www.nature.com/scientificreports

scientific reports

OPEN

W) Check for updates

Performance evaluation
of a firewall service based
on virtualized IncludeOS unikernels

Tytus Kurek, Marcin Niemiec™ & Artur Lason

Network function virtualization technology has long moved beyond the experimental phase to
become a standard in the implementation of modern telecommunications networks. It is anticipated
that in the near future all network services will be implemented in software based on cloud-native
architecture. As a result, telecommunications service providers have started exploring containers

and unikernels as alternative technologies to traditional virtual machines. This paper presents
performance evaluation of a firewall service based on IncludeOS unikernels. It shows that IncludeOS
unikernels achieve promising performance results compared to Ubuntu-based virtual machines and
containers. The presented evaluation is based on a number of experiments and benchmarks performed
to investigate how different parameters of a firewall service change depending on the number of
firewall rules.

The growing demand for better user experience in mobile networks in recent years has forced network operators
to modernize their infrastructure. This process, although long and expensive, has already begun. An inseparable
part of this process is softwarization of network services for better economics and improved flexibility. Network
Function Virtualization (NFV)' is a technology allowing Telecommunications Service Providers (TSPs) to migrate
their legacy hardware-based network services to software-based ones.

One of the main challenges in the implementation of NFV technology is ensuring the same performance of
software-based network services as for their hardware-based equivalent. First implementations of software-based
network services used virtual machines (VMs) which affects the performance of the workloads. Although various
performance extensions, such as Single-Root Input/Output Virtualization (SR-IOV) or Data Plane Development
Kit (DPDK), aim to improve network performance of the workloads, they usually introduce an additional cost
and complexity to the underlying infrastructure®. In response to the aforementioned challenges, TSPs have
recently started exploring alternatives to traditional VMs.

An example of such a technology are containers. As containers do not rely on a hypervisor, their performance
is close to the performance of applications running directly on a physical machine. Moreover, their fine-grained
nature makes them suitable for the implementation of cloud-native network services based on the microservices
architecture. As a result, containers are being explored by the telco world. Network functions implemented based
on containers, referred to as Container Network Function (CNFs), are proposed in*. The ability to deploy CNFs
on Kubernetes has also been recently announced by one of the leading open source Management and Orchestra-
tion (MANO) platforms, Open Source MANO (OSM)°.

However, security concerns are a major challenge of CNF implementation. Containers are known to be less
secure than VMs®. This is because containers use a shared kernel, relying on the internal kernel’s features to
provide an isolation of the workloads. While containers run as separate processes on the host’s kernel, VMs use
a hypervisor to provide hardware virtualization. As a result, each Virtual Network Function (VNF) runs on its
own kernel. As security considerations are just as important as performance when implementing software-based
network services, this undermines containers as the target technology for NFV.

Another alternative to traditional VMs are unikernels’. Although these images run as VMs, they are smaller,
faster and more lightweight than regular cloud images. This is due to the construct of unikernels which only
includes the minimum set of kernel libraries required to run the application. Unikernels achieve much better
performance results than VMs, as well as providing higher level of security than containers. This combination of
performance and security makes unikernels promising candidates for the implementation of network services.
Network functions based on unikernels, referred to as Unikernel Network Functions (UNFs), are recently pro-
posed in®. The following paper expands on this work by providing further experimental results and extensive
analysis. This aims to evaluate performance and confirm the usability of this novel solution.

AGH University of Krakow, Mickiewicza 30, 30-059 Krakéw, Poland. *’email: niemiec@agh.edu.pl

Scientific Reports | (2024) 14:557 | https://doi.org/10.1038/s41598-024-51167-8 nature portfolio

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-024-51167-8&domain=pdf

www.nature.com/scientificreports/

The remainder of the paper proceeds as follows. Related work is reviewed in “Related work”. “From uniker-
nels to unikernel network functions” provides an introduction to unikernels and UNFs by presenting network
functions evolution and the rationale behind using unikernels in network services. “Performance evaluation”
describes the method used to evaluate performance results of a firewall service based on IncludeOS unikernels.
The extensive experimental results are presented and discussed in “Observations and discussion”. All observed
limitations and directions for future work are documented in “Limitations and future work”. Finally, “Conclu-
sions” concludes the paper.

