
1

Vol.:(0123456789)

Scientific Reports |         (2024) 14:1717  | https://doi.org/10.1038/s41598-024-51232-2

www.nature.com/scientificreports

A hierarchical approach 
for evaluating athlete performance 
with an application in elite 
basketball
Thiago de Paula Oliveira 1,2,3* & John Newell 1,2

In this paper, we present the ON score for evaluating the performance of athletes and teams that 
includes a season-long evaluation system, a single-game evaluation, and an evaluation of an athlete’s 
overall contribution to their team. The approach used to calculate the ON score is based on mixed-
effects regression models that take into account the hierarchical structure of the data and a principal 
component analysis to calculate athlete rating. We apply our methodology to a large dataset of 
National Basketball Association (NBA) games spanning four seasons from 2015–2016 to 2018–2019. 
Our model is validated using two systematic approaches, and our results demonstrate the reliability 
of our approach to calculate an athlete’s performance. This provides coaches, General Managers 
and player agents with a powerful tool to gain deeper insights into their players’ performance, 
make more informed decisions and ultimately improve team performance. Our methodology has 
several key advantages. First, by incorporating the hierarchical structure of the data, we can obtain 
valuable information about an athlete’s contribution within their team. Second, the use of principal 
component analysis allows us to calculate a single score, the ON score, that captures the overall 
performance of an athlete. Third, our approach is based on classical restricted likelihood methods, 
which makes the calculation faster than Bayesian methods typically requiring 1000 posterior samples. 
With our approach, coaches and managers can evaluate athletes’ performance throughout the 
season, compare athletes and teams over a year, and assess an athlete’s performance during a single 
game. Our methodology can also complement other ratings and box score metrics to provide a more 
comprehensive assessment of an athlete’s performance as our method uses the hierarchical nature 
of performance data (i.e. player nested within team over season) which is typically ignored in player 
rating systems. In summary, our methodology represents a significant contribution to the field of 
sports analytics and provides the foundation for future developments.

Over the past decade, the employment of sophisticated statistical methods in sport has grown increasingly 
significant for evaluating the performance of teams and athletes1–3. These methods are most prevalent in bas-
ketball, ice hockey, and football, where the objective is to create rating systems that gauge the quality of athletes 
and teams3. Although team ratings have been established, devising individual ratings for athletes within a team 
remains challenging. As a result, pinpointing and quantifying each athlete’s individual contribution during a given 
season is vital for clubs, coaches, and managers to identify and recruit talented, undervalued athletes. According 
to Hass and Craig4, ratings can also be useful for sports enthusiasts wishing to evaluate the performance of their 
favourite athletes or teams. Moreover, these ratings can be applied to video games, as demonstrated by research 
from Baayen et al.5 and Matano et al.6. Specifically, rating systems in video games can be utilised to assess the 
skills of virtual athletes and enhance the overall gaming experience.

In basketball for example, various factors, such as shot attempts, assists, rebounds, turnovers, blocked shots, 
fouls, and others, have been employed to establish criteria for evaluating athletes3,7,8. However, in order to avoid 
subjective assessments, which are often biased, the development of statistical learning algorithms is necessary9. 
Regrettably, a considerable number of research studies on athlete ratings have been published without peer 
review, as noted by Hvattum3, with some even described in internet blog posts, such as the Athlete Efficiency 
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Rating (PER). According to these authors, Bayesian or likelihood-based models, as well as logistic, ridge, or lasso 
regression, are the most commonly used statistical methods for calculating athlete ratings, with some employing 
simple calculations. Although some of these approaches incorporate advanced statistical methods for calculat-
ing ratings10–13, no method has yet been developed to account for hierarchical structures in the calculation of 
athlete ratings.

In this context, incorporating a natural variance-covariance structure can offer specific insights into the 
impact of athletes within a team by season, enabling clubs and coaches to more effectively assess the technical 
and tactical efficiency of their athletes or compare them across matches or seasons12,14. Moreover, the creation 
of less subjective athlete evaluations can prove beneficial for club management, athletes, fans, games, and the 
media. Alongside the aforementioned variables, other aspects such as player positions, roles, and team strategies 
ought to be taken into account when determining athlete ratings. For instance, point guards in basketball may 
be assigned a higher rating if they excel in assists and ball handling, while centres might receive a higher rating if 
they are proficient in rebounds and blocked shots. Furthermore, an athlete’s performance impact on their team’s 
overall success should be considered when calculating ratings.

Utilising mixed-effects regression models can present a promising alternative for assessing the performance 
of athletes and teams throughout a season. When multiple outcomes or covariates are repeatedly measured 
within a group of individuals, randomly chosen from one or more populations, a multilevel model can shed light 
on how each athlete contributes to their team during a season15–17. For example, when developing a new rating 
to gauge an athlete’s contribution across multiple games using n explanatory variables in the linear predictor, 
a multilevel model can help ascertain how each athlete contributes to their team over the course of a season18. 
Multilevel models boast several advantages over traditional statistical methods, such as employing Restricted 
Maximum Likelihood (REML) to obtain more accurate estimates of variance components and the ability to 
handle unbalanced data and missing data15,19. Furthermore, multilevel models can offer higher statistical power 
in the presence of missing data, reduce the standard errors of the estimators and can accommodate different 
forms of random effects17.

In this paper, we introduce a novel method for assessing the performance of athletes and teams, specifi-
cally focusing on an athlete’s contribution to their team throughout a season, a metric for comparing athletes 
and teams across a season, and an evaluation for examining athletes during individual matches. Our approach 
utilises principal components to determine an athlete’s rating and employs mixed-effects regression models to 
accommodate the hierarchical structure of the data. While our initial application centres on basketball data, the 
methodology can be readily extended to other sports.

Example of application in the NBA data
In this section, we apply the proposed methodology to a large dataset of NBA games covering the 2015–2016 
to 2018–2019 seasons, i.e. four NBA seasons in total. In a typical season, each of the 30 teams plays 82 games, 
resulting in a total of 1230 regular-season games played during the season. With four seasons in our dataset, we 
have 4920 regular games and 900 athletes available in the database resulting in a varying number of repeated 
measurements per athlete within a team in a season, as shown in Fig. 1a. The number of repeated measurements 
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Figure 1.   (a) Histogram displaying athlete game participation across 26 NBA Teams for each season, and (b) 
Heatmap of Pearson correlation between 22 pairs of performance variables with hierarchical clustering.
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can vary between 1 and 82 during the season, which makes it difficult to evaluate the performance of athletes 
when they only play a few games, as we do not have enough information about their performance during the 
season. A low number of repeated measures could occur when an athlete is affected by injury, as discussed by 
Deitch et al.20.

Figure 1b shows a heatmap showing the Pearson correlation coefficient between each pair of variables together 
with hierarchical clustering based on Ward’s hierarchical agglomerative clustering method21,22. The heatmap 
shows two main groups of variables: The first group includes physical, block and rebound information, while 
the second group includes offensive and defensive metrics. The variables generally show moderate negative or 
positive correlation with each other, with some high correlations (as expected) between height and weight and 
between attempted and scored points.

Table 1 shows the sample mean, standard deviation, coefficient of variation and PCA-based weight (W) 
for the 22 response variables. It is interesting to note that the athletes’ height has a low coefficient of variation, 
indicating almost complete equality between the athletes, while the number of fouls drawn during the game has 
a high coefficient of variation, indicating that the athletes vary in their ability to draw fouls during the game. 
When we multiply the scaled response variables by their respective coefficient of variation, all with the high-
est coefficient of variation have high control over the influence of the early principal components, but do not 
necessarily affect the ON score, in the same way, as shown by the PCA-based weight in Table 1. Therefore, it is 
important to consider both the coefficient of variation and the PCA-based weight to understand the influence 
of each response variable on the ON score.

