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Enhancing heart disease prediction 
using a self‑attention‑based 
transformer model
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Cardiovascular diseases (CVDs) continue to be the leading cause of more than 17 million mortalities 
worldwide. The early detection of heart failure with high accuracy is crucial for clinical trials and 
therapy. Patients will be categorized into various types of heart disease based on characteristics like 
blood pressure, cholesterol levels, heart rate, and other characteristics. With the use of an automatic 
system, we can provide early diagnoses for those who are prone to heart failure by analyzing their 
characteristics. In this work, we deploy a novel self‑attention‑based transformer model, that combines 
self‑attention mechanisms and transformer networks to predict CVD risk. The self‑attention layers 
capture contextual information and generate representations that effectively model complex patterns 
in the data. Self‑attention mechanisms provide interpretability by giving each component of the input 
sequence a certain amount of attention weight. This includes adjusting the input and output layers, 
incorporating more layers, and modifying the attention processes to collect relevant information. 
This also makes it possible for physicians to comprehend which features of the data contributed to 
the model’s predictions. The proposed model is tested on the Cleveland dataset, a benchmark dataset 
of the University of California Irvine (UCI) machine learning (ML) repository. Comparing the proposed 
model to several baseline approaches, we achieved the highest accuracy of 96.51%. Furthermore, the 
outcomes of our experiments demonstrate that the prediction rate of our model is higher than that of 
other cutting‑edge approaches used for heart disease prediction.

Heart disease refers to any condition that impairs the heart’s capacity to function normally. In recent years, CVD 
has become the leading cause of death in the world. Congestive heart failure (CHF) prevalence is expected to 
rise by 46% by 2030 compared to 2012  rates1. The incidence and mortality rates of CVD can be significantly 
lowered by diagnosing the problem, according to research, in both patients who are already aware of their con-
dition and those who are  not2. Early detection and diagnosis can result in prompt interventions and suitable 
therapies, which can enhance patient outcomes and lower the chance of problems. The successful diagnosis of 
cardiac abnormalities and valve heart disorders (VHDs) in recent years has been made possible by the use of 
phonocardiogram (PCG) data in combination with ML techniques. These algorithms use a variety of feature 
extraction methods and classifiers to precisely identify and diagnose cardiac  problems3. Traditional ML meth-
ods have numerous drawbacks despite their potential. The methods frequently lack precision and robustness, 
which can result in false positive or false negative  results4. The iterative nature of feature selection and classifier 
optimization procedures can frequently take a lot of time, which can impede the prompt diagnosis and effective 
treatment of cardiac  disease5. Deep learning (DL) algorithms, supported by big-data techniques, have become an 
effective tool for identifying and recognizing cardiac disease in order to get around these restrictions. In many 
different fields, including image classification, computer vision, object localization, electroencephalogram (EEG) 
signal classification for brain-computer interfaces, and physics-informed neural networks, among  others6, DL 
algorithms have achieved remarkable success. They can automatically extract non-linear and hierarchical features 
from large  datasets7. We may be able to increase the reliability and accuracy of cardiac disease detection and 
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diagnosis, as well as promote quick interventions and treatments for better patient outcomes, by utilizing recent 
developments in DL algorithms and big data methodologies. Despite their potential, DL models can be compu-
tationally expensive and take longer to  train8, which may restrict their usefulness in the detection and diagnosis 
of heart disease. The Vision Transformer (ViT), a recent advancement in DL, has demonstrated encouraging 
results in resolving these  difficulties9. By utilizing the self-attention strategy to get over image-specific biases and 
constraints, ViT has shown greater accuracy and computational efficiency when compared to state-of-the-art 
Convolutional Neural Network (CNN)  models10. DL-based algorithms have demonstrated good efficiency in 
categorizing heart sounds for VHD, but they frequently suffer from insufficient deep spatial feature extraction, 
leading to decreased  accuracy11. Additionally, the high computational costs and lengthy training times associated 
with DL models can make it more difficult to improve heart sound classification  ability12.

Patients with heart failure and society as a whole would benefit from accurate, organized diagnostic  services13. 
In order to do this, this study creates a novel method for performing heart disease prediction by utilizing an 
improved self-attention-based transformer network. Preprocessing the dataset includes dealing with missing 
values, encoding category variables, and normalizing numerical characteristics. Extract significant features from 
the dataset, such as age, gender, blood pressure, cholesterol levels, etc. The model architecture is fine-tuned by 
utilizing several attention layers, feed-forward neural networks, positional encodings, etc. We noticed improved 
diagnosis by doing experiments on a benchmark dataset. The study conducted  in14 found that extracting relevant 
information is the most important step in improving the precision of heart disease detection. For example, a clini-
cian makes a decision on a patient with heart disease based on the classification using the specified characteristics. 
Previous research focused on enhancing and creating classification techniques rather than choosing the optimal 
attributes and their relationship to increase  accuracy15. Using the self-attention mechanism, the proposed model 
can effectively capture the relationships and dependencies between distinct features in the data. This allows the 
transformer to focus on critical information while downplaying less significant aspects, improving the model’s 
capacity to extract important patterns and information.

