 
nitrogen (BUN), cystatin C (Cys-C), creatinine clearance rate (Ccr), hypersensitive C-reactive protein (hs-CRP), 
prothrombin time (PT), activated partial thromboplastin time (APTT), fibrinogen (FIB), and D-dimer (DD). 
Additionally, postoperative observations and data collection were undertaken to gather clinical information from 
patients at 1 h, 1 day, and 1 week following total hip arthroplasty. The clinical data encompassed measurements 
of RBC, HGB, HCT, PLT, TBIL, TP, ALB, ALT, AST, CREA, BUN, Cys-C, Ccr, Hs-CRP, PT, APTT, FIB, and DD.

The Ethics Committee of The Fifth Affiliated Hospital of Guangxi Medical University reviewed and approved 
the study. All patients provided informed consent and willingly participated in the study. The clinical data 
involved in this study has obtained explicit authorization from the patients. The study complies with the Dec-
laration of Helsinki.

Statistical analysis of clinical data
Concerning clinical data with missing values, we employed the expectation maximization method in SPSS 
Version 22.0 for imputation. The original dataset and the data with imputed missing values are available in the 
supplementary materials. Clinical data were presented as Mean ± SD and Median [P25, P75]. We performed 
statistical analyses using SPSS version 22.0, employing the Mann–Whitney U test, Student’s t-test, or chi-square 
test as appropriate. These tests were employed to compare disparities between patients with and without blood 
transfusions (BT and Non-BT), depending on the data type. The significance level was set at α = 0.05. To establish 
a predictive model for blood transfusion in THA patients, we employed the logistic regression algorithm and 
created a nomogram to visualize the prediction model. The ’corrplot’ package in R software was used to generate 
correlation heat maps illustrating the correlation between clinical data in the prediction model. The accuracy of 
the prediction model was determined by the ROC curve and calibration curve analyses (The ’pROC’ package 
in R software).

LASSO‑regularized linear regression
The Least Absolute Shrinkage and Selection Operator (LASSO) regression is a contraction algorithm developed 
to manage variables with multicollinearity. It streamlines the process of parameter estimation and generates 
sparse solutions, enabling efficient variable selection. Consequently, it is an appropriate method for addressing 
multicollinearity problems and improving test  efficiency14–16. In this study, clinical data showing significant dif-
ferences (p < 0.05) were entered into the R software to perform LASSO regression using the ’glmnet’ package, 
which aimed to identify factors that could predict the necessity for blood transfusion in THA patients. To avoid 
overfitting, we employed ten rounds of tenfold cross-validation15.

Random forest
We used the "randomforest" package in R software to screen clinical data by employing the Random Forest 
 algorithm17. The Random Forest algorithm works by assigning random values to each clinical characteristic. If 
a characteristic is considered more important, randomly changing its value will lead to a higher prediction error 
for the  model18. The clinical characteristics become more significant as their value increases.

Development of a logistic regression‑based predictive model
Following the initial clinical characteristics screening via supervised machine learning (SML), we proceeded 
to utilize univariate logistic regression analysis for the evaluation of the association between blood transfusion 
(BT) necessity in total hip arthroplasty (THA) patients and their clinical characteristics. Variables with p-values 
below 0.05 were included in the subsequent multivariate logistic regression analysis. Based on the outcomes 
of the multivariate logistic regression analysis, which incorporated variables with p-values less than 0.05, we 
constructed a predictive model for assessing the need for blood transfusion in THA patients, represented using 
a nomogram. Model performance was evaluated in terms of discrimination and  calibration19. Calibration of 
the prediction model involved the creation of a visual calibration plot, which compared predicted and actual 
probabilities of blood transfusion (BT) requirement. The model’s discriminative capability was assessed through 
the Area under the Curve (AUC) of the Receiver Operating Characteristic (ROC) curve, which varies from 0.5 
(indicating no discrimination) to 1 (indicating perfect discrimination)20.
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Clinical Characteristics

Overall BT Non-BT P-Value

(n = 224) (n = 61) (n = 163)

Age  < 0.001

  Mean ± SD 64.16 ± 13.837 68.84 ± 14.66 62.41 ± 13.14

  Median [P25, P75] 66 [55, 74] 72 [61, 80] 63 [54, 72]

Gender 0.900

  Male 127 (56.6%) 35 (57.3%) 92 (56.4%)

  Female 97 (43.4%) 26 (42.7%) 71 (43.5%)

BMI 0.005

  Mean ± SD 22.73 ± 2.94 21.82 ± 2.42 23.07 ± 3.04

  Median [P25, P75] 22.58 [20.81, 24.03] 22.19 [19.78, 23.07] 22.81 [21.26, 24.24]