Related work

The authors of® present their research into unikernel and containers performance in firewall applications. They
examine basic performance metrics of a firewall service with a fixed number of rules, implemented in IncludeOS
and Docker. They note that performance results of a unikernel-based firewall vary depending on the metric being
examined. Similar findings are reported by Behravesh et al. in'® where they analyze basic performance metrics
of the Apache and Redis services implemented in three different ways: as a VM running on the Kernel Virtual
Machine (KVM) hypervisor, as a Docker container, and as a Rumprun unikernel.

In'! the authors attempt to compare the performance of VM, container and unikernel-based NFV solutions
implemented with x86 and ARM architectures. A comparative analysis of this type could be promising in terms
of VNF energy efficiency. The performance of selected virtualization scenarios (KVM, Docker, rkt, Rumprun
and OSv) was evaluated and compared in terms of Central Processing Unit (CPU) and memory efficiency and
network throughput. Unfortunately, in the case of unikernel-based scenarios, it was not possible to obtain any
valuable test results in the ARM environment. The authors conclude that this is due to insufficient support of
unikernel projects for 64-bit ARM architectures. The results of tests performed in the x86 architecture show a
significant dependence of the performance on the specific implementation.

More research into unikernel performance is presented in'2 The authors compare the performance of uni-
kernel and container-based Representational State Transfer (REST) microservices implemented with three pro-
gramming languages: Go, Java and Python. The Unikernel instances were built using the OSv platform, while
the container test bed was set up with Docker tools. Tests of single thread applications show significantly better
performance in microservices implemented in unikernels. The authors show that microservices written in Go
perform with a 38% higher efficiency, while those implemented in Java and Python perform with a 16% higher
efficiency. Test results for multithread applications are less impressive and significantly less clear. In multithread
scenarios, containers show significant advantages, in particular in scenarios not involving intense context switch-
ing between user space and kernel. The author of'® provided a comparative performance assessment of firewall
instances based on Ubuntu Linux and IncludeOS. The firewall instantiated on the IncludeOS platform was
developed using the NaCl programming language, designed explicitly for the IncludeOS environment. However,
test scenarios covered firewalls with limited number of rules: 10,000 and 50,000. The contribution of this paper
significantly expands the research scope by investigating the implementation of a firewall with a significantly
larger number of rules—up to one million rules. This extension in the scale of rule implementation represents a
noteworthy trend in the increasing number of terminals served in evolving mobile networks and demonstrates
its efficacy even under the demanding scenario of managing an extensive ruleset.

Security aspects of the unikernel approach to virtualization are discussed in detail in'%. The paper presents
valuable analysis of differences in potential attack vectors specific to VMs, containers and unikernels, as well as
reporting in-depth analysis of potential unikernel vulnerabilities and methods for their mitigation. The authors
also discuss differences between types and versions of unikernels, focusing on potential unikernel use cases.

The following paper is a continuation and expansion on® in which we present an innovative concept of uni-
kernel application to network function virtualization. Performance evaluation of network services implemented
in various technologies and performance evaluation of unikernels themselves have been hot research topics in
recent years. Our research on unikernel performance focuses on the efficiency of networking services, unikernel
image size and launch time.

From unikernels to unikernel network functions

Put simply, UNFs are network services implemented based on unikernels. In order to understand how UNFs
work, it is useful to first examine the evolution of the NFV technology and take a closer look at unikernels
themselves.