The remainder of the paper is organized as follows: “Related work” section provides an overview of the 
related work. In “Limitation and motivation” section, we delve into the background and motivation. The detailed 
problem description is presented in “Proposed framework” section. The experiments conducted in this work are 
discussed in “Experiments” section. The results and discussion are explained in “Results and discussion” section. 
Finally, “Conclusions” section concludes this work and gives future directions.

Related work
Heart disease is one of the primary reasons for mortality worldwide. With the use of Artificial Intelligence (AI) 
approaches, it is possible to monitor certain characteristics such as blood pressure, body weight, cholesterol, sugar 
level, and heart rate to determine cardiac disease in its initial stages. ML and DL techniques are revolutionizing 
the current healthcare system however it is challenging to predict cardiac disease accurately and  reliably16. Vari-
ous classification methods have been utilized for heart disease prediction. The ensemble learning algorithm, in 
particular Random Forest (RF), has shown some good results in predicting heart  disease17. The study conducted 
 in18 used support vector machines (SVM) for classification after using feature selection methods such as the 
Fisher score and Matthew’s correlation. A DL system called DeepLabeler was created in the study conducted 
 in19 to automatically classify ICD-9 codes. Their developed system uses the document-to-vector (D2V) method 
and a CNN to capture and encode both local and global data. The model’s two key characteristics are multi-label 
classification and feature extraction. The Reverse Time Attention model (RETAIN), which incorporates an atten-
tion mechanism and is based on a combination of Recurrent Neural Networks (RNNs), was used in the study 
conducted  in20. This allows the model to focus on the most significant attributes or time periods in the input 
sequence. The understanding of RETAIN is improved by giving each characteristic or time step in the sequence 
a weighted relevance score. In this way, the clinicians and experts can then understand what factors or time 
sequences are most crucial for the model’s predictions. Current cutting-edge DL models lack excellent feature 
extraction capabilities in complicated and noisy situations, restricting the development of precise and consistent 
object  differentiation21. The previous research may be broadly divided into two categories: DL approaches and 
classic shallow  approaches22.

For the precise diagnosis of valve heart diseases (VHDs), a robust and high-performing DL model has been 
provided  in23. The study published  in24 developed a model for forecasting the possibility of CVD in their sample 
utilizing data from a Japanese urban cohort study. The system for the diagnosis of coronary disease and stroke 
was constructed using multivariable Cox proportional hazard methods. They were able to examine a variety of 
factors and produce a reliable model for assessing the risk of CVD events by using their suggested technique. A 
unique ML method for heart disease prediction was created in the research reported  in25. They applied RF and 
Decision Tree (DT) approaches using the Cleveland heart disease dataset. Their experimental findings showed an 
accuracy of 88.7% for identifying heart disease. Numerous ML techniques were applied to evaluate massive and 
complicated medical data, assisting healthcare professionals in the early diagnosis of heart  disease15. The study 
employed a number of classification models, including DT, Naive Bayes (NB), K-nearest Neighbour (KNN), and 
RF algorithm, to compute a variety of heart disease-related problems. Their study’s main goal was to estimate 
the probability of people having a chance of heart attacks in the future.

With the help of sequential electronic health record (EHR) data, the study conducted  in13 attempted to 
diagnose cardiac failure. They made use of real-world datasets that contained data from hospital departments, 
health records, and patient diagnostic information pertaining to cardiac diseases. The main aim of their study 
was to precisely detect and classify individuals at risk of heart failure by the analysis of comprehensive EHR data. 
The efficiency of merging tree-based ensemble methods with the Synthetic Minority Over-sampling Technique 
(SMOTE) was  conducted26. This method was used to deal with the problem of data imbalance in heart failure 
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patient survival prediction. The study aims to maximize the accuracy of forecasting the survival outcomes for 
patients with heart failure by using ensemble methods and applying SMOTE to rebalance the data. The study 
conducted  in27 deployed a hybrid model incorporating clustering and classification in the field of type 2 diabetes 
prediction. K-means clustering was the first phase in this model’s two-step process, which was followed by the 
C4.5 classification technique using a k-fold cross-validation approach. The proposed hybrid approach produced 
encouraging results, with a classification rate of 88.38%. The use of this model has enormous potential for doctors 
since it can help them make well-informed clinical decisions about the management of diabetes.