An important aspect of our methodology, as indicated in Table 1, is the flexibility it offers practitioners in 
selecting input variables. While each variable uniquely influences the model, guided by its coefficient of varia-
tion and PCA-based weight, practitioners have the discretion to determine which variables are most relevant for 
their specific context. This is not a weakness of the method but rather an advantage, empowering users to tailor 
the model to their needs. This adaptability highlights the model’s applicability across different sports analytic 
scenarios. However, it is important to understand that altering input variables can affect the model’s covariance 
structure and PCA weights, and thus the stability of the ON score.

After calculating the ON score for each player in each game, we included it as a new response variable in 
a multilevel model containing the corresponding hierarchical structure and main and interaction effects such 
as rookie, position and game location. The aim was to identify the systematic effects of these variables on the 
ON score. To this end, we fitted the model (3) adding all first-order interaction effects and followed the model 
selection procedure outlined in the Methods section. The results of the analysis of variance type III using the 
Satterthwaite method to calculate the correct degrees of freedom and the corresponding p-values of the F-test 
statistics for the main effects and interactions can be found in Table 2.

We ran a mixed-effects ANCOVA model to examine the factors explaining variation in the ON score. The 
full model included all first-level interaction effects between the explanatory variables. A comprehensive list of 
all covariates considered, including those used in the initial stages of model development for the ON score, a 
summary of the model parameters containing estimates, standard errors, and t-tests based on Satterthwaite’s 
method can be found in the “Supplementary Material”. The analysis, as detailed in the full model, revealed signifi-
cant two-way interaction effects. These findings provide evidence that the ON score is influenced by a complex 
interplay of factors. Specifically, interactions among various player characteristics and game-related variables 
contribute uniquely to the ON score. This highlights the intricate and multi-factorial nature of determining 
player performance in elite basketball, as captured by the ON score.

The variance component estimates were σ̂1 = 0.005136 for the season, σ̂23 = 0.007496 for the athlete within 
the team within the season, and σ̂ = 0.012019 for the error term. Because the estimate of σ2 was close to zero, 
we fitted a reduced nested model that included only one variance component to explain within-season athlete 
variability ( ̂σ23 ). We then tested the hypothesis H0 : σ

2
2 = 0 versus Ha : σ

2
2 > 0 using a likelihood ratio test based 

on a mixture of two χ2 distributions. The results of the test showed strong evidence that there is no exclusive 
variance component term for the team (p-value ≈ 1).

Table 1.   Sample mean, standard deviation (SD), coefficient of variation (CV) and estimated PCA-based 
weight ( Ŵ ) used to calculate the ON for each response variable.

Response Mean SD CV Ŵ Response Mean SD CV Ŵ

Height 200.82 8.72 0.04 − 0.0095 Off reb. 0.96 1.35 1.41 0.6155

Weight 99.81 11.40 0.11 0.0556 Def. reb. 3.20 2.75 0.86 0.3802

Age 28.73 4.46 0.16 − 0.1587 Ast 2.19 2.48 1.13 1.9438

Fg2Pt att. 5.51 4.44 0.81 1.6182 Pts 10.06 8.12 0.81 1.7776

Fg2Pt made 2.79 2.59 0.93 1.8569 Tov 1.28 1.39 1.08 0.3196

Fg3Pt att. 2.65 2.71 1.02 0.6787 Stl 0.73 0.97 1.34 0.4579

Fg3Pt made 0.95 1.32 1.39 1.8344 Blk 0.46 0.84 1.82 − 0.4559

Fg att. 8.15 5.64 0.69 1.3132 Blk against 0.46 0.76 1.64 − 1.5967

Fg made 3.73 3.03 0.81 1.8512 Min. seconds 1366.42 620.54 0.45 0.4390

Ftatt. 2.15 2.77 1.28 0.9371 Fouls 2.65 2.41 0.91 1.5422

Ft made 1.65 2.27 1.38 1.4119 Fouls drawn 0.50 1.34 2.70 0.3843
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We calculated the intraclass correlation coefficient (ICC) to determine the proportion of variability in the 
ON score that could be attributed to the different levels of the hierarchy. We found that season explained approx-
imately ICC1 = 30.41% of the total variability in the data, while season and athlete within team explained 
ICC3 = 51.24% in a season. This suggests that there is a high level of variation between athletes within a team 
within a season explained by the model.

In addition, the ON score can be adjusted for different combinations of venue, position and rookie. Com-
bined with random effects prediction (BLUPs), this allows for specific evaluations of athletes over the course 
of the season per team or between teams, as well as comparisons of teams, athletes or athletes within a team 
during the season. In this sense, we can use the median and interquartile range of conditional means, as defined 
in the Methods section, as a way to rank athletes based on point and interval estimates. Table 3 shows the top 
10 athletes for the 2017–2018 and 2018–2019 seasons, where we can see that James Harden, Russell Westbrook 
and LeBron James occupy the first, second and third positions, respectively, for both seasons based on the point 
estimate of γ (R)

ijk .
The analysis of the 95% confidence interval reveals interesting findings about the athlete’s relevance. For 

instance, James Harden did not differ significantly from Russell Westbrook and LeBron James in 2017–2018; 
however, in 2018–2019, he had a significant difference from them, becoming the most relevant athlete. The 
confidence interval for γ̃ (R) of James Harden between both seasons did not overlap, indicating that Harden 
had a significant improvement in relevance in 2018–2019 compared to 2017–2018. It is worth noting that just 

Table 2.   Type III analysis of variance table with Satterthwaite’s method.

Source of variation Sum sq. Mean sq. Num. DF Den. DF F value Pr (> F)

Venue 0.0163 0.0163 1 101802.28 112.936 < 0.0001

Position 0.0554 0.0092 6 2569.76 63.948 < 0.0001

Rookie 0.0075 0.0075 1 2286.54 51.658 < 0.0001

poly(Pts, 3) 26.8573 8.9524 3 103315.16 61976.612 < 0.0001

poly(Blk against, 2) 4.8755 2.4377 2 102407.81 16876.060 < 0.0001

poly(Ast, 3) 11.4443 3.8148 3 103364.51 26409.192 < 0.0001

poly(Ft att, 2) 0.7208 0.3604 2 102581.40 2494.899 < 0.0001

poly(Off reb, 2) 3.5147 1.7573 2 102756.52 12165.880 < 0.0001

Interactions 6.2316 0.0878 71 102487.02 607.618 < 0.0001

Table 3.   Top 10 athletes of seasons 2017–2018 and 2018–2019 based on relevant score 
(
γ̃
(R)
ijk

)
 and it 95% 

confidence interval, with addition of min–max scaled 
(
γ̃
∗(R)
ijk

)
 version of γ̃ (R)

ijk  , and the number of games (NG) 
played.