NFV technology evolution

The NFV technology has been widely adopted by leading TSPs around the world in recent years'. The success
of NFV is the result of the spectacular success of the underlying cloud computing technology, well-conducted
standardization, and most of all—the measurable benefits that this technology brings to telcos. NFV lowers the
Total Cost of Ownership (TCO) associated with maintaining teleccommunications infrastructure. By migrating
network services from legacy appliances to the cloud, TSPs achieve better resource utilization and accelerated
software development. This drives innovation, brings down costs of the services provided, and improves com-
petition on the market.

However, the evolution of NFV technology has not been straightforward. The original aim was simply to
virtualize legacy, monolithic network services and run them entirely inside of VMs. While this approach has
been partially successful, it is not scalable and causes problems in the long run, for example related to day-2
operations. As a result, TSPs began to redesign their network services based on the microservices architecture.
Container technologies emerged at a similar time, providing improved performance and cloud-native architecture
of network services. Thus, the interest of TSPs shifted from VM:s to containers.

Scientific Reports |

(2024) 14:557 | https://doi.org/10.1038/s41598-024-51167-8 nature portfolio

www.nature.com/scientificreports/

Due to their fine-grained nature, containers are better suited as building blocks for cloud-native network
services. Moreover, because containers run directly on top of the kernel, bypassing the entire hardware virtual-
ization layer, they achieve better performance results than traditional VMs. This makes them suitable for NFV
use cases such as 5G core and virtual Evolved Packet Core (vEPC). However, containers also have several limita-
tions. Due to the fact that containers use a shared kernel, it is impossible to achieve the same level of security
and isolation in container-based network services as in those based on a hypervisor. As a result, TSPs often run
separate container coordination platforms, such as Kubernetes, for each individual network service to achieve
true multi-tenancy. This approach is also non-scalable and increases the TCO associated with NFV Infrastructure
(NFVI) maintenance.

The introduction and extensive implementation efforts of 5G networks has drawn attention to the problems
of network slicing. A network slice is defined as a logically separated end-to-end part of the 5G physical network
including User and Control Plane Network Functions. In order to fulfill all slicing functional requirements it is
necessary to virtualize, strictly isolate and efficiently secure networking resources and virtual machines running
functions responsible for network control and operations. Virtualized end-user authorization for separated slices
and operated by different tenants needs to be implemented using reliable, protected and cloud-optimized tools
and solutions. The requirements are becoming increasingly more demanding as dynamic slices are considered'.
Dynamic slicing promises more flexible allocation of physical network resources to individual slice instances,
thus optimizing costs of network operation and improving perceived service quality.

Dynamic slicing can be implemented to dynamically create new slice instances and on-demand slice scaling.
Both scenarios require network function virtualization based on solutions offering minimized image sizes to
reduce the volume of virtual function repositories, and minimal transfer delays between repositories imple-
mented in a distributed infrastructure. The optimized virtual function launch time is also significant. Security
aspects in strictly isolated network slices need to be considered in the context of virtual functions and the
potential exigency of installing customized firewalls at key 5G network interfaces. In response to these challenges
UNFs have been proposed as a solution for 5G and next-generation cloud-based network implementations.

Introduction to unikernels

Unikernels are specialized, single-address space machine images constructed by using library operating systems'’.
They are created by compiling the application code together with a minimal set of kernel libraries needed to run
the application on specific hardware. This approach is similar to the modular architecture of the Linux kernel.
However, only the necessary libraries are used in the unikernel compilation process, which greatly reduces the
size of the image. Moreover, the resulting image contains a single application and lacks the usual features of a
traditional operating system, such as the shell, POSIX (Portable Operating System Interface) utilities, etc. Because
each application is different, the resulting image is always unique, hence the name unikernel.