The most current research demonstrates the various methods used to increase heart disease prediction accu-
racy. Researchers have made tremendous progress in improving the precision and effectiveness of prediction 
models through the use of ensemble  learning28, feature  extraction29, DL  models30, and other techniques. In order 
to overcome the limitations of earlier work, a unique method of heart disease prediction is presented, utilizing a 
self-attention-based transformer model. This cutting-edge model was created expressly to solve the difficulties in 
investigating and forecasting cardiac disease. The model successfully captures complex patterns and relationships 
within the medical data by utilizing self-attention processes, allowing for more precise predictions.

Limitation and motivation
Statistics of heart disease often include temporal characteristics, such as the history of the patient as well as vari-
ations over time. Effectively processing sequential data using ML approaches is challenging. Previous studies 
didn’t provide sufficient support for better patient outcomes. In this section, we outline the limitations of previous 
heart disease prediction methods, clarify our work motivations for developing an improved model, and highlight 
the key contributions and novelties of our study.

Previous works limitations
The primary input sources for heart disease diagnosis are patient health characteristics containing data with 
categories and unstructured text. The main shortcomings of the current heart disease prediction methods are 
the modeling of input dataset attributes, computation of attribute risk factors, and obtaining high prediction 
 accuracy31. The significant drawback of NB in the context of heart disease prediction is that it treats each feature 
of the dataset individually when calculating probabilities. Therefore, conventional classifiers lead to an incorrect 
decision support  system32. According to earlier research, traditional medical decision support systems often 
focused solely on increasing classification accuracy. They failed to consider the varying costs of misclassification 
across other categories. However, the minority class frequently has a higher priority in the field of healthcare deci-
sion making. The efficiency of RNN-based models tends to deteriorate rapidly as data sequence length increases. 
They perform poorly because of their sequential character, which prevents them from correctly capturing long-
term relationships within the data  sequences33.

Traditional RNNs are prone to vanishing and expanding gradient problems. The Standard Long Short-Term 
Memory (LSTM) networks have the drawback of being unable to handle irregular periods of time. However, tim-
ing inconsistency is typical in many healthcare  applications34. By incorporating an attention-based mechanism 
that makes it possible to effectively capture dependencies, enhance interpretability, and enable computation 
parallelization, the proposed model seeks to reduce the limitations of the previous work.

Motivation
Disease prediction systems are best practices for eliminating human errors in disease diagnosis and aiding in 
disease prevention through early  identification31. Diagnosis of cardiac disease based on patient health record 
characteristics is a multidimensional decision-making technique. Prediction of heart disease is crucial for health-
care since it may improve patient outcomes significantly when it is detected early and accurately. However, there 
are certain issues with adaptability, interpretability, and training speed in the existing prediction model. This 
work created a cutting-edge and reliable attention-based model for heart disease prediction in order to overcome 
the difficulties of the previous work. The proposed model has the potential to quickly and readily adapt to dif-
ferent outcome risk prediction and evaluation challenges, which makes it a useful tool in the field of healthcare 
 prediction35.

Furthermore, the proposed model has a straightforward and parallelizable network structure, which leads to 
noticeably quicker training times than existing heart disease prediction techniques. This enhancement makes 
them more efficient by addressing the difficulties associated with model training and implementation in actual 
healthcare settings.

Key contributions and novelty
This study presents a novel prediction model that makes use of the self-attention process. The model is created 
with interpretability and parallelizability in mind, enabling effective computing while maintaining a respectable 
level of prediction accuracy. A key element of our model is self-attention, which is notably influenced by the 
work done  in6. Through the establishment of clear linkages between events, the self-attention mechanism enables 
us to identify dependencies within the features. It’s noteworthy that the self-attention mechanism constantly 
captures the weight of feature values, even when they are not independent. The final representation vector is 
created by adding a position-level attention layer. We employ a padding-mask method in both the self-attention 
and position-level attention processes to account for the variation in sequence lengths. Masking away the pad-
ding elements during the attention computation, this makes guarantees that the model can handle sequences of 
various lengths well. The major technical contributions of our study are summarized as follows:
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• Developed an innovative and resilient attention-based model specifically tailored for predicting heart disease. 
In addition to its exceptional accuracy in prediction, this model also displays its adaptability to a variety 
of other risk prediction and evaluation tasks. Due to its adaptability, it can be used well across a variety of 
domains, making it an important tool for many different outcome prediction issues. Its versatility makes it 
suitable for various healthcare scenarios and expands its potential to tackle a broad range of predictive tasks 
beyond heart disease prediction.

• Investigate the key factors that lead to the risk of developing heart disease and identify any previously 
unknown risk factors that may be relevant.

• Design a Transformer model-based strategy that is more precise and successful than current conventional 
ML models in forecasting the likelihood of heart disease.

• The Transformer model’s efficiency in detecting the likelihood of heart disease across multiple demographic 
categories, such as age, gender, and race/ethnicity, is examined, and the possibility for personalized risk 
assessment is also investigated.