ASA 0.383

  II 97 (43.30%) 24 (39.34%) 73 (44.79%)

  III 121 (54.01%) 34 (55.74%) 87 (53.37%)

  IV 6 (2.68%) 3 (4.92%) 3 (1.84%)

Hypertension 0.530

70 (31.25%) 21 (34.43%) 49 (30.06%)

Pulmonary Infection 0.841

10 (4.46%) 3 (5.17%) 7 (4.29%)

Diabetes 0.711

21 (9.38%) 5 (8.93%) 16 (9.82%)

Cerebral Infarction 0.248

12 (5.36%) 5 (8.93%) 7 (4.29%)

CVD 0.022

8 (3.57%) 5 (8.93%) 3 (1.84%)

COPD 0.936

7 (3.12%) 2 (3.28%) 5 (3.07%)

RF 0.101

1 (0.45%) 1 (1.63%) 0 (0.00%)

PAH 0.467

2 (0.89) 1 (1.63%) 1 (0.61%)

Fracture 0.437

108 (48.21%) 32 (52.46%) 76 (46.63%)

Operation Time 0.092

  Mean ± SD 125.27 ± 28.24 128.18 ± 25.2 124.18 ± 29.29

  Median [P25, P75] 120 [105, 140] 129 [113.5, 143.5] 120 [104, 140]

Bleeding Volume  < 0.001

  Mean ± SD 369.42 ± 184.40 509.84 ± 202.04 316.87 ± 146.59

  Median [P25, P75] 300 [200, 500] 500 [400, 600] 300 [200, 400]

Autotransfusion  < 0.001

  Mean ± SD 91.96 ± 153.88 159.02 ± 175.72 66.87 ± 137.24

  Median [P25, P75] 100 [0, 250] 200 [0, 250] 200 [0, 200]

TXA  < 0.001

  0 g 58 (25.89%) 27 (44.26%) 31 (19.02%)

  1 g 117 (52.23%) 27 (44.26%) 90 (55.21%)

  2 g 49 (21.88%) 7 (11.48%) 42 (25.77%)

Anesthesia Method 0.081

  General Anesthesia 14 (6.25%) 1 (1.63%) 13 (7.98%)

SP 0.733

  Mean ± SD 146.32 ± 18.617 147.02 ± 20.65 146.06 ± 17.86

  Median [P25, P75] 146 [133.25, 158.75] 150 [134, 164] 146 [132, 158]

DP 0.551

  Mean ± SD 85.74 ± 26.97 83.49 ± 11.71 86.58 ± 30.79

  Median [P25, P75] 84.5 [77, 91] 82 [77.5, 92] 85 [77, 91]

HR 0.002

  Mean ± SD 80.37 ± 12.10 83.39 ± 12.09 79.24 ± 11.94

  Median [P25, P75] 79 [72, 88] 85 [76, 90] 78 [70, 86]

Continued
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Clinical Characteristics

Overall BT Non-BT P-Value

(n = 224) (n = 61) (n = 163)

SpO2 0.170

  Mean ± SD 97.11 ± 2.16 97.28 ± 2.45 97.05 ± 2.04

  Median [P25, P75] 97.5 [96, 99] 98 [96, 99] 97 [96, 99]

Colloid 0.002

  Mean ± SD 681.47 ± 340.84 804.92 ± 404.63 635.28 ± 302.30

  Median [P25, P75] 500 [500, 1000] 750 [500, 1000] 500 [500, 950]

Crystalloid 0.463

  Mean ± SD 1156.25 ± 407.20 1120.16 ± 470.48 1169.75 ± 381.56

  Median [P25, P75] 1150 [850, 1400] 1100 [850, 1400] 1200 [900, 1400]

Urine Volume 0.013

  Mean ± SD 636.96 ± 360.18 764.43 ± 465.74 589.26 ± 299.73

  Median [P25, P75] 500 [400, 800] 600 [425, 875] 500 [400, 700]

Drainage Volume 0.414

  Mean ± SD 304.57 ± 180.06 326.43 ± 198.99 296.38 ± 172.39

  Median [P25, P75] 280 [170, 400] 300 [170, 425] 275 [170, 400]

RBC 0.008

  Mean ± SD 4.36 ± 2.60 4.02 ± 0.63 4.48 ± 3.02

  Median [P25, P75] 4.11 [3.71, 4.56] 4.01 [3.68, 4.29] 4.24 [3.84, 4.63]

HGB  < 0.001

  Mean ± SD 120.13 ± 20.47 111.65 ± 17.40 123.30 ± 20.67

  Median [P25, P75] 120 [107, 133] 111[98.5,124] 125 [111, 137]