Rank Season Athlete γ̃
(R) Lower Upper γ̃

∗(R) NG

1 2017–2018 James Harden 1.2050 1.1970 1.2153 77.71 72

2 2017–2018 Russell Westbrook 1.2014 1.1906 1.2086 77.13 80

3 2017–2018 LeBron James 1.1979 1.1837 1.2026 76.57 82

4 2017–2018 Stephen Curry 1.1874 1.1729 1.1965 74.90 51

5 2017–2018 Giannis Antetokounmpo 1.1863 1.1716 1.1917 74.72 75

6 2017–2018 Damian Lillard 1.1847 1.1734 1.1909 74.47 73

7 2017–2018 Anthony Davis 1.1826 1.1660 1.1895 74.13 75

8 2017–2018 DeMarcus Cousins 1.1773 1.1685 1.1920 73.28 48

9 2017–2018 Devin Booker 1.1724 1.1554 1.1831 72.49 54

10 2017–2018 Kevin Durant 1.1714 1.1616 1.1802 72.33 68

1 2018–2019 James Harden 1.2361 1.2226 1.2441 82.69 78

2 2018–2019 Russell Westbrook 1.1988 1.1858 1.2037 76.72 73

3 2018–2019 LeBron James 1.1956 1.1867 1.2062 76.20 55

4 2018–2019 Blake Griffin 1.1919 1.1728 1.1953 75.61 75

5 2018–2019 Paul George 1.1901 1.1814 1.2007 75.32 77

6 2018–2019 Joel Embiid 1.1874 1.1758 1.2001 74.90 64

7 2018–2019 Giannis Antetokounmpo 1.1870 1.1784 1.1996 74.82 72

8 2018–2019 Devin Booker 1.1865 1.1740 1.1997 74.75 64

9 2018–2019 Kawhi Leonard 1.1848 1.1683 1.1891 74.48 60

10 2018–2019 Anthony Davis 1.1812 1.1624 1.1911 73.90 56
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classifying athletes based on their point estimates can induce classification bias. Hence, to avoid such bias, we 
recommend using both point and interval estimates when comparing athletes.

To further improve the evaluation of athletes, we can combine the results of the relevance score 
(
γ̃ (R)

)
 with 

the consistency score 
(
γ̃
(CS)
athlete

)
 . The consistency score measures whether an athlete’s in-season performance was 

below, close to or above the expected performance within the team, as shown in Table 4. Combining both scores 
can provide a more complete and accurate assessment of an athlete’s performance, especially when comparing 
athletes.

High values of γ̃ (CS)
athlete indicate athletes who perform better than expected on their team within the season, 

values close to zero represent athletes who perform as expected, and high negative values represent athletes who 
perform worse than expected. However, it is important to note that a high consistency score does not necessarily 
mean that an athlete is the best player on their team or in that season. For example, DeMarcus Cousins had a 
much higher than expected consistency score for the Pelicans team in 2017–2018, but he is not necessarily the 
best athlete on the team or in the season, despite being listed as one of the 10 most relevant athletes in Table 3.

Russell, on the other hand, has consistently performed better than expected on his team since 2016–2017, 
where he ranked 6th with a Consistency Score of 0.0163 and a 95% confidence interval of [0.0134, 0.0193]. There-
fore, the consistency score can also be used as a statistic to measure the performance of an investment strategy.

To better represent the γ̃ (CS)
athlete score, we can use the density plot in Fig. 2, which shows the distribution of 

score values by team for a given season.
The γ̃ (CS)

athlete score is a measure of an athlete’s performance compared to the expected performance within 
their team within the season. Athletes with a high positive score have performed better than expected, while 
athletes with a score close to zero have performed as expected and athletes with a high negative score have 
performed worse than expected. For example, DeMarcus Cousins performed much better than expected for the 
Pelicans team in the 2017–2018 season, but that does not necessarily make him the best athlete on the team or 
in the season, even if he is ranked in the top 10 most relevant athletes (Table 3). Another interesting example is 
James Harden, who ranked 34th in 2017–2018 with a value of 0.0120 [0.0092, 0.0148], but moved up 25 places 
in 2018–2019 with a value of 0.0181 [0.147, 0.0215] (Table 4). This suggests that Harden has tried harder and 
performed much better than expected in 2018–2019, which is directly reflected in his Relevance Score Index.

The consistency score can also be used as a measure of the performance of an investment strategy. A team 
with left-skewed density indicates that most athletes perform better than expected, while a right-skewed density 
indicates that most athletes perform less than expected. However, this measure cannot be used to compare teams 
because a team with a left-skewed density is not necessarily better than a team with a right-skewed density.

Take the Cavaliers team in the 2015–2016 season as an example, three of their athletes, Kevin Love, J.R. Smith 
and Channing Frye, performed much better than expected, while Tristan Thompson performed worse than 
expected while the other athletes on the team performed as expected.

Table 4.   Ratings of the top 10 athletes by season who performed better than their expected performance 
within the team, with the addition of 95 per cent confidence intervals for γ (CS)

athlete generated using 10,000 Monte 
Carlo simulations.

Rank Season Team athlete Pos. γ̃
(CS)
athlete

Lower Upper

1 2017–2018 Pelicans DeMarcus Cousins C 0.0273 0.0211 0.0336

2 2017–2018 Nuggets Nikola Jokic C 0.0198 0.0160 0.0236

3 2017–2018 Grizzlies Marc Gasol C 0.0192 0.0101 0.0284

4 2017–2018 Thunder Paul George SF 0.0189 0.0161 0.0216

5 2017–2018 76ers Joel Embiid C 0.0182 0.0119 0.0245

6 2017–2018 Pistons Blake Griffin PF 0.0177 0.0149 0.0205

7 2017–2018 Clippers Blake Griffin PF 0.0171 0.0141 0.0201

8 2017–2018 Timberwolves Karl-Anthony Towns C 0.0160 0.0133 0.0188

9 2017–2018 Suns Devin Booker SG 0.0159 0.0129 0.0189

10 2017–2018 Thunder Russell Westbrook PG 0.0156 0.0118 0.0193

1 2018–2019 Pistons Blake Griffin PF 0.0235 0.0176 0.0294

2 2018–2019 Warriors DeMarcus Cousins C 0.0224 0.0194 0.0254

3 2018–2019 76ers Joel Embiid C 0.0213 0.0186 0.0241

4 2018–2019 Nuggets Nikola Jokic C 0.0213 0.0156 0.0270

5 2018–2019 Thunder Paul George SF 0.0212 0.0183 0.0241

6 2018–2019 Timberwolves Karl-Anthony Towns C 0.0208 0.0178 0.0237

7 2018–2019 Grizzlies Marc Gasol C 0.0199 0.0159 0.0240

8 2018–2019 Thunder Russell Westbrook PG 0.0184 0.0136 0.0232

9 2018–2019 Rockets James Harden SG 0.0183 0.0132 0.0234

10 2018–2019 Pelicans Julius Randle C 0.0181 0.0147 0.0215
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A density plot of γ̃ (CS)
athlete scores by team and season is shown in Fig. 2. The standard deviation of the scores will 

be small if the athletes are close to their expected performance, resulting in scores close to zero. A right-skewed 
distribution indicates that most athletes perform less than expected, while a left-skewed distribution indicates 
that most athletes perform more than expected.

Model performance
To evaluate the performance of our model without the need for a model update as new data are generated we 
compared the ON scores from a model fitted to a portion of the data to the ON scores from a model using the 
complete data. We first split the data into training and test sets as described in the Methods section. We then 
fitted the model to the training set and used this model to predict the ON scores in the test set. We then refitted 
the model using the complete data and compared the true (i.e. model based on the full data) and predicted ON 
values (i.e. model based on the test data) to calculate several performance measures: the root mean square error 
(RMSE), the concordance correlation coefficient (CCC), the Pearson correlation coefficient and the accuracy 
measure Cb . The results are summarised in Table 5. We found low ON Score prediction bias for all scenarios, 
indicating that the model can calculate an athlete’s ON score with high accuracy ( Cb > 0.99 ) and precision 
( r > 0.96 ). In addition, we observed high agreement between the observed and predicted values ( CCC > 0.95 ) 
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Figure 2.   Density chart of γ̃ (CS)
athlete by a team within the season, with athletes represented by vertical bars. Values 

close to zero represent athletes whose performance is equal to the expected performance, while values below or 
above zero represent the worst or best performance, respectively, compared to the expected performance.