• The ability of the Transformer model to identify potential cardiac disease was examined in relation to the 
impacts of various data preprocessing techniques. Several pre-processing methods were applied to the input 
data, and their effects on the model’s functionality and accuracy were carefully examined.

Proposed framework
The goal of this research is to develop a self-attention-based transformer model for assessing CVD risk utiliz-
ing the Cleveland dataset. This dataset contains a variety of medical and non-medical components that can be 
used to identify whether a patient has cardiac disease. The dataset comprises both continuous and categorical 
variables, among other features. It becomes challenging to identify the most important factors and comprehend 
their relevance in heart disease prognosis. Furthermore, it might be challenging to draw meaningful findings 
since some of the features are challenging to evaluate clinically.

Dataset and preprocessing
In this work, we predict cardiac disease using the UC Irvine Cleveland  dataset36. The collection consists of 303 
cases, each of which depicts a patient who may have heart disease. The dataset is generated from actual patients 
with suspected cardiac disease, making it applicable to real-world circumstances. The information comprises a 
number of characteristics that are often utilized in clinical practice, including age, cholesterol levels, and electro-
cardiogram (ECG) readings. Each instance has 14 features that represent distinct characteristics of the patient 
and diagnostic measures. In the dataset, each row corresponds to a patient, and the columns represent several 
attributes related to the diagnosis of heart disease. The column consists of [’Age’, ’Sex’, ’Cp’, ’Trestbps’, ’Chol’, 
’Fbs’, ’Restecg’, ’thalach’, ’Exang’, ’Oldpeak’, ’Slope’, ’Ca’, ’Thal’, and ’Target’]. Based on the provided attributes, the 
dataset is utilized to create prediction models that estimate the chance of heart disease. The dataset has been 
preprocessed to handle missing values, normalize numerical features, and encode categorical variables. To find 
any missing values, examine each characteristic. Replace the missing data with approximated values, such as 
mean and median. The Z-score, which estimates a data point’s deviation from the mean value, reflects the varia-
tion of an attribute’s value within a dataset. With the help of this method, we were able to successfully recognize 
and manage extreme values in the data.

Attention‑based model architecture
The patient characteristics and diagnostic measures are represented by a series of input features that are used to 
encode each instance in the dataset. In this work, we have X = [x1, x2, . . . , xn] , represent the input sequence of 
features, where n denotes the length of the sequence. The self-attention mechanism recognizes the relationships 
between various aspects in the sequence and gives each feature a weight based on how important it is in relation 
to other features. To capture various sorts of interactions and improve model performance, several parallel self-
attention layers are used. To identify non-linear interactions and provide final predictions, the attention outputs 
are fed into a feed-forward neural network. This attention-based model architecture with self-attention and 
multi-head attention mechanisms efficiently captures connections and dependencies within the input sequence, 
allowing the model to focus on key aspects for heart disease prediction. Figure 1 represents the visual descrip-
tion of the proposed model.

Input embedding and position encoding
In the self-attention-based transformer model, input embedding and position encoding are two crucial processes 
that come before the self-attention mechanism. The input sequence is represented using these stages in a way 
that is appropriate for the successive self-attention layers. The categorical variables and numerical characteristics 
of each instance are translated to continuous vector representations through input embedding. In this study, 
we use an embedding layer to convert discrete values for each category variable into continuous vectors. Each 
instance’s scaled numerical characteristics and category embeddings are combined into a single vector. We have 
e(xi) denotes the embedding of instance (xi) and f (xi) represents the scaled numerical features of (xi) . The con-
catenated input embedding for each instance (xi) is computed as: x′

i =
[

e(xi), f (xi)
]

 . The model comprehends the 
order or sequence of the instances by using position encoding, which adds positional information to the input 

(1)Zscore =
x − µ

σ
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sequence. The self-attention-based transformer model efficiently processes the input sequence, collecting both 
feature representations and positional information by executing input embedding and position encoding stages.

Transformer encoder
The heart disease dataset is represented as a series of embedded characteristics and positional encodings. To iden-
tify relationships and extract meaningful representations from the input sequence, apply a stack of Transformer 
encoder layers. The encoder layer includes a self-attention mechanism and a feed-forward neural network. The 
output of the Transformer encoder layer is computed as, E(i) = [e1(i), e2(i), . . . , en(i)] , where each e(i) represents 
the output representation for the corresponding position in the sequence.