This concept is illustrated in Fig. 1. There are two basic technologies for resource isolation in the operating
system: VMs and containers. While VMs require a hypervisor for the virtual hardware layer abstraction, contain-
ers run directly on top of the kernel. Although the hypervisor provides better resource isolation and thus a higher
level of security, it introduces an additional overhead on the running workloads. Therefore, the performance of
VMs is inferior to that achieved by containers. Another difference is the minimization and specialization of the
image. While traditional VMs and machine containers can run multiple applications at the same time, process
containers can run a single application only, as is the case with unikernels. Thus, unikernels resemble the idea
of process containers in the hypervisor world.

Unikernel images are smaller than images of regular operating systems. As a result, they are less of a burden
on machine resources, helping achieve performance results comparable to containers. They are also more secure
than containers because they rely on a hypervisor to provide resource isolation. Moreover, since unikernels
usually do not include standard operating system tools such as network diagnostic and inspection tools, even a

i i \ (TN T T TN T T ' Ve \ (SN Y SRS SN
: - X « R A P I R y VM1, VM2 | VM1, VM2 !, VM 3!
5 ! g ! g, 5 1, 5o ! ! !
CE 2 L EREn B ! A et
v £ o £ 0 v En EnEor o afsfellel el | ') !
1 S 1 e 1 8 4% 84 8 1= S X = | il 8 N 8 [N 8 [
1 © 1 © 1 0o ot 22l 2l &h 1= HIE HIE
1 1 1 1 h] ! 1 “ “] “ r’)| 1| 3 N A N 3 !
1 11 1 1 :l :I : 1 11 1 1 4 :I 4 :I 4 :
NHsflspif s 8 g nh'l 8 nh'l 8 N ! i ! "3 '3 '] B |
| =2 = | 2 = |, s 1| 2 1| = 1 1 1 1 g | £ | £
1 % E 1 % E 1 1 E :I E :I E : 1| Kernel [11] Kernel | 1 Q :I Q :I Q :
1| @ A || @2 «“ | 1 n I| n I| n . 1 1 1 1 II II |
1 11 1 ! ! ! | 1 1 1 1 ! ! |
— — e Np— 720 ye— 7 \— N
Hypervisor Hypervisor
Kernel Kernel
Kernel Kernel
Hardware Hardware Hardware Hardware

(a) machine containers

(b) process containers

Figure 1. Resource isolation methods. Source®.

(c) regular VMs

(d) VMs based on unikernel

Scientific Reports |

(2024) 14:557 |

https://doi.org/10.1038/s41598-024-51167-8

nature portfolio

www.nature.com/scientificreports/

compromised unikernel does not pose a threat to other hosts on the network. IncludeOS'® is a popular unikernel
project used in research. UKL, which provides a framework for building unikernels based on the Linux kernel,
is one of the more recent and promising projects marking the ongoing development of this technology.

Unikernel network functions

Since unikernels are specialized images, they are suitable for the implementation of specialized services such
as network services. Let us take firewall services as an example. A typical firewall service consists of a packet
inspection application code running in the user space and libraries responsible for interacting with the Network
Interface Card (NIC) running in the kernel space. Therefore, implementing network services based on traditional
operating system images introduces unnecessary overheads, which usually translates into diminished perfor-
mance of a given service, which is critical in the case of network services. Therefore, implementing network
services based on unikernels makes much more sense.

Moreover, since unikernels are almost as lightweight as containers, TSPs can use them for cloud-native net-
work service implementation. In such a situation, the network service is broken down into smaller components,
known as network functions, which perform certain individual operations and communicate with each other.
The following types of network functions are known: Physical Network Functions (PNFs), Virtual Network
Functions (VNFs) and CNFs. Unikernel Network Functions, or UNFs, are simply a new type of network func-
tion which uses unikernels for service implementation. Such network functions benefit from all the advantages
of a hypervisor while achieving comparable performance results to CNFs.