7

Vol.:(0123456789)

Scientific Reports |         (2024) 14:1717  | https://doi.org/10.1038/s41598-024-51232-2

www.nature.com/scientificreports/

with narrow 95% confidence intervals. These results suggest that our model is a reliable tool for predicting ON 
scores for new games or seasons.

Thus, since we have shown that the predictions based on our proposed model are not biased, we can confi-
dently use it to predict the ON score. This justifies the use of the model as an ’on the fly’ approach for calculating 
ON scores and removes the necessity to rerun the model after each game as opposed to an end of season update 
for example. Moreover, the prediction with the multilevel model is as fast as the calculation of the ON based on 
the PCA. The main difference, however, is that for our model we use five response variables measured during the 
game to make predictions, whereas with PCA the number of variables required increases to 22.

It is crucial to emphasize that the validation results also demonstrate the model’s efficiency in terms of time 
and applicability. The model’s ability to accurately predict ON scores without the need for frequent re-fitting 
with new data is a significant advantage. Although assuming a static covariance matrix has its limitations, our 
model’s consistent performance underscores its robustness and real-time applicability in sports analytics. Future 
efforts will focus on enhancing adaptability to changing game dynamics. The primary challenge is fitting complex 
models efficiently, especially when data is received faster than computational processing can accommodate.

The stability of PCA weights across different seasons can be seen in Fig. 3, as demonstrated by the minimal 
variation even with the exclusion of specific seasons, underscores the robustness and wide applicability of our 
model.

A notable exception is the variable ‘FoulsDrawn,’ which emerges as an outlier (Table 6). Although its behavior 
remains difficult to explain within the current data set based on previous years, we have opted to retain it in our 
analysis. This decision aligns with our commitment to a data-driven approach, ensuring that our findings are 
comprehensive and reflective of all observed variables.

Table 5.   Summary of predictive performance with the test set, the root mean square error (RMSE), the 
concordance correlation coefficient (CCC) and its 95% confidence interval, the Pearson correlation coefficient 
(r), the accuracy measure ( Cb ), the number of observations in the test set ( NTest ) and the number of 
observations in the training set ( NTraining). * 10× 4 means a random sample of 10 games by each of 4 seasons, 
which represents 40 games

 Test set RMSE

CCC​

r Cb NTest NTrainingρ̂CCC Lower Upper

Season 2015–2016 6.810× 10−4 0.9612 0.9603 0.9622 0.9615 0.9998 28,978 81,369

Season 2016–2017 8.492× 10−4 0.9558 0.9548 0.9568 0.9631 0.9925 29,099 81,248

Season 2017–2018 8.254× 10−4 0.9562 0.9553 0.9572 0.9627 0.9932 26,165 84,182

Season 2018–2019 8.892× 10−4 0.9526 0.9515 0.9537 0.9598 0.9925 26,105 84,242

10× 4 = 40 Games∗ 6.831× 10−4 0.9639 0.9569 0.9710 0.9647 0.9992 877 103,289

50× 4 = 200 Games 6.862× 10−4 0.9637 0.9597 0.9677 0.9643 0.9993 4,218 99,948

150× 4 = 600 Games 6.882× 10−4 0.9637 0.9617 0.9758 0.9644 0.9993 11,925 92,201

FoulsDrawn4

0
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30
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Figure 3.   Variability of PCA weights with seasonal data exclusion in elite basketball performance analysis, 
where the black point represents the mean PCA weight.
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The consistent pattern observed in PCA scores within each season, marked by negligible deviations, highlights 
the model’s ability to deliver consistent interpretations of performance. Moreover, our hierarchical analytical 
approach effectively captures the complex dynamics of team and player interactions, thereby enriching the 
interpretability of performance metrics. The model’s predictive prowess is further evidenced by low RMSE (Root 
Mean Square Error) and high CCC (Concordance Correlation Coefficient) values, signifying the PCA’s critical 
role in efficiently distilling predictive insights from diverse athlete performance metrics.

Finally, we have developed a user-friendly and interactive Shiny web application for our proposed model. 
The application can be accessed at https://​doi.​org/​10.​5281/​zenodo.​77879​51. Our app provides a comprehensive 
set of features including descriptive analysis, model diagnostic, model prediction, and other important statistics. 
With this tool, users can easily explore and verify the results of our model in a convenient and efficient manner. 
We believe that our Shiny app will be a valuable resource for researchers and practitioners in the field.

Comparison of ON with other metrics
In the scientific literature, the most commonly used metrics to evaluate individual athletes by team are plus-
minus ratings, Athlete Efficiency Rating (PER) and the ESPN score called Real Plus-Minus (RPM). The adjusted 
plus-minus ratings were proposed by Rosenbaum23, who explicitly modelled the offensive and defensive ratings 
for each athlete using a linear regression approach24. In general, an athlete’s plus-minus is calculated as the differ-
ence between their team’s points and the opposing team’s points while they are in the game. RPM was developed 
by Ilardi25 using a Bayesian approach and extensive out-of-sample testing to improve the adjusted plus-minus. 
PER26, on the other hand, calculates the rating of an athlete’s performance per minute as the difference between 
the sum of their positive performances and the sum of their negative performances26.

However, none of these statistical methods take into account the hierarchical structure of the data. In contrast, 
the ON score proposed in this paper uses a multilevel regression model to account for the natural hierarchical 
structure of the data (athlete within team within season). In addition, the consistency score derived from the 
model provides valuable information on how much an athlete contributes to the team within a season, which 
cannot be determined using traditional metrics. This solves the issue of determining the contribution of indi-
vidual athletes using plus-minus statistics, as discussed by Hvattum3.

Thus, coaches or managers could use the ON score and the consistency score as tools to assess the value of 
an athlete’s contribution to their team in a given season or over multiple seasons. In comparison, the plus-minus 
ratings, PER and RPM are useful but limited in their ability to address the hierarchical structure of the data and 
provide specific information about an athlete’s contribution within a team.

Figure 4 shows the median relevance score, γ (R)
ijk  , against RPM and PER for the seasons 2017–2018 and 

2018–2019.
We note that our data set for the 2017–2018 and 2018–2019 seasons includes 534 and 514 athletes, respec-

tively. However, we found that only 496 and 478 athletes had RPM and 342 and 346 athletes had PER for each 
of these seasons, respectively. We also found a moderate correlation between γ (R)

ijk  and RPM by season ( r = 0.52 

and r = 0.57 ) and a similarly moderate correlation between γ (R)
ijk  and PER by season ( r = 0.68 and r = 0.70 ). 

However, the correlation between γ (R)
ijk  and PER was slightly higher than the correlation between γ (R)

ijk  and RPM, 
suggesting that the metric PER may not be completely context-agnostic, as discussed by Deshpande and Jensen13.

We should expect a moderate Pearson correlation between γ (R)
ijk  and PER, since the ON score also takes into 

account points, assists, rebounds, fouls and other performance criteria. This underlines the relevance of the ON 
score as an effective and context-sensitive measure for assessing athletes’ performance, especially when compared 
to more context-agnostic metrics such as RPM.

While we observed moderate values of Pearson correlation between relevance score and RPM or PER, we 
should also consider cases where these metrics do not match in terms of γ (R)

ijk  . For example, in the 2017–2018 
season, James Harden, Stephen Curry and Anthony Davis were found to have high values of γ (R)

ijk  , PER and RPM, 
respectively, while in the 2018–2019 season Giannis Antetokounmpo, James Harden and Anthony Davis had 
higher values of these metrics.