Self‑attention
The ability of the Transformer model to find links between features that go beyond sequence adjacency is another 
intriguing feature of this system. The self-attention technique is utilized to extract the relationships between 
various points in the sequence inside each Transformer Encoder layer. The similarity between the query and 
key vectors is used to determine the attention weights (AW) for each point. These AWs illustrate the relative 
importance of each position. AW can be calculated as follows:

Qu and Ke are the query and key correspond to input embedding (e1, e2, . . . , ei) . Following that, utilizing 
the attention weights matrix AW , we construct a weighted sum of the value vectors as the latest value vectors:

(2)AW = soft−max

(

QR
uKe√
dk

)

Figure 1.  Overview of the proposed model.
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where Va represents the input embeddings. Additionally, we address the issue of the sequences’ variable lengths 
by employing the same padding mask technique as the  Transformer6. By extending the provided information 
in the y direction back to the input x , the straightforward nature of the model allows us to easily determine the 
impact of each feature. Through the use of an embedding layer, we are able to grasp the essence of each feature 
in the given input sequence x.

The learning parameters Vvi and the learned visited embedding Evi are involved in the process. we introduce 
an additional embedding layer that specifically encodes the order information. This layer serves the purpose of 
preserving and incorporating sequential information into the model.

Feed‑forward network
To further enhance the representations, follow the self-attention strategy by applying a feed-forward neural 
network to each point separately. A non-linear activation function separates the two linear layers that make 
up the feed-forward network. Connect the input characteristics to the output of the self-attention mechanism 
and the output of the feed-forward network to create residual connections. The features after each sublayer are 
normalized using the layer normalization method.

Output layer
To detect the existence of heart disease, use the final output from the Transformer Decoder layers and feed it 
through a fully connected layer. To determine the final output probabilities, use the softmax function.

Training the model
The Adam optimizer is used as an optimization technique to train the model for determining the likelihood 
of heart disease. To find whether a subject has heart disease or not, the binary cross-entropy loss function is 
employed to distinguish between the predicted probabilities and the actual data labels. The training method 
seeks to identify the ideal values for the weight vector W and the bias term b that minimize the loss function. 
The prediction accuracy of the model is enhanced by the Adam optimizer, which iteratively modifies the weights 
and biases during training.

Disease prediction
Using the test dataset, evaluate the trained model using relevant evaluation measures including accuracy, preci-
sion, recall, and F1-score. Using the trained model, forecast the likelihood that a new patient will be diagnosed 
with heart disease based on the feature values of the patient. Analyze the feature importance or coefficients 
learned by the model to identify the relative importance of different factors in determining heart disease. Figure 2 
represents the proposed model for heart disease prediction.

Experiments
Heart disease is a prominent cause of death globally, and effective prediction of heart disease can consider-
ably improve patient  outcomes15. In this work, we suggest using a Self-Attention-based Transformer Model to 
improve heart disease prediction. We make use of the Cleveland  dataset36, a frequently used benchmark dataset 
in the field of cardiovascular research, to assess the effectiveness of our proposed approach. Load the Cleveland 
dataset into a Data Frame by using the Panda’s package. The dataset has 303 samples, each of which has 76 attrib-
utes. These characteristics include data on the patient’s demographics, health metrics, and diagnostic results. 
The panda’s function fillna is used to handle missing values, while StandardScaler from scikit-learn is used to 
normalize the dataset. The preprocessed dataset is partitioned into 80% training, 10% testing, and 10% valida-
tion sets. Using the proposed framework, we represent each sample in the dataset as a series of feature vectors, 
with each feature vector representing a different characteristic. To preserve the sequential information, we use 

(3)Attention(AW,Va) = AW · V

(4)Evi = Vvi · x

(5)y = softmax(Va + e)

Figure 2.  Architecture of proposed model used for heart disease prediction.
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positional encoding. Utilize the self-attention technique to enable the model to focus on various input sequence 
components while producing context-aware representations for each attribute. Create the model architecture 
by specifying the essential layers, such as self-attention, feed-forward, and classification layers. Use the PyTorch 
2.0. framework to implement the Self-Attention-based Transformer model. By using the proposed approach, 
we want to increase heart disease prediction accuracy and contribute to the creation of more effective clinical 
decision support systems.

Table 1 displays the parameters used to train and evaluate the self-attention-based Transformer model for 
heart disease prediction utilizing the Cleveland dataset. The model consists of an embedding layer, Transformer 
encoder layers, and a fully connected layer for classification. Iterate through the training dataset in mini-batches, 
compute the loss, backpropagate, and use the optimizer to update the model weights. After training the model, 
assess its performance on the testing set. Analyze the model’s predictions and interpret the learned patterns. 
Determine the self-attention mechanism’s key characteristics and attention weights. In this work, we carry out 
both binary and multi-class classification tasks in the experiments. For the binary classification problem, we 
predict the presence or absence of heart disease. For the four-class classification problem, we divide the labels 
into four unique classes to reflect various risk levels of heart disease. Table 2 displays the number of classes used 
in the experiments. In order to validate the self-attention-based Transformer model performance, we compared 
it with various baseline approaches.