HCT  < 0.001

  Mean ± SD 36.68 ± 21.61 38.21 ± 38.02 36.11 ± 10.30

  Median [P25, P75] 37.45 [32.83, 40.5] 34.6 [30.15, 38.6] 38.07 [34.6, 41.2]

PLT 0.017

  Mean ± SD 242.28 ± 77.45 263.23 ± 82.72 234.44 ± 74.13

  Median [P25, P75] 229 [195.5, 284.75] 250 [211, 318] 225 [190, 268]

TBIL 0.398

  Mean ± SD 12.45 ± 14.18 10.91 ± 6.55 13.03 ± 16.11

  Median [P25, P75] 10.1 [7.43, 14.23] 10 [6.95, 13.05] 10.1 [7.4, 14.7]

TP 0.184

  Mean ± SD 63.75 ± 7.06 64.78 ± 7.88 63.36 ± 6.74

  Median [P25, P75] 63.67 [58.74, 68.58] 64.7 [59.1, 69.1] 63.3 [58.2, 67.8]

ALB 0.456

  Mean ± SD 36.66 ± 5.03 36.25 ± 5.40 36.81 ± 4.90

  Median [P25, P75] 36.83 [32.83, 39.8] 37.1 [33.2, 40.1] 36 [21.15, 38.55]

ALT 0.207

  Mean ± SD 20.93 ± 18.38 24.07 ± 23.73 19.52 ± 15.79

  Median [P25, P75] 1611,23 1711,29 1511,21

AST 0.607

  Mean ± SD 24.17 ± 13.31 25.72 ± 15.35 23.59 ± 12.64

  Median [P25, P75] 2016,27 20 [16, 29.25] 1916,27

CREA 0.404

  Mean ± SD 79.02 ± 23.74 84.09 ± 31.08 77.12 ± 20.11

  Median [P25, P75] 74.5 [63, 92] 76 [63, 101] 74 [63, 91]

BUN 0.237

  Mean ± SD 5.51 ± 2.55 5.82 ± 2.69 5.39 ± 2.50

  Median [P25, P75] 5 [3.9, 6.40] 5.2 [4.08, 7.1] 4.93 [3.9, 6.24]

Cys-C 0.021

  Mean ± SD 1.22 ± 0.71 1.35 ± 0.83 1.17 ± 0.66

  Median [P25, P75] 1.07 [0.95, 1.27] 1.06 [0.94, 1.23] 1.18 [0.96, 1.58]

Ccr 0.029

  Mean ± SD 71.03 ± 20.47 65.99 ± 23.21 72.92 ± 19.09

  Median [P25, P75] 71.48 [59.04, 82.08] 72.2 [61.54, 82.08] 62.97 [46.3, 84.18]

hs-CRP 0.135

Continued
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Unsupervised machine learning for clinical heterogeneity identification
To ascertain whether there are distinct risk-characterized clusters among patients requiring BT in THA, we 
employed UML to further identify clinical heterogeneity. To conduct UML, we used R software version 4.1.3. 
We normalized the clinical data of THA patients who received BT during the perioperative period (n = 61) by 
utilizing the Scale Function in the "factoextra"  package21. To determine the optimal clustering number (K value), 
we used the "Fpc" package, which utilizes the Silhouette Coefficient (SC)11,22,23. The K-means clustering algorithm 
is a well-known unsupervised learning technique in machine learning. In this study, we utilized the K-means 
algorithm to group patients into  clusters23–25. The clusters derived from the K-means algorithm were visually 
presented using clustergram and radargram.

The K-means algorithm is an Unsupervised Machine Learning algorithm that can categorize and identify 
 data11. The K-means clustering algorithm can effectively group clinical data based on their characteristics, even 
if their labels are unknown. These groups, or "clusters," are represented by a central point called a "centroid." 
To initiate the clustering process, the clinical data is normalized using the Scale Function, and the K-means 

Clinical Characteristics

Overall BT Non-BT P-Value

(n = 224) (n = 61) (n = 163)

  Mean ± SD 31.38 ± 38.66 35.21 ± 37.59 29.95 ± 39.07

  Median [P25, P75] 16.19 [4.30, 44.85] 22.92 [6.75, 56.11] 15.82 [3.9, 42.6]

PT 0.264

  Mean ± SD 13.14 ± 1.05 13.01 ± 1.15 13.18 ± 1.01

  Median [P25, P75] 13.2 [12.43, 13.8] 13.1 [12.3, 13.65] 13.2 [12.5, 13.8]

APTT 0.687

  Mean ± SD 35.87 ± 5.28 36.16 ± 5.77 35.76 ± 5.10

  Median [P25, P75] 35.85 [32.15, 39.4] 36.3 [31.35, 40.1] 35.8 [32.6, 39.1]

FIB 0.285

  Mean ± SD 4.17 ± 1.27 4.37 ± 1.41 4.10 ± 1.21

  Median [P25, P75] 3.98 [3.17, 4.96] 4.22 [3.13, 5.34] 3.92 [3.17, 4.82]

DD 0.426

  Mean ± SD 4.49 ± 6.41 5.40 ± 7.93 4.15 ± 5.73

  Median [P25, P75] 2.35 [0.97, 5.03] 2.54 [1, 6.5] 2.18 [0.96, 4.86]

Table 1.  Baseline characteristics between BT patients and non-BT patients.