However, UNFs do not necessarily require a hypervisor. Since unikernels are machine images, they can also
run directly on bare metal machines. The two use cases are shown in Fig. 2. The first type of UNFs uses a hyper-
visor and runs inside VMs. We call them Virtual UNFs (VUNFs). Due to their small size and the ability to run
several network services on a single bare metal machine, they are applicable to virtual Customer Premises Equip-
ment (vCPE)?*' and mobile edge* NFV use cases. OpenStack can be used as a Virtual Infrastructure Manager
(VIM) in this case. The second type of VNFs runs directly on bare metal machines. Such UNFs, known as Bare-
Metal UNFs (BUNFs), can use Metal-as-a-Service (MAAS) as VIM? and, due to their improved performance,
are suitable for the 5G core and vEPC NFV use cases.

Performance evaluation

In order to evaluate the performance of VUNFs, the following experiment was carried out. Benchmarking
methodology for firewall service** was used to examine how various performance parameters of a firewall ser-
vice change depending on the number of firewall rules. The firewall service was implemented in four various
technologies—KVM, Docker, LXD and IncludeOS—allowing us to compare the results achieved by unikernels
with results achieved by other technologies.

The firewall service for KVM, Docker and LXD technologies was implemented based on the Ubuntu 18.04
image and the iptables software. This is because Ubuntu is the most popular cloud image and iptables is the
most popular firewall software for Linux. In turn, the firewall service for IncludeOS was implemented using the
IncludeOS NaCl interface?®. Summarizing, the unikernel was executed as a virtual machine on top of the KVM
hypervisor and the containers were run on bare metal. It is worth mentioning the rules were exactly the same in
both cases and offered the same functionality. The lab environment consisted of three physical hosts—Sender,
Firewall and Receiver—and a dedicated 1 Gb/s network which was used to connect the hosts in a chain. The
firewall service was run on the top of the Firewall host using either virtualization or container technologies.
The number of rules in a TSP firewall depends on the security policy. Therefore, we conducted large-scale tests
to check the performance in various scenarios. In each experiment various images with the number of firewall
rules of 1, 10, 100, 1000, 10,000, 100,000 and 1,000,000 were used.

The following subsections contain the experimental results. Each one describes a dedicated experiment which
was carried out to measure different performance parameters of the firewall service. In each case, the results are
presented as a table and chart. Each graph uses a logarithmic scale on the x axis.

VUNF || VUNF VUNF || VUNF

Hypervisor Hypervisor

BUNF BUNF

Kernel Kernel

Hardware | | Hardware

Hardware | | Hardware

Cloud controller
(e.g. MAAS)

Cloud controller
(e.g. OpenStack)

(a) virtual machine cloud (b) bare metal cloud

Figure 2. UNFs use cases.

Scientific Reports |

(2024) 14:557 | https://doi.org/10.1038/s41598-024-51167-8 nature portfolio

www.nature.com/scientificreports/

Image size

The experiment started by comparing the image sizes of all images used in the experiment. The image sizes were
measured using standard Linux tools and are shown in Table 1 and Fig. 3. The IncludeOS images are smaller
than other images. Moreover, the size of IncludeOS images increases more slowly in comparison with the other
technologies, as the number of firewall rules increases.

Launch time

The launch time of all images was measured next. In order to achieve this, we wrote a script which measures the
time between image initialization and the first response to the Internet Control Message Protocol (ICMP) echo
request sent from the Firewall host to the image. The launch time was measured 100 times to generate the aver-
age value. The average values are shown in Table 2 and Fig. 4. Although the launch time of IncludeOS images is
longer than the launch time of containers, it is still shorter than KVM Ubuntu images. Additionally, the launch
time of the IncludeOS image of the firewall with 1,000,000 rules is significantly longer than the launch time of
other IncludeOS images.