Baseline approaches
We carried out a comparison study using a number of baseline methods frequently employed for heart disease 
prediction. We investigated CNN, RNN, RNN + (RNN with additional features), RETAIN (Reverse Time Atten-
tion Model), and Dipole as the baseline methods. We used an identical experimental design for each baseline 
strategy, including data preparation, model training, validation, hyperparameter adjustment, and assessment 
of the testing set.

CNN
Three convolutional layers make up the CNN model presented by Albelwi et al.37, which follows a standard neural 
network architecture. The kernel sizes for each convolutional layer range from 3 to 5, and each layer has 256 
channels. In order to identify clinical data that was considerably class-imbalanced and forecast the development 

Table 1.  Parameters of the proposed model used in the experiments.

Parameter Description

Model Self-attention-based transformer model

Input dimension = 14 Input features dimension

Output dimension = 2, 4 Number of output classes

d-model = 128 Dimensionality of the model’s hidden states

nhead = 4 Attention heads in the multi-head self-attention

Num-layers = 4 Layers in the encoder

Dropout = 0.2 Dropout probability

Batch-size = 32, 64 Number of samples

Epochs = 90 number of iterations

Learning-rate = 0.001 Learning rate

Optimizer = Adam optimizer used for updating the parameters

Train-loss Avg raining loss over the training dataset

Cross entropy Loss function

Test-loss Avg loss over the testing dataset

Table 2.  Binary and multiclass classification.

Class value Description

Binary Two class classification problem

Class 0 no heart disease

Class 1 presence of heart disease

Multi-class four-class classification problem

Class 0 no heart disease

Class 1 low risk of heart disease

Class 2 moderate risk of heart disease

Class 3 high risk of heart disease
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of coronary heart disease (CHD), a study done  in38 developed an effective neural network using convolutional 
layers. For the purpose of predicting CVD, we classified the Cleveland dataset using this model. The size of the 
convolutional kernels is kept to (kernel-size = 3), and (pool-size = 2). The dropout rate for regularization is kept 
to (dropout-rate = 0.2).

RNN
One of the first  models39 in the field of recurrent processing was introduced as LSTM, a sort of RNN with gated 
units. The input gate, forget gate and output gate make up the LSTM unit, a sequential architecture, commonly 
used in temporal data processing. These gates are essential for managing the information flow inside the LSTM 
unit. The LSTM unit uses a self-loop mechanism on its internal state as opposed to the recursive calculation 
method of conventional RNNs, which improves its capacity to retain and update information over  time40. The 
input gate assesses the applicability of the current input and modifies the internal state in accordance with the 
system state at the previous time step. To begin with, we calculate the input embeddings, which are then passed 
into an LSTM layer. The hidden states generated by the LSTM are directly used by a linear classifier to predict 
the outcomes.

RNN + 
To improve performance or handle certain issues, RNN + refers to the expansion or combining of RNNs with 
other components. By integrating the hidden states, the RNN + extension of the RNN model incorporates a 
location-based attention mechanism into the output  layer41. Encode the target categorization labels in the Cleve-
land dataset into a numerical representation so that the model can interpret it. We employ one-hot encoding 
for multi-class categorization.

RETAIN42

RETAIN is a state-of-the-art predictive model that leverages a two-level attention mechanism, enhancing both 
its functionality and interpretability. RNNs-like prediction accuracy is maintained by the unique neural attention 
model known as RETAIN, which is customized to enable thorough interpretation of prediction findings. The key 
characteristic of RETAIN is its attention mechanism, which emulates the clinical decision-making approach of 
doctors. The fundamental idea underlying RETAIN is to use context-level attention and time-level attention to 
describe the link between input sequences and the target variable. This attention mechanism allows RETAIN to 
draw attention to and weigh the important input sequence components, enabling a more in-depth comprehen-
sion of the model’s predictions. RETAIN exhibits performance that is comparable to RNNs and does not sacrifice 
prediction accuracy despite its interpretability.

Dipole43

Dipole employs a bi-directional RNN with three attention methods. In this case, we choose a variation of Dipole 
that has demonstrated superior performance. The embedding layer of the Dipole model is implemented as a 
multi-layer perceptron (MLP) with ReLu activation. They observed that, the local-based attention mechanism 
performs the best out of the three methods. Based on this discovery, we modify our model’s local-based atten-
tion mechanism to produce the final context vector that is used for prediction. The output of the bi-directional 
RNN with an attention layer is followed by a classification layer. This layer assigns the learned representations to 
the required classification labels and forecasts the probability for each class. This comparative analysis was con-
ducted to assess the self-attention-based Transformer model’s performance against these standard methods. By 
comparing the Transformer model’s performance measures to those of the baselines, we were able to gain insight 
into the model’s strengths, shortcomings, and potential as an improved technique for heart disease prediction.