Figure 1.  The graphical abstract of this study.
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algorithm is applied through the following steps: (I) K initial centroids are randomly chosen, and each sample 
point is assigned to the nearest centroid to form K clusters. (II) A new centroid is calculated for each cluster by 
computing the average coordinate value of all points within the cluster. (III) This process is repeated until the 
position of the centroids remains stable. The optimal value of K is determined in this study using the Silhouette 
Coefficient (SC).

The formula employed in this study uses a(i) to represent the average distance between a sample point and all 
other points within the same cluster. b(i), on the other hand, refers to the average distance between the sample 
point and all points within the second closest  cluster26. The main objective of the K-means clustering algorithm 
is to decrease the within-cluster variation and increase the between-cluster variation. The Silhouette Coefficient 
is used to assess the quality of clustering, with values ranging from –1 to 1. A higher value closer to 1 suggests 
better clustering performance, while a value closer to –1 indicates poor results.

We employed the K-means algorithm to cluster patients undergoing THA who received BT based on six 
independent predictive factors from the predictive model, aiming to identify clinical heterogeneity. We employed 
radargram for visualizing the heterogeneity between the two patient clusters and compared differences in Age, 
BMI, HGB, PLT, Bleeding Volume, and Urine Volume. Additionally, box plots were used to visually represent 
the data variances, offering an intuitive presentation of the clinical heterogeneity among patients.

Ethical approval
The study got approval by Ethics Department of the Fifth Affiliated Hospital of Guangxi Medical University 
(No. 2021-064-01). All subjects of this study are volunteered and signed informed consent forms. The clinical 
data involved in this study has obtained explicit authorization from the patients. The study complies with the 
Declaration of Helsinki.

Result
Results of SML: tenfold cross‑validation LASSO regression and random forest
Table 1 presents the clinical data of 224 patients who underwent total hip arthroplasty. Among them, 61 patients 
received blood transfusions (BT) during the perioperative period, while 163 did not. Statistical significance 
(P < 0.05) was observed in 15 clinical characteristics between the BT and non-BT patients, including Age, BMI, 
CVD, Bleeding volume, autotransfusion, TXA, HR, colloid, urine volume, RBC, HGB, HCT, PLT, Cys-C, and Ccr.

To identify predictive factors of perioperative blood transfusion, LASSO regression analysis was conducted 
on the clinical data with significant differences. The results are shown in Supplementary Fig. 1A and Fig. 2A, 
which displays the 12 predictive factors of perioperative blood transfusion: Age, BMI, Bleeding volume, HR, 
colloid, urine volume, HCT, PLT, Ccr, HGB, CVD, and TXA.

In a similar vein, we utilized the Random Forest algorithm to identify predictive factors for patients with BT 
during the perioperative period by analyzing the clinical data with significant differences in Table 1. We set the 
number of decision trees to 20,000 and observed that the error rate of the model became stable (Supplementary 
Fig. 1B). From the eight clinical characteristics, we selected the top 14 factors with the highest importance 
(Fig. 2B). These factors were Age, HCT, Bleeding Volume, HGB, PLT, Autotransfusion, Cys-C, RBC, Ccr, BMI, 
Urine Volume, HR, Colloid, and TXA.

To avoid overfitting, we conducted ten rounds of tenfold cross-validation for the outcomes of LASSO regres-
sion and Random Forest algorithm. Figure 2C demonstrates the graphical representation of this approach. The 
intersection of the 11 predictors identified through LASSO regression and Random Forest algorithm are Age, 
BMI, Bleeding Volume, HR, Colloid, Urine Volume, HCT, PLT, Ccr, HGB, and TXA, as shown in Fig. 2D.