On the other hand, we found discrepancies between the metrics when looking at Chris Paul’s performance. 
Based on RPM, Paul was ranked 1st, while based on PER and γ (R)

ijk  , he was ranked 15th and 18th, respectively. 
This illustrates how RPM can make it challenging to compare athletes across teams, as discussed by Hvattum3. 
Using the γ (CS)

athlete score, we found that Chris Paul had a consistency score of ̃γ (CS)
athlete = 0, 0108 ( [−0.0015, 0.0232] ), 

ranking third on the Rockets’ team behind James Harden and Trevor Ariza. Although Chris Paul’s contribution to 

Table 6.   Mean and Standard deviation for ‘FoulsDrawn’ given the season.

Season Mean SD

2015–2016 0.0000 0.0000

2016–2017 0.0039 0.1363

2017–2018 0.0125 0.2416

2018–2019 1.9738 2.0597

https://doi.org/10.5281/zenodo.7787951
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Figure 4.   Comparison of Relevance Score ( γ (R)
ijk  ) to RPM (a,b) and PER (c,d) by season.
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Figure 5.   Russell Westbrook results for the seasons 2016–17, 2017–18, and 2018–19.
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the team was not significantly different from Harden’s and Ariza’s, he had higher variability in his contributions, 
as reflected in his lower rank based on γ (R)

ijk  and PER compared to RPM.
In contrast, Russell Westbrook’s performance in the 2018–2019 season was ranked 2nd, 35th and 42nd by γ (R)

ijk  , 
PER and RPM respectively, so in this case RPM and PER were more in line with each other than with relevance 
value. Figure 5 illustrates Westbrook’s results in the 2016–17, 2017–18 and 2018–19 seasons. In the 2018–19 sea-
son, he had fewer offensive scores for Fg, Fg2Pt and Ft compared to the other seasons, but had his highest number 
of assists (10.7), fouls drawn and steals, combined with his lowest number of fouls and turnovers that season.

The relevance score in this case is an indication that Westbrook had a more technically impressive season in 
2018-2019, as he drew more fouls. This metric reflects an effective way for a team to gain an advantage and score 
more points or get opposing athletes into foul trouble, potentially forcing them out of the game. Furthermore, the 
estimates of the consistency values and corresponding 95% confidence intervals for Westbrook in these seasons 
were 0.0163 ( CI95%[0.0134, 0.0193] ), 0.0156 ( CI95%[0.0118, 0.0193] ) and 0.0184 ( CI95%[0.0136, 0.0232] ), suggest-
ing that Westbrook is consistently performing above expected levels for his team, with the 2018-19 estimate being 
higher. Taken together, then, γ (R)

ijk  and γ (CS)
athlete provide a more comprehensive assessment of an athlete’s perfor-

mance. It is important to note that coaches may also consider the use of RPM and PER to inform their decisions.

ON and impact score
The Impact Score, introduced in 2016 by Deshpande and Jensen13, is a popular method of evaluating athletes 
that uses linear Bayesian regression to create a single ranking of all athletes in the league based on a full posterior 
analysis. While the authors show that the posterior distribution of teams can be useful to take into account the 
contributions of athletes within their team, our Consistency Score presented in the Methods section offers a dif-
ferent approach to evaluating athletes’ performance that also takes into account their contribution to the team.

A notable advantage of our approach is the use of classical restricted likelihood methods proposed by Laird 
and Ware in 1982, which allow for faster computation than the Bayesian framework used by Deshpande and 
Jensen13. Our model predictions are also suitable for use during a match, allowing coaches and clubs to calculate 
the time specific adjusted ON score in just a few seconds.

Another important difference between the two approaches is the inference for each athlete. Deshpande and 
Jensen13 showed that their 1000 posterior samples used to calculate the 95% credible intervals for each ath-
lete’s partial effects-based rank had a wide range, with the 95% credible interval for LeBron James’ rank being 
[3, 317]. In contrast, the 10,000 Monte Carlo simulations from the Consistency Score posterior distribution 
using empirical Bayes inference showed narrower 95% confidence intervals than those found by Deshpande 
and Jensen (2016)13, as shown in Table 4. Overall, both the impact score and the consistency score can provide 
useful information for assessing athlete performance, but they offer different approaches to achieving this goal.

Final remarks and future work
This paper has introduced a transformative methodology for sports analytics, applicable across various sports, with 
a particular focus on basketball. By integrating hierarchical data structures and developing a novel consistency score, 
we have demonstrated a method that significantly enhances understanding of athlete contributions within teams. The 
low bias of the ON model and the high precision and accuracy of our predictions make our methodology a powerful 
tool that can substantially reduce the number of predictors to be recorded during a game.

Furthermore, the approach presented in this paper is applicable to all sports where a valid composite metric 
is required which is adjusted for the hierarchical structure of the data (i.e. player within position with team over 
time) using a multilevel regression model. The composite could be based on performance metrics, as in the 
NBA example presented, or indeed for workload metrics if a composite is required for assessing a players overall 
workload based on training load or in game workload metrics (e.g. distance covered, high intensity running etc).

In conclusion, our study marks a significant advancement in sports analytic, particularly for basketball. Future 
research should integrate expert assessments from coaches and players for qualitative validation of the ON score 
methodology. Longitudinal analyses correlating ON scores with career metrics, along with cross-sport model 
adaptation, will further test the model’s applicability and highlight the importance of including hierarchical 
structures. Additionally, developing sport-specific hierarchical models and adapting plus-minus statistics for 
diverse data structures will refine our approach.

Methods
Data characteristics
The dataset utilised in this analysis was procured from the Basketball Reference database (https://​www.​baske​
tball-​refer​ence.​com/), a publicly accessible source of NBA data. The comprehensive database that resulted from 
this compilation is available at https://​doi.​org/​10.​5281/​zenodo.​80567​57/. This database encompasses the Win/
Loss records for all thirty teams, box scores and more advanced statistics. During a typical season, each team 
participates in 82 regular-season matches, culminating in a sum of 1230 games played. Consequently, with four 
seasons incorporated in the dataset, we account for 4920 regular-season matches available for examination.

A notable characteristic of this dataset is the varying quantity of repeated measurements per athlete within 
a team across a season. This enables the exploration of player performance within a team and for those that 
have moved to a different team. Nevertheless, it is crucial to recognise that these repeated measurements are 
not independent, and statistical methods such as hierarchical modelling must be employed to handle the data 
appropriately.

Furthermore, it is crucial to take into account potential biases or limitations within the dataset, in addition 
to its size and format. For instance, the Basketball Reference website might not incorporate data from specific 

https://www.basketball-reference.com/
https://www.basketball-reference.com/
https://doi.org/10.5281/zenodo.8056757/
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matches or may exclude particular variables, potentially impacting the quality and accuracy of the dataset. 
Moreover, the dataset might not encompass information on certain types of players or teams, which could con-
strain the generalisability of the findings. Acknowledging these limitations is essential for ensuring the validity 
and reliability of the analyses conducted using this data.

ON score
To develop the ON Score, we employ a two-stage methodology. In the initial stage, we utilise principal component 
analysis (PCA) to compute the preliminary ON index. Subsequently, in the second stage, we adjust this initial 
index with a hierarchical model, culminating in the final ON Score. The entire process is depicted in Fig. 6.

During the first stage, we commence with a vector r = [r1, r2, . . . , rn]
⊤ comprising continuous response 

variables, some of which might be correlated. We compute their sample means r̄ = [r̄1, r̄2, . . . , r̄n] and sample 
standard deviations ̄s = [s̄1, s̄2, . . . , s̄n] to standardise each element of r using the relevant sample standard devia-
tion and mean. This results in a new set of variables z = [z1, z2, . . . , zn] possessing zero mean and unit variance.