Idle ping delay

In the next step, we measured idle ping delay by sending 100 ICMP echo requests from the Sender host to the
image and generating the average. Ping probe was sent every second which is a regular ping time interval. The
results are shown in Table 3 and Fig. 5. For images with a low number of rules, IncludeOS images achieve worse

No.ofrules | KVM | Docker |LXD | IncludeOS
1 1829.5 | 959 480 9.3
10 1847.5 |95.9 482 9.3
100 1846.2 | 95.9 482 9.3
1000 1847.5 |96 482 9.3
10,000 1831.1 |96.3 483 9.5
100,000 1851 99.5 486 12
1,000,000 1915.7 | 133 517 30

Table 1. Image size (MB).

KVM * Docker m LXD ¢ IncludeOS
2000 ‘

1500
1000

500

Image size [MB]

log(number of rules)

Figure 3. Image size.

No.ofrules | KVM | Docker |LXD | IncludeOS
1 13,515 | 1610 1234 | 5168
10 13,516 | 1691 1236 | 5185
100 13,527 | 1687 1238 | 5179
1000 13,557 | 1666 1232 | 5173
10,000 13,467 | 1685 1216 | 5186
100,000 13,583 | 1672 1240 | 5236
1,000,000 13,590 | 1627 1255 | 5840

Table 2. Launch time (ms).

Scientific Reports |

(2024) 14:557 | https://doi.org/10.1038/s41598-024-51167-8 nature portfolio

www.nature.com/scientificreports/

KVM x Docker m LXD 4 IncludeOS

15000 |
£ 10000
Q
£
<= S S
2 5000 @rrrruss Qrnnnnnn s sPrrnnnnn PR EY LLA
3
-
| oo gHHEHEHE HHENHE e S JHHEE S
0
0 2 4 6
log(number of rules)
Figure 4. Launch time.
No.ofrules | KVM | Docker | LXD | IncludeOS
1 0.33 0.208 0.209 | 0.314
10 0.336 | 0.208 0.205 | 0.313
100 0.324 | 0.204 0.204 | 0.328
1000 0.344 | 0.201 0.217 |0.32
10,000 0.339 | 0.205 0.215 | 0.331
100,000 0.361 | 0.209 0.204 | 0.552
1,000,000 0.338 | 0.21 0.204 |2.724
Table 3. Idle ping delay (ms).
KVM * Docker m LXD ¢ IncludeOS
3
g
0 ..'
E 2 3
> :
o .
() :
° .
2 .
2 1
2 .
] S 4
s BHHHHE Lo e HoaHH b e
0
0 2 4 6

log(number of rules)

Figure 5. Idle ping delay.

results than containers, although they are comparable to KVM Ubuntu images. However, once firewall images
reach 100,000 rules, the idle ping delay for IncludeOS increases rapidly. Probably, the NaCl implementation in
the IncludeOS project was not ready for use cases with the largest number of rules.

TCP throughput

TCP throughput was measured by initiating an iperf*® session between the Sender and the Receiver hosts. Each
session lasted 30 seconds. The results are shown in Table 4 and Fig. 6. The only case where IncludeOS achieves
worse results than other technologies is a firewall image with 100,000 rules. In this case, the TCP throughput of
the LXD-based firewall is almost double.

UDP throughput

The TCP throughput experiment was followed by UDP throughput measurements, once again using iperf.
Another session between the Sender and the Receiver hosts was established. This session also lasted 30 s. The
results of this experiment are shown in Table 5 and Fig. 7. In this case, the results achieved with IncludeOS are
vastly superior, in line with the results presented in’. Regardless of the number of rules, the UDP throughput of
IncludeOS images is higher compared to other technologies.

Scientific Reports |

(2024) 14:557 | https://doi.org/10.1038/541598-024-51167-8

nature portfolio

www.nature.com/scientificreports/

No.ofrules | KVM | Docker | LXD | IncludeOS
1 942 942 942 942

10 942 942 942 942

100 942 942 942 942

1000 942 942 942 942

10,000 778 939 922 942
100,000 65 104 317 165
1,000,000 2 3 10 13

Table 4. TCP throughput (Mb/s).