Construction of a prediction model for blood transfusion in patients undergoing THA
In this research study, we conducted univariate and multivariate logistic regression analyses on 11 factors to 
develop a clinical prediction model for patients who underwent total hip arthroplasty with perioperative blood 
transfusion. Table 2 presents the outcomes of the univariate and multivariate logistic regression, which showed 
that six independent variables were selected as predictors, namely Age, Body Mass Index (BMI), Hemoglobin 
(HGB), Platelet count (PLT), Bleeding Volume, and Urine Volume. A heatmap in Fig. 3A illustrates the cor-
relation between these six independent variables. The area under the curve (AUC) values for each of these six 
independent variables in predicting the need for blood transfusion were 0.653 for age, 0.622 for BMI, 0.688 
for HGB, 0.603 for PLT, 0.791 for Bleeding Volume, and 0.607 for Urine Volume (Fig. 3B). A nomogram was 
utilized to visualize the prediction model based on these six independent variables (Fig. 3C), which displays a 
sample of a patient who underwent total hip arthroplasty and required perioperative blood transfusion (Fig. 3D). 
Calibration curves were generated to validate the accuracy of the nomogram’s predicted probabilities, and these 
curves revealed a satisfactory level of agreement between the predicted and actual probabilities (Fig. 3E). The 
ROC curve for the nomogram is shown in Fig. 3F, with an AUC value of 0.899.

Postoperative observation of independent predictors of blood transfusion after THA
In this study, Fig. 4A displays the alterations in preoperative and postoperative Hemoglobin (HGB) levels at 
1 h, 1 day, and 1 week among patients who received Blood Transfusion (BT) during the perioperative period. 
Similarly, Fig. 4B portrays the modifications in preoperative and postoperative Platelet (PLT) levels at 1 h, 1 day, 
and 1 week in patients who received BT during the perioperative period. Furthermore, Fig. 4C illustrates the 

SC(i) =
b(i)− a(i)

max[a(i), b(i)]
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variations in preoperative and postoperative HGB levels at 1 h, 1 day, and 1 week among patients who did and 
did not receive BT transfusions during the perioperative period. Finally, Fig. 4D depicts the fluctuations in 
preoperative and postoperative PLT levels at 1 h, 1 day, and 1 week for patients who received BT transfusions 
during the perioperative period and those who did not.

Results of unsupervised machine learning
To cluster patients based on six independent predictors, we utilized the K-means algorithm. The optimal number 
of clusters was determined using the Silhouette Coefficient value, and Fig. 5A shows that the highest point on the 
broken line corresponds to the optimal value of 2 on the X-axis. This result indicates that the K-means clustering 
algorithm identified two clusters as optimal. The clinical data of 61 patients were successfully divided into two 
clusters (Fig. 5B), where each dot represents a patient, with the orange dot representing cluster 1 and the blue 
dot representing cluster 2. The K-means clustering algorithm’s outcome is presented in Supplementary Table S1.

Heterogeneous clinical characteristics of the patients by unsupervised machine learning
Table 3 presents six independent predictors of two clusters identified using the K-means clustering algorithm. 
As shown in Table 3, the values of Age, BMI, and PLT in cluster 1 are significantly greater than those in cluster 
2 (Age: cluster 1/cluster 2 = 74.98 ± 8.81/52.94 ± 14.41, P < 0.001; BMI: cluster 1/cluster 2 = 23.05 ± 16.73/42.06 
± 22.84, P < 0.001; PLT: cluster 1/cluster 2 = 279.33 ± 83.84/221.56 ± 59.59, p = 0.022). In contrast, both Bleeding 

Figure 2.  The results of LASSO regression (A). 14 predictive factors were screened by Random Forest 
algorithms (B). The pattern diagram for five iterations of tenfold cross validation (C). Intersection of predictive 
factors screened using LASSO regression and Random Forest algorithm (D).
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Volume and Urine Volume are significantly higher in cluster 2 compared to cluster 1 (Bleeding Volume: cluster 
1/cluster 2 = 452.27 ± 146.53/658.82 ± 240.24, P = 0.002; Urine Volume: cluster 1/cluster 2 = 682.95 ± 374.31/975
.29 ± 584.21, P = 0.046). HGB did not exhibit significant differences between the two clusters (HGB: cluster 1/
cluster 2 = 110.28 ± 17.01/115.21 ± 17.40, P = 0.250). A radargram, depicted in Fig. 6A, was employed to visualize 
the heterogeneity of the two clusters. ROC curves were employed to assess the predictive performance of six 
independent predictive factors for Cluster 1, and the predictive efficiency was demonstrated using AUCs (based 
on logistic regression from the "pROC" package in R software). The AUCs of the six independent predictive fac-
tors for predicting Cluster 1 were as follows: 0.895 for age, 0.891 for BMI, 0.597 for HGB, 0.691 for PLT, 0.749 for 
bleeding volume, and 0.666 for Urine Volume (Fig. 6B). Figure 7A–F displays the differences in age, BMI, HGB, 
PLT, bleeding volume, and urine volume between the two clusters using a box-line scatter plot.