Nevertheless, PCA is not scale-invariant, and utilising the covariance matrix of z , equivalent to the correlation 
matrix of r , assigns equal weight to all response variables. This could produce unrealistic results, for instance, if 
the highest-ranked athlete does not score in a match and the lowest-ranked athlete achieves the highest score. 
In such cases, applying PCA based on the correlation matrix of r results in equivalent scores for both athletes, 
which is unrealistic.

To address this issue, we can multiply each element of z by its respective coefficient of variation (CV), a 
measure of the dispersion of a probability distribution, defined as the ratio of the standard deviation to the mean. 
Scaling by CV ensures that the variability of each response variable is suitably accounted for. The adjusted score 
a = [a1, a2, . . . , an] is obtained by multiplying each element of z by the corresponding CV. However, caution 
must be exercised when applying this approach to response variables where r̄i = 0 or when r̄i approaches zero. 
In such instances, z∗i  becomes infinite, potentially causing issues in the analysis. Therefore, we need to address 
such cases separately. Specifically, we can define

This ensures that the adjusted score remains well-defined, avoiding any issues that might arise from infinite 
values of z∗i .

Let y⊤ =
[
y1, y2, . . . , yn

]
 represent a set of uncorrelated variables, each being a linear combination of the z⊤ 

variables, expressed as

The c-th principal component (PC) is the linear combination yc = α
⊤
c z

∗ that possesses the largest sample vari-
ance, subject to the conditions α⊤

c αc = 1 and α⊤
c αc′ = 0, c′ < c . Let A denote an n× n matrix containing 

initial vectors that define the n principal components, A = [α1,α2, . . . ,αn] , and �⊤ = [�1, �2, . . . , �n] a vector 
of length n containing their corresponding variances (eigenvalues).

In our methodology, we utilize all the components derived from the Principal Component Analysis (PCA). 
This comprehensive approach allows us to capture the entire spectrum of variability within the data set. Each PCA 
component contributes to the construction of the ON score, ensuring that no significant aspect of the athletes’ 
performance data is overlooked. By incorporating all PCA components, the ON score becomes a multi-dimen-
sional vector that holistically represents athlete performance, providing a nuanced and thorough evaluation.

Utilising A and � , we can calculate a weighted matrix W as

z∗i = zi
si

r̄i
=

ri − r̄i

si

si

r̄i
=

ri − r̄i

r̄i
, |r̄i| > 0.

yc = αc1z
∗
1 + αc1z

∗
2 + . . .+ αcnz

∗
n , c = 1, 2, . . . , n.

Figure 6.   Flow chart for the construction of the adjusted ON index.
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where 1 is a vector of ones; ⊗ is the generalised Kronecker product of two arrays; ⊙ represents the Hadamard 
product, which is both associative and distributive over addition. Equation (1) demonstrates the weighted mean 
of a set αi = αc1,αc2, . . . ,αcn with corresponding non-negative weights �⊤ = [�1, �2, . . . , �n] . Consequently, 
the principal components with high variances contribute more to the weighted mean than those accounting 
for low variances.

Finally, the ON 
(
γ
(S)
)
 vector, which encompasses all scores for games and athletes, is depicted as a K-dimen-

sional vector and is expressed as follows:

where Z∗ = [z∗1 , z
∗
2 , . . . , z

∗
n] is a K × n matrix of responses used in the PCA analysis.

In the second stage, γ (S)ijkl denotes the observed score for the i-th season ( i = 1, 2, . . . , I ), the j-th team 
( j = 1, 2, . . . , J  ), the k-th athlete ( k = 1, 2, . . . ,K  ), and the l-th repeated measure of athlete k within team j 
and season i ( l = 1, 2, . . . , Lijk ) (Fig. 7). The existence of numerous repeated measurements for athletes in both 
teams and seasons results in correlated errors that must be considered in the model assumptions, alongside the 
hierarchical structure of the data.

Multilevel models are particularly advantageous in this scenario, as they adeptly model complex hierarchi-
cal structures, manage missing data effectively, and provide more interpretable fixed effects and variance com-
ponents parameters in comparison to conventional repeated measures models19. We posit that the regressor 
variables fijkl1, fijkl2, . . . , fijklM are fixed explanatory variables, measured without error, representing the fixed 
effects of venue (Home or Away), athlete’s position, rookie status, among others. Additionally, we assume that 
tijkl1, tijkl2, . . . , tijklP are continuous covariates assessed during the match. Thus, we may write the three-level 
multilevel model as follows:

where β0 is the intercept, fijkl =
[
fijkl1, fijkl2, . . . , fijklM

]
 are factor variables with m = 1, 2, . . . ,M , Ppq(·) is the q-

th order orthogonal polynomial for the p-th continuous variable tijklp with p = 1, 2, . . . , P and q = 1, 2, . . . ,Qp , 
β = [β1,β2, . . . ,βM ]⊤ , and θp =

[
θp1, θp2, . . . , θpQp

]
 are unknown fixed-effect parameters. Additionally, bi repre-

sents season random effects, bi,j represents team within season random effects, bij,k represents athlete within team 
within season random effects, and ǫijk denotes the within-group errors, which are assumed to be independent 
and identically distributed with mean zero and variance σ 2 . Furthermore, all random effects are assumed to 
be independent of each other and independent of the within-groups error. The model specification (2) can be 
expressed in matrix notation as:

(1)W =
(
1⊤n ⊗ �

)
⊙ A⊤S−1, with S =

n∑

c=1

�c ,

γ
(S) =

(
W⊤1n

)
Z∗⊤,

(2)
γ
(S)
ijkl = β0 +

M∑

m=1

βmfijklm +

P∑

p=1

Qp∑

q=1

θpq Ppq
(
tijklp

)
+ bi + bi,j + bij,k + ǫijkl

bi ∼ N
(
0, σ 2

1

)
, bi,j ∼ N

(
0, σ 2

2

)
, bij,k ∼ N

(
0, σ 2

3

)
, ǫijk ∼ N

(
0, σ 2

)

(3)
γ
(S)
ijk = Xijkβ

∗ + zi,jkbi + zij,kbij + zijkbijk + ǫijk ,

bi ∼ N
(
0, σ 2

1

)
, bi,j ∼ N

(
0, σ 2

2

)
, bij,k ∼ N

(
0, σ 2

3

)
, ǫijk ∼ N

(
0, σ 2I

)

Figure 7.   Hierarchical structure of basketball database.
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where zi,jk is a Lijk-dimensional vector for the random effects of season on measurements for team j and athlete 
k within team; zij,k is a Lijk-dimensional vector for the random effects of team j within season i on measurements 
for athlete k; and zijk is a Lijk-dimensional vector for the random effects for athlete k within team j and season i. 
As a consequence of the hierarchical structure, we can write zi,jk = zij,k = zijk = [1, 1, . . . , 1]T.

Furthermore, bi , bij , and bijk are random effects of season, team within season, and athlete within team and 
season, respectively; and ǫijk is the vector of within-group errors. Here, Xijk should be viewed as a partitioned 
matrix given by

where 1 represents a vector of ones related to the overall mean ( β0 ); Fijk is the design matrix containing fixed 
effects of factor variables, which are categorical ones that can be either numeric or string variables; Pijk is an 
orthogonal matrix built using the Gram-Schmidt process to form orthogonal polynomials for each of the p-th 
continuous covariate. Clearly, the matrix Xijk can be extended to accommodate interaction effects between 
explanatory variables. Furthermore, β should be viewed as a vector containing all fixed effects parameters, that is, 
β =

[
β
⊤, θ⊤

]⊤ . Therefore, in terms of the hierarchical model, the conditional multilevel model can be written as 
γ
(S)
ijk |bi,jk , bij,k , bijk ∼ N

(
Xijkβ

∗ + zi,jkbi + zij,kbij + zijkbijk , σ
2I
)
 , and then marginally γ (S)

ijk ∼ N
(
Xijkβ

∗,Vijk

)
 , 

where Vijk = σ 2
1 zi,jkz

⊤
i,jk + σ 2

2 zij,kz
⊤
ij,k + σ 2

3 zijkz
⊤
ijk + σ 2ILijk.