Environment setting
The experiments of the proposed work are implemented using PyTorch 2.0. All training is carried out on a 
computer with an Intel Core i97900X processor, 128GB of RAM, 2 Nvidia Titan V graphics cards, and CUDA 
9.0. For training our hypothetical model, we use Adam optimizer, with dm , set to 128. We used the learning rate 
as, lr = 0.001 and the loss function as CrossEntropyLoss () to fine-tune the model. The time complexity of the 
proposed model is calculated as; O

(

n2 ∗ d
)

, where n represents the sequence length, and d reflects the dimen-
sions of the hidden state.

Evaluation metric
In this study, the classification tasks are measured using the accuracy metric. It calculates the percentage of prop-
erly identified examples in a dataset relative to all occurrences. In this particular case, the number of events for 
a particular user is expressed by the number of folds (k = 130). The remaining instances (k-1) serve as a training 
set for each iteration of the learning process, and the instance that is chosen serves as a test set. Then, the mean 
accuracy over all k trials is determined, such as;

whereas FFP and FFN represent false positives and false negatives, respectively, TTP and TTN represent true 
positives and true negatives.

(6)Accuracy =
TTP + TTN

TTP + TTN + FFP + FFN
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Results and discussion
Compare the performance of the suggested Self-Attention-based Transformer Model to the baseline techniques. 
Determine which model has the best prediction accuracy and generalization capabilities by calculating the accu-
racy of each model. The experimental results achieved in the heart disease prediction task are shown in Table 3. 
The outcomes demonstrate how much better our suggested strategy is than all benchmark models, including RNN 
and RETAIN. Our solution surpassed these baseline models in terms of performance and predicted accuracy, 
which are commonly regarded as state-of-the-art approaches for heart disease prediction. Furthermore, we saw a 
wider performance disparity between our approach and the RNN-based model in our dataset. The table provides 
a comprehensive comparison of computing efficiency and accuracy among the different models considered as 
baselines. In order to validate the model performance on diverse dataset, we used the cardiovascular disease 
dataset, which is freely available on Kaggle. This dataset consists of 70,000 instances having 11 independent fea-
tures. The computing time column specifically indicates the duration required to train each model once on the 
entire training dataset per epoch. As evident from the table, the proposed model exhibits faster training times 
in comparison to baseline models. The proposed model also achieves the highest accuracy of 95.2% using the 
cardiovascular disease dataset, shown in Table 4.

This advantage can be attributed to the straightforward and parallelizable structure of our suggested model. 
RNN models, on the other hand, encounter difficulties because of their sequential nature, leading to longer train-
ing durations, especially when working with datasets containing prolonged sequences. The suggested model’s 
interpretability when compared to RNN is also a key advantage. While RNN models are difficult to interpret, our 
proposed model provides more clarity and is simpler to understand. In healthcare applications, this interpret-
ability can be quite helpful because it gives medical practitioners insights into the underlying causes of heart 
failure (HF) prediction and speeds up the decision-making process. Figure 3 represents the training and testing 

Table 3.  Computation time and accuracy using Cleveland dataset.

Model Computation time (s) Accuracy (%)

CNN 4.53 0.747

RNN 1.43 0.783

RNN + 3.52 0.871

RETAIN 4.45 0.850

Dipole 2.12 0.894

Proposed 1.90 0.965

Table 4.  Computation time and accuracy using cardiovascular disease dataset.

Model Computation time (s) Accuracy (%)

CNN 9.74 0.713

RNN 3.96 0.779

RNN + 6.38 0.863

RETAIN 7.12 0.832

Dipole 5.61 0.876

Proposed 3.57 0.952

Figure 3.  Training and testing accuracy of the model.
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accuracy of the proposed model. We achieved 97.17% training accuracy and 96.51% testing accuracy by iterating 
the model for 90 epochs. Similarly, we get the minimum training loss of 0.10 and testing loss of 0.12, as shown 
in Fig. 4. In recent studies on CVD prediction using ML techniques, various classifiers have been  employed44. 
Table 5 provides a summary of recent studies conducted for heart disease prediction, along with their achieved 
accuracy. The study conducted  in45 deployed various classification techniques such as SVM, NB, and DT, for a 
CVD risk prediction. They achieved an accuracy of 90% for CVD risk prediction. Similar to this, the study con-
ducted  in46, described a prospective study with 423,604 subjects from the UK Biobank. For forecasting the risk 
of CVD, they unveiled an ML technique dubbed Auto-Prognosis. The work done  in47 offered a novel approach 
for creating a predictive framework in the form of fuzzy methods to evaluate CVD risk using a neuro-fuzzy 
decision support mechanism. Their proposed approach intends to offer helpful assistance in determining the 
risk caused by cardiovascular diseases. Additionally, the research conducted  in48 proposed the Gradient Boosting 
(GB) algorithm, which achieved an accuracy of 89.7%. Gradient Boosting uses a group of weak learners, which 
becomes computationally expensive when working with big datasets or complicated models. It is also sensitive 
to noise or outlier data. The maximum accuracy of 96.51% was achieved using the proposed model after data 
preprocessing, adjusting the input and output layers, incorporating more layers, and modifying the attention 
processes to collect relevant information.