Discussion
Construction of a prediction model for blood transfusion in patients undergoing THA, based 
on SML and its clinical significance
LASSO regression and the Random Forest algorithm are extensively utilized for selecting predictive factors in 
disease data analysis. Liang et al. discovered that the platelet-to-lymphocyte ratio was an autonomous risk factor 
and had a correlation with the severity of AS. They used LASSO regression to conduct statistical  analysis27. Gao 
et al. employed the Random Forest regression model to forecast distant metastases subsequent to stereotactic 
body radiation therapy for early-stage non-small cell lung  cancer28. In this research, we employed LASSO regres-
sion and the Random Forest algorithm to identify predictive factors of patients undergoing THA who received 
blood transfusions in the perioperative phase. We identified 11 predictive factors that intersected, including Age, 
BMI, Bleeding Volume, HR, Colloid, Urine Volume, HCT, PLT, Ccr, HGB, and TXA (Fig. 2D). We constructed 
predictive models utilizing univariate and multivariate logistic regression techniques. Finally, six independent 
predictive factors were revealed, including Age, BMI, Bleeding Volume, Urine Volume, and PLT. As mentioned 
in the introduction section of this paper, blood transfusion is independently associated with increased morbid-
ity and mortality in THA. The constructed model demonstrated good accuracy in predicting whether patients 
would receive a blood transfusion, with an AUC of 0.899 (Fig. 3F). The model allows clinicians to clinically 
anticipate whether patients undergoing THA will require blood transfusions during the perioperative phase using 
preoperative data such as Age, BMI, Bleeding Volume, Urine Volume, and PLT. With the aid of this prediction 
model, clinicians can effectively assess the necessity of blood transfusions in patients undergoing THA during 
the perioperative phase and make appropriate preparations for potential adverse effects, thereby facilitating the 
implementation of precision medicine.

The orientation and interpretability of unsupervised machine learning
This study employed unsupervised machine learning, specifically K-means clustering, to categorize patients 
undergoing total hip replacement who received blood transfusions in the perioperative phase. Our decision to 
utilize K-means clustering was rooted in its suitability for this particular context. K-means clustering has several 
advantages that make it well-suited for our research objectives. Firstly, it is computationally efficient and capable 
of handling large datasets, a vital consideration in clinical studies where data can be extensive. Secondly, it is 
relatively straightforward to implement, making it accessible to researchers without extensive machine learning 
 expertise29.

In our analysis, K-means demonstrated remarkable data separation between the two patient clusters, as evi-
dent in the radargram (Fig. 6A). This separation allows for the identification of distinctive patient groups with 
varying clinical characteristics, which can have significant implications for personalized treatment plans. This 
methodological choice aligns with the ultimate goal of our research, which is to seamlessly integrate inherently 
diverse and heterogeneous clinical data without  supervision30.

Table 2.  Univariate and multivariate logistic regression used for identifying independent diagnostic factors to 
distinguish BT patients from Non-BT patients.

Clinical characteristics

Univariate logistic regression
Multivariate logistic 
regression

OR [95%CI] P-value OR [95%CI] P-value

Age 1.082 [1.039, 1.128]  < 0.001 0.924 [0.892, 0.958]  < 0.001

BMI 0.790 [0.655, 0.952] 0.013 1.210 [1.020, 1.435] 0.029

Bleeding Volume 1.008 [1.005, 1.011]  < 0.001 0.992 [0.989, 0.994]  < 0.001

HR 1.022 [0.988, 1.057] 0.213

Colloid 1.001 [1.000, 1.003] 0.165

Urine Volume 1.002 [1.000, 1.003] 0.007 0.998 [0.997, 0.999] 0.004

HCT 1.013 [0.992, 1.034] 0.238

PLT 1.007 [1.001, 1.013] 0.018 0.993 [0.988, 0.998] 0.010

CCR 0.988 [0.967, 1.010] 0.294

HGB 0.961 [0.939, 0.983] 0.001 1.032 [1.011, 1.053] 0.003

TXA 1.038 [0.240, 4.497] 0.988
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Figure 3.  Six independent predictors were evaluated using univariate and multivariate logistic regression. 
Red color piece indicates a positive correlation, while blue color piece indicates a negative correlation. The 
strength of the correlation increases with the increase in color intensity (A). The diagnostic ability of six clinical 
characteristics was assessed using ROC curves in the clinical data (B). Nomogram for predicting of patient 
who received BT (C). A nomogram represents a BT patient in THA. Red dots indicate the patient’s score and 
total score for each clinical characteristic, and arrows indicate the probability BT (D). Calibration curves for 
predicting a BT patient in THA (E). AUC of the nomogram (F).
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While we have discussed the strengths of K-means clustering, it is important to acknowledge its limitations. 
K-means is sensitive to the initial cluster centers, and different starting points may lead to different cluster 
 results31. This challenge underscores the importance of careful preprocessing and initialization strategies, which 
we meticulously addressed in our study. Furthermore, K-means clustering may not be the optimal choice for 
datasets with irregularly shaped or non-convex clusters, and in such cases, alternative approaches like density-
based clustering or hierarchical clustering may be considered.