Estimation and model selection
To estimate the parameters in the multilevel model described by equation (3), we utilized a mixed-effect model 
equation. This equation allowed us to estimate both fixed and random effects for a given β∗ and κ . The vector 
κ contains all the variance components of the model. The method we employed for estimation, which involves 
best linear unbiased prediction (BLUP) and best linear unbiased estimation (BLUE)27,28. To take into account 
the loss of degrees of freedom resulting from the adjustment of fixed effects, we used the constrained maximum 
likelihood (REML) method28. This approach modifies the maximum likelihood method (ML) by constraining 
the likelihood function to the linear unbiased fixed effects estimate. By doing so, we were able to estimate the 
variance components while removing the bias that occurs when the fixed effects and variance components are 
estimated simultaneously using the ML estimate. The REML method allowed us to obtain unbiased estimates of 
the variance components, which were used to estimate the random effects through the BLUP method. Finally, 
the fixed effects were estimated using the BLUE method.

For the model selection procedure, we start with a saturated parameter specification for fixed effects that 
takes into account main and interaction effects. Refinement of the fixed effects should only take place after a 
satisfactory variance-covariance structure has been selected. Taking into account the principle of parsimony, 
we aim for a variance-covariance structure with a small number of unknown parameters, but not too simple, as 
this may increase type I error rates, and not too complex, as this may reduce the test power (increasing type II 
error) in the selection of fixed effects29. Moreover, a highly complex structure requires the estimation of many 
unknown parameters, which could significantly complicate the interpretation of the variance-covariance pattern 
and provide poor predictions for the adjusted ON score.

We employ a top-down strategy for model selection30, using likelihood ratio tests for nested models. We 
examine a series of nested models with varying variance-covariance structures, commencing with a simpler 
model and progressively increasing complexity. At each stage, we compare the simpler model’s likelihood with 
that of the more complex model through a likelihood ratio test. If the more complex model offers a significant 
improvement in fit compared to the simpler model, we accept it as the best-fitting model. This process continues 
until we identify a model that does not provide a significant improvement in fit over its predecessor. It is essential 
to note that the likelihood ratio test is particularly well-suited for this process, as it is specifically designed for 
comparing nested models.

Lastly, we fine-tune the fixed effects of the chosen model using stepwise regression or Bayesian model selec-
tion techniques, such as the Bayesian Information Criterion (BIC) or the Deviance Information Criterion (DIC). 
These methods enable us to select the most pertinent fixed effects while preventing overfitting.

The intraclass correlation coefficient
The intraclass correlation coefficient (ICC) is a valuable measure to account for the degree of similarity among 
units within each group, and it can be readily calculated within the context of mixed-effects models. The ICC 
ranges between 0 and 1, where values close to zero signify high similarity between units, and values near 1 
indicate low similarity among units in the same group. Various intraclass correlation coefficients can be derived 
from the model (3), but in this instance, we are seeking the ICC expression to evaluate the cumulative propor-
tion of variability attributable to the season, the team within the season, and the athlete within the team within 
the season concerning the total variability of the data. Under this scenario, the ICC under model (3) is given by

where ICC1 , ICC2 , and ICC3 represent the ICC for the season, the team within the season, and the athlete within 
the team within the season, respectively. Since the ICCs in expression (4) are functions of variance components, 
they can be estimated by substituting σ 2

1  , σ 2
2  , σ 2

3  , and σ 2 with their REML estimates. The ICC offers crucial 
information about the proportion of variance attributable to the different levels of the model, which is essential 

Xijk =
[
1 Fijk Pijk

]

(4)ICC1 =
σ 2
1

σ 2
1 + σ 2

2 + σ 2
3 + σ 2

; ICC2 =
σ 2
1 + σ 2

2

σ 2
1 + σ 2

2 + σ 2
3 + σ 2

; ICC3 =
σ 2
1 + σ 2

2 + σ 2
3

σ 2
1 + σ 2
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for understanding the proportion of variation in the outcome ascribed to each level. A high ICC value indicates 
that the majority of the variation in the outcome is explained by that level, while a low ICC value suggests that 
other sources of variation may be more significant.

The consistency score index based on random effects
The Consistency Score (CS) offers valuable insights into the performance levels of athletes within their respective 
teams and seasons, signifying whether they surpass, meet, or fall short of their expected levels. By incorporating 
random effects, we can predict the CS and pinpoint which seasons, teams within a season, or athletes within a 
team exhibit performance levels that deviate from anticipated levels. In this manner, we can determine which 
athletes in a particular team excel or underperform compared to their teammates in a given season, or which 
teams exceed or fall short of their expected values throughout the season.

Moreover, the CS in model (3) can be employed to scrutinise team- or athlete-specific progress across seasons 
as an indicator of consistency in performance. We can compute the CS by season as follows:

and by team within season as

and by athlete within team in a season as

The vectors and matrices involved in the calculation of the Consistency Score (CS) index are important to under-
stand for practical applications. Specifically, γ̃ (CS)

Season is an n-dimensional vector, and the matrices Vi , Vij and Vijk 
can be visualised in “Supplementary Material”. By analysing these matrices, we gain insight into the importance 
of random effects in the model and the variability of the data.

Furthermore, the adjusted ON score can be computed for each athlete based on their position in the game, 
utilising the γ̃ (CS)

athlete in conjunction with the fixed effect of position or other combinations of fixed and/or ran-
dom effects that may be pertinent to explain specific intriguing patterns. This offers a robust tool for analysing 
performance data and pinpointing areas for enhancement.

Building upon this analysis, by employing simulations under model (3) we can capture the inferential 
uncertainty for γ̃ (CS)

Season , γ̃ (CS)
Team , and γ̃ (CS)

athlete as well as we can translate them into predictions for new games. The 
100(1− α)% confidence intervals for γ (CS)

Season , γ
(CS)
Team and γ (CS)

athlete are thus based on 10.000 Monte Carlo simulations 
from their posterior distributions using empirical Bayes (EB) inference for random effects18. This comprehensive 
approach allows for a deeper understanding of the performance dynamics and facilitates more accurate predic-
tions for future games.

Ratings athletes based on conditional expectation
We now describe how to rank athletes based on the conditional expectation under model (3). Specifically, we denote 
E(γ

(S)
ijk |bi,jk , bij,k , bijk) = γ̂

(S)
ijk as an Lijk-dimensional vector containing all conditional expectation values for the k-

th athlete within team j in season i, ordered as ζijk1 = minl γ̂
(S)
ijkl < ζijk2 < . . . < ζijk(Lijk−1) < ζijkLijk = maxl γ̂

(S)
ijkl . 