The study conducted  in15 deployed various ML algorithms for the task of heart disease prediction using the 
Cleveland database reflected in Table 6. They achieved a maximum accuracy of 90.78% using the K-NN algo-
rithm. They realized that to enhance the precision of heart disease diagnosis, it is necessary to investigate cutting-
edge methodologies and model fusions. Detecting CVD diseases such as heart attacks and coronary artery 
diseases are pivotal research problem. In a study conducted  by25, the researchers utilized the Cleveland heart 
disease dataset to perform heart disease prediction. They deployed DT, RF, and a hybrid approach combining 
both algorithms. Through their heart disease prediction model, they achieved a higher accuracy of 88.7% using 
the hybrid approach. Heart disease may be quickly and inexpensively detected with the use of ML techniques. 

Figure 4.  Training and testing loss of the model.

Table 5.  Comparison with various related studies.

Authors Year Approach Accuracy (%)

Study47 2019 HRFLM 88.7

Study46 2021 NF model 91

Study48 2022 GBA 89.7

Study45 2023 NB SVM DT 90

Study49 2023 XGBH 80.6

Proposed 2023 Transformer model 96.51

Table 6.  Performance comparison on same dataset.

Authors Year Algorithm Accuracy (%)

Study15 2020 NB, DT, RF, K-NN 90.78

Study25 2021 DT, RF, Hybrid 88.7

Study50 2022 hyOPTXg using XGBoost 94.7

Study14 2022 GAPSO-RF 95.6

Proposed 2023 Transformer model 96.51
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The research reported  in50 suggests the use of an expert model called hyOPTXg to predict heart disease using 
an improved XGBoost classifier. On the Cleveland dataset, they achieved an accuracy of 94.7%. Heart disease 
prediction has gotten a lot of interest in the medical world. In the  study14 a hybrid genetic algorithm (GA) and 
particle swarm optimization (PSO) optimized technique based on RF, named GAPSO-RF, is created and applied 
to identify the ideal features that can improve heart-disease prediction accuracy. On the Cleveland dataset, they 
obtained 95.6% accuracy in heart disease prediction. Their approach achieves good accuracy however, combin-
ing several techniques may increase the difficulty of parameter adjustment and convergence of optimization.

The proposed strategy surpasses state-of-the-art approaches, with a remarkable accuracy of 96.51%. Th self-
attention mechanism enables the model to effectively capture long-range relationships. The transformer model 
is able to address any point in the input sequence, unlike conventional sequential models like RNNs. It produces 
context-aware representations for each input token. Due to the attention mechanism, transformers provide effi-
cient parallelization during training and inference. The model becomes more effective and scalable as a result 
of its parallelization capacity, especially when working with huge datasets. By allocating attention weights to 
various input places, the self-attention mechanism enables interpretability. This makes it possible to visualize 
the significance and relevance of particular characteristics in the prediction process.

The limitation of the proposed model is; It becomes difficult to understand the transformers architecture, 
particularly when it becomes deeper and complicated. Especially, to grasp how the model generates particular 
predictions or what sequence elements are essentials. To address this issue, we used attention visualization 
approaches, which gave us helpful insight about the framework’s decision-making process.

Conclusion
In this work, we developed a novel attention-based transformer model for the task of heart disease prediction. 
This model applied the strength of position-level attention mechanisms and self-attention layers to learn the 
representation of the complete sequence, in contrast to conventional RNN methods. Through the use of this dis-
tinct mechanism, we were able to identify and evaluate the relative weights of the various sequence components, 
improving the effectiveness of prediction. Beyond heart disease, a variety of clinical risk prediction tasks can be 
performed using the proposed technique due to its versatility. The fundamental advantage of this architecture is 
its well-designed network topology, which enables maximum parallelization. In contrast to RNN-based models, 
which suffer from sequential processing and limited parallelization, the proposed paradigm permits efficient 
and simultaneous computing across the whole sequence. The proposed model performs well in real-world cir-
cumstances using benchmark dataset and reduces training and inference times. To validate the performance, 
we conducted various experiments and compared their results with various related study to demonstrate that 
the proposed model is more accurate than cutting-edge methods. The proposed method is adaptable, which 
highlights its potential for usage in a range of healthcare contexts beyond heart disease prediction, providing 
informative data and assisting in decision-making.

In future, we want to Integrate transfer learning with the proposed model to enhance its performance, espe-
cially in the scenarios of dealing with limited labeled data.

Data availability
The datasets and code will be available from the corresponding author on request.
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