This emphasis on unsupervised machine learning (UML) in our study is a deliberate choice. UML prioritizes 
the intrinsic characteristics of the data, enabling us to delve deeper into the fundamental features and emphasize 
the diversity of clinical traits that are relevant to medical research  hypotheses32. By doing so, we uncover latent 
structures within our data that might not be apparent using traditional, supervised machine learning methods. 
This approach not only enriches our understanding of patient diversity but also contributes to the evolving 
landscape of medical research.

In conclusion, the choice of K-means clustering in our study was driven by its appropriateness for our research 
objectives and data characteristics. It is important to consider the specific research goals and data properties 
when selecting the most suitable method. The application of UML techniques, as seen in our research, has the 
potential to yield valuable insights in the field of medical research and can serve as a powerful tool for uncover-
ing hidden patterns within clinical data. Future research may further explore the use of alternative clustering 
methods and deep learning techniques to enhance our understanding of patient diversity and improve medical 
decision-making.

Heterogeneity of clinical characteristics based on the classification of unsupervised machine 
learning
Using the clustering outcomes, we compared the variation of six independent predictors between the two clusters 
to confirm the effectiveness of unsupervised machine learning (UML) clustering. As demonstrated in Fig. 6A, 
the dissimilarity of Age, BMI, PLT, Bleeding Volume, and Urine Volume between the two clusters is substantial 
and can effectively differentiate between them (Fig. 6B). UML can efficiently categorize patients based on their 

Figure 4.  The alterations in preoperative and HGB levels at 1 h, 1 day, and 1 week among patients who 
received BT during the perioperative period (A). The alterations in preoperative and postoperative PLT levels 
at 1 h, 1 day, and 1 week in patients who received BT during the perioperative period (B). The variations in 
preoperative and postoperative HGB levels at 1 h, 1 day, and 1 week among patients who did and did not receive 
BT during the perioperative period (C). The variations in preoperative and postoperative PLT levels at 1 h, 1 day, 
and 1 week for patients who received BT during the perioperative period and those who did not (D). HGB: 
Hemoglobin, BT: Blood, PLT: Platelet.
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clinical characteristic heterogeneity, offering an understandable and significant classification of a diverse  cohort33. 
In our research, this intelligibility was reflected in the heterogeneity of Age, BMI, PLT, Bleeding Volume, and 
Urine Volume.

To conclude, UML was able to sufficiently classify 61 patients undergoing total hip replacement who received 
blood transfusions in the perioperative phase into two clusters according to their fundamental clinical attributes. 
A thorough comprehension of patient heterogeneity can detect and manage complications during the periopera-
tive period and provide beneficial guidance for the implementation of precision medicine.

Figure 5.  Silhouette Coefficient (SC) of K-means clustering algorithm which was determined the optimal 
clustering result. Peak of the broken line is the optimal value for Silhouette Coefficient (Y Axis), the optimal 
clustering results were equal to 2 (X Axis) (A). Scatter plot of 61 THA patients who received BT. Each dot in the 
figure represents a patient. The orange scatter represents cluster 1 and the blue scatter represents cluster 2 (B).

Table 3.  Six independent predictors of two clusters identified using the K-means clustering algorithm.

Clinical Characteristics

Overall Cluster 1 Cluster 2

P-Value(n = 61) (n = 44) (n = 17)

Age  < 0.001

  Mean ± SD 68.84 ± 14.54 74.98 ± 8.81 52.94 ± 14.41

  Medium[P25,P75] 72 [61, 80] 74.5 [71, 82] 53 [46, 61]

BMI  < 0.001

  Mean ± SD 21.82 ± 2.40 22.69 ± 2.11 19.56 ± 1.46

  Medium[P25,P75] 22.19 [19.83, 22.97] 22.61 [21.93, 23.39] 19.29 [18.44, 19.83]

HGB 0.250

  Mean ± SD 111.65 ± 17.26 110.28 ± 17.01 115.21 ± 17.40

  Medium[P25,P75] 111 [99, 122] 108.5 [98.75, 120.25] 118 [104, 129]

PLT 0.022

  Mean ± SD 263.23 ± 82.04 279.33 ± 83.84 221.56 ± 59.59

  Medium[P25,P75] 250 [212, 317] 273 [218, 335.5] 228 [188, 243]