Since the average value can be strongly influenced by poor or exceptional performance by an athlete in a certain 
game, we can use the median value as an alternative measure because it is more robust to outliers. Thus, the 
median relevance score, γ̃ (R)

ijk  , is defined by

The Wilcoxon signed rank test31 can be used to compute a symmetric two-sided 100(1− α)% confidence interval 
for γ̃ (R)

ijk  . This interval can be expressed as 
(
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ijk

)
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ijk  . To obtain this interval, we first compute the value of Cijk as follows:
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Here tα/2 is the upper (α/2)-th percentile point of the null distribution of the test statistic T+
ijk =

Lijk∑

l=1

Rijklψijkl . In 

this expression, ψijkl takes the value 1 if ζijkl > 0 , and 0 otherwise, and Rijkl denotes the rank of |ζijkl | , where 
l = 1, 2, . . . , Lijk in order of absolute value. The product Rijklψijkl represents the positive signed rank of ζijkl which 
takes the value 0 when ζijkl is negative and the rank of |ζijkl | when ζijkl is positive.

Further, we set γ̃ Lower
ijk = ζ

(
Cijk

)

ijk  and γ̃ Upper
ijk = ζ

(
M+1−Cijk

)

ijk = ζ
(tα/2)
ijk  , where M =

Lijk
(
Lijk+1

)

2  . This gives a 

confidence interval for γ̃ (R)
ijk  that is symmetric and two-sided. The same approach can be used to rank other vari-

ables, such as teams, athletes by position and rookies.

Model validation and predictions
When modelling athletes’ performance, it is essential to consider the complex relationships between athletes 
during a game. It is a common practice to assume that athletes within a team are not independent and exhibit 
constant variance on repeated measures. However, it is also reasonable to expect that the covariance between 
athletes may not be zero. In model 3, we assume a simplified structure for the variance-covariance matrix, includ-
ing a constant correlation between athletes within the same team and a constant correlation between athletes 
from different teams. Nevertheless, it is crucial to explore more complex structures while avoiding overfitting 
and maintaining a parsimonious model.

Our second modelling assumption is that the conditional errors follow a Gaussian distribution with constant 
variance. This assumption is widespread in linear mixed models and can aid in interpretation and prediction19. 
However, the normality assumption may not always be suitable for certain datasets. Thus, it is crucial to evaluate 
the residuals’ distribution and consider alternative distributions if necessary19. Maintaining the model’s flexibility 
is essential for accurately capturing the data’s behaviour.

To ensure the validity of the distributional assumptions, we perform hypothesis tests for fixed effects and 
variance components, as well as employ diagnostic plots. The likelihood ratio test can assess hypotheses about 
two models with identical fixed effects and nested variance-covariance structures5,32. Moreover, we refit the 
models with the same variance-covariance structure using maximum likelihood estimation instead of restricted 
maximum likelihood estimation to test the fixed effects parameters. We then apply the Wald test to estimate 
the degrees of freedom via the Satterthwaite approximation33. Diagnostic plots we consider include a boxplot of 
residuals by group, standardised conditional residuals compared to fitted values, observed responses compared 
to fitted values within the group, and a normal probability plot of the conditional and marginal residuals with 
a 95% simulation envelope34,35.

To evaluate the predictive performance of our model and ensure that it can generalise to new data and make 
accurate predictions, we apply a comprehensive validation strategy that takes into account the hierarchical 
structure of the data. We split the data into two sets: a training set containing about 70–85% of the original data, 
which is used for parameter estimation and inference, and a test set containing the remaining 15–30%, which 
is used for confirmatory analysis to quantify how well the model performs in prediction. We propose two sys-
tematic validation approaches to assess the predictive performance of our multilevel model. The first approach 
is systematic validation by season and the second approach is validation using a game within a season.

For systematic validation by season, we perform the following steps: (1) divide the data into two groups, 
called the training set and the test set; (2) the test set consists of the ith level of the season, i = 1, 2, . . . , I , and 
the training set consists of the remaining I − 1 seasons; (3) fit the model to the training set and evaluate against 
the test set; (4) summarise the prediction performance using the concordance correlation coefficient proposed 
by36, the Pearson correlation coefficient and the root mean square error (RMSE) between the true values and 
the predictions based on the test set; (5) repeat the process I times assuming that the probability that the test set 
consists of a season already used as a test is zero.

For validation using the game within season approach, we perform the following steps: (1) the data are divided 
into two groups, called the training set and the test set; (2) the test set consists of I subsets, where each subset 
is a random sample without replacement of 10% of the games played in the ith season, i = 1, 2, . . . , I , and each 
game has the same probability of being included in the sample; (3) the training data is then assembled from the 
remaining data; (4) repeat the process 100 times; (5) summarise the prediction performance using the average 
of the concordance correlation coefficient, the Pearson correlation coefficient and the root mean square error 
(RMSE) between the true values and the predictions based on 100 test sets.

It is worth noting that this approach allows us to make predictions that include a new level of season and 
possibly new levels of groups that are not included in the estimation model, such as a new athlete within a team 
or a new team. To make predictions, we use the unconditional (population level) to estimate the model, and we 
consider 1000 bootstrap samples of the model (3) to obtain confidence intervals for the prediction. However, 
predictions under a multilevel model can be more complicated than the classical regression approach18. Predic-
tions for a new athlete at one of the pre-known levels of a team within an existing season are likely to be more 
accurate than predictions for a completely new season.

The min–max scaling
The Min–Max scaling transformation is a common technique to normalise data and make it more interpret-
able. It rescales the data to a fixed range of values, usually between 0 and 1 or between a and b, while preserving 
the original relationships between the data points. In this case, we applied the Min–Max scaling to the athletes’ 
adjusted ON scores to make the scores more interpretable and easier to visualise.

The formula for the Min–Max scaling is given by:
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where γ ∗(S) is the rescaled score, a and b are the lower and upper bounds of the range, and min
(
γ
(S)

)
 and 

max
(
γ
(S)

)
 are the minimum and maximum values of the original score.

In our case, we set a = 0 and b = 100 so that the rescaled scores can take values between 0 and 100. This 
range can be interpreted as a scale for the athletes’ performance in the game, with higher values indicating better 
performance. For example, if a particular athlete’s adjusted ON score decreases over the course of the match, 
this may indicate that the athlete’s performance is declining and the coach may consider replacing the athlete 
with another player.

It is important to note that while the Min–Max scaling may improve the interpretability of the results, it does 
not change the underlying statistical properties of the data. Therefore, any inferences or conclusions drawn from 
the rescaled scores should be based on the original statistical model and assumptions.

Considerations and limitations in seasonal model weight updating for the ON score
A limitation of this study relates to updating model weights for ON scores at each season’s end, impacting their 
comparability across different seasons. This arises from the ON scores’ reliance on PCA weights, which reflect 
the variable covariance. Significant shifts due to outlier seasons or technological advancements could substan-
tially alter these weights. Consequently, comparing ON scores over multiple seasons requires acknowledging 
potential discrepancies from weight changes. While re-calibrating past ON scores using updated weights is a 
potential remedy, its feasibility varies. This limitation presents a critical area for future research, particularly 
in longitudinal studies, where a comprehensive simulation study could effectively evaluate the implications of 
such re-calibrations.

To address the limitation regarding model weight updating for ON scores, practitioners can adopt a consistent 
and transparent approach. When updating weights at the end of a season, it is crucial to document the changes 
and consider their impact on score comparability. Practitioners could maintain a version history of weights used 
each season, allowing for historical ON score re-calibrations when necessary. Furthermore, it may be beneficial 
to perform sensitivity analyses to understand the extent of changes due to weight updates. This practice can 
provide insights into whether re-calibrations significantly alter the interpretation of an athlete’s performance 
across seasons. These steps will ensure that practitioners are equipped to handle the potential challenges of weight 
updating in longitudinal analyses.

Data availability
The datasets generated and/or analysed during the current study are available in the Zenodo repository, https://​
doi.​org/​10.​5281/​zenodo.​80567​57.
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