Bleeding Volume 0.002

  Mean ± SD 509.84 ± 200.37 452.27 ± 146.53 658.82 ± 240.24

  Medium[P25,P75] 500 [400, 600] 475 [400, 525] 700 [500, 800]

Urine Volume 0.046

  Mean ± SD 764.43 ± 461.90 682.95 ± 374.31 975.29 ± 584.21

  Medium[P25,P75] 600 [450, 850] 575 [400, 800] 800 [600, 1300]
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Clinical significance of the combination of supervised machine learning and unsupervised 
machine learning
In this study, we developed an SML predictive model to assess the need for blood transfusion in THA patients, 
identifying six predictive factors: Age, BMI, Bleeding Volume, Urine Volume, PLT, and HGB. Based on the SML 
model, attention should be focused on these six BT-related predictive factors during the perioperative manage-
ment of THA patients, aiming to enhance preoperative preparation and improve the quality of perioperative 
care. Furthermore, to explore clinical heterogeneity in THA patients requiring BT, we applied the UML algo-
rithm based on K-means clustering. The results indicate that the UML algorithm clustered THA patients into 

Figure 6.  Radargram of 6 independent predictors in patients who were received blood transfusion during THA 
in two clusters based on K-means clustering algorithm (A). The AUCs of the six independent predictors for 
predicting Cluster 1 (B). BMI: Body Mass Index, HGB: Hemoglobin, PLT: Platelet.

Figure 7.  Box-line scatter plots of Age, Bleeding Volume, BMI, HGB, PLT, and Urine Volume between the two 
clusters (A–F). BMI: Body Mass Index, HGB: Hemoglobin, PLT: Platelet.
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two groups based on these six predictive factors. Patients in Cluster 2 exhibited significantly higher Bleeding 
Volume and Urine Volume compared to Cluster 1, while their PLT was significantly lower (Table 3). Bleeding 
Volume, Urine Volume, and PLT precisely reflect crucial indicators of effective circulating blood volume in THA 
patients. This suggests that patients in Cluster 2 may have a poorer effective circulating blood volume. The above 
results enlighten us that, in the perioperative management of THA patients requiring blood transfusion, there 
is a subset with inadequate circulating blood volume characterized by high Bleeding Volume and Urine Volume 
and low PLT. Such patients in this cluster may have unstable hemodynamics, warranting special attention from 
clinicians. In the perioperative management of patients, clinicians should first evaluate the likelihood of blood 
transfusion based on the six predictive factors from the SML model, improving preoperative preparation and 
enhancing perioperative care quality. Subsequently, post-blood transfusion in THA patients, attention should be 
directed to Bleeding Volume, Urine Volume, and PLT using the UML algorithm results, allowing timely medical 
intervention to prevent adverse perioperative events.

Surgeon’s influence and limitations
In this section, we will discuss the study’s limitations, with a specific focus on how a surgeon’s individual pref-
erences and prior experiences may have impacted our results. Factors specific to the surgeon can introduce 
data variability and influence result  interpretation34. Our research constructed a predictive model for blood 
transfusion and primarily examined the clinical diversity among patients undergoing THA surgery and receiv-
ing blood transfusions. Nevertheless, it is essential to recognize that the surgeons’ distinct surgical techniques, 
implant preferences, and perioperative practices, influenced by their experiences, can unintentionally contribute 
to clinical  diversity35. The influence of surgeon-specific factors on our findings constitutes a noteworthy limita-
tion. Future research should delve more comprehensively into this aspect, possibly through collaborations with 
surgical teams and additional data gathering. The development of standardized procedures and guidelines for 
specific surgical aspects could potentially mitigate the impact of surgeon-specific  variables3. In conclusion, while 
our study illustrates patient clinical diversity, we recognize the constraints linked to surgeon preferences and 
experiences. Addressing these limitations and integrating these factors into data analysis and interpretation is 
crucial for a more profound comprehension of patient outcomes.

Additionally, there are other limitations in our current study that need to be acknowledged. First, the par-
ticipants were recruited exclusively from a single center. Second, given that this is a retrospective study, there 
is the potential for selection bias. Furthermore, it is possible that the surgeon’s individual preferences and prior 
experiences could have influenced the study’s outcomes.

Conclusion
Age, BMI, PLT, HGB, Bleeding Volume, and Urine Volume were identified as independent predictors of whether 
a THA patient requires a blood transfusion. The predictive model constructed based on these six independent 
predictors displayed remarkable predictive performance. Unsupervised machine learning (UML) can offer a 
clear and meaningful classification of a diverse cohort of THA patients who received BT.

Data availability
The original contributions presented in this study are available in the article/supplementary material. More 
inquiries can be directed to the corresponding authors.
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