® KVM x Docker m LXD ¢ IncludeOS

1000 = r: & x
L TEERERRY EEERREE LERREERY FYTTIT]
T ek
s 750 e %
= %
S
-3
2 500
o
-~
e
L
S 250
o
[&]
[
0

0 2 4

log(number of rules)

Figure 6. TCP throughput.

No.ofrules | KVM | Docker |LXD | IncludeOS
1 809 809 809 809

10 809 809 809 809

100 809 809 809 809

1000 794 809 809 809

10,000 187 122 124 809
100,000 18 13 12 202
1,000,000 0 0 0 15

Table 5. UDP throughput (Mb/s).

® KVM % Docker m LXD ¢ IncludeOS

1000
- [TEETTTTY TEEPTPE TRTPTITY LLELELE
s 750 " 3
= [} b
: Q‘ .
5 LY %
2 500 *
=] %
- .
e %
250 '-
3 ..
=] e
0 Ll *e
0 2 4 6

log(number of rules)

Figure 7. UDP throughput.

Scientific Reports | (2024) 14:557 | https://doi.org/10.1038/s41598-024-51167-8 nature portfolio

www.nature.com/scientificreports/

TCP requests per second

In the next experiment, we measured TCP requests per second. A netperf?” session was established between
the Sender and the Receiver hosts. As in previous experiments, the session lasted 30 s. The results are shown
in Table 6 and Fig. 8. This is another case where IncludeOS achieves better results than any other technology,
regardless of the number of firewall rules.

UDP requests per second

Netperf was also used to measure UDP requests per second. Another session was established between the
Sender and the Receiver hosts, once again running for 30 s. All results are shown in Table 7 and Fig. 9. Although
IncludeOS achieves worse results than Docker for a low number of rules, once the firewall image reaches 10,000
rules the situation changes and IncludeOS performs significantly better than the other technologies.

TCP connections per second

The previous experiments were followed by measurements of TCP connections per second. Netperf was used
once again. We established another session between the Sender and the Receiver hosts, once again running
for 30 s. The results are shown in Table 8 and Fig. 10. Although for firewall images with a low number of rules
IncludeOS achieves worse results than container technologies and even KVM Ubuntu images, once the firewall
image reaches 10,000 rules it can handle more TCP connections per second than other technologies used in
the experiment.

No.ofrules | KVM | Docker |LXD | IncludeOS
1 1581 3016 3342 | 3371

10 1567 3011 3009 | 3168

100 1519 2997 3014 | 3119

1000 1386 2819 2914 | 3374
10,000 1063 1233 1231 | 3011
100,000 278 305 263 1241
1,000,000 19 22 9 347

Table 6. TCP requests per second.

KVM * Docker m LXD ¢ IncludeOS

4000
3000 5 te
8 vy ‘x
n *» .
[} “-~ "‘
o 2000 -, %
“;,' ‘ ‘s %
g | *, %
. ».
g 1000 ®5,
o %, KA
O 3, .
" 0 ki LT T 4
0 2 4 6

log(number of rules)

Figure 8. TCP requests per second.

No.ofrules | KVM | Docker | LXD | IncludeOS
1 1758 3399 3354 | 3214

10 1701 3400 3042 | 3231

100 1586 3395 3012 | 3201

1,000 1419 3405 2843 | 3191
10,000 1006 1223 1231 | 3182
100,000 278 292 274 1280
1,000,000 19 16 15 379

Table 7. UDP requests per second.

(2024) 14:557 | https://doi.org/10.1038/s41598-024-51167-8 nature portfolio

Scientific Reports |

www.nature.com/scientificreports/

KVM * Docker m LXD ¢ IncludeOS

4000
'g &:; i, et *
I e (il SRR
S 3000 oLl bt bbb, o3 .,
@ ., A
o % s
B * . *
2 ot %
@ 2000 | .
2 %
] ’ *3 *
g 1000 "‘_\
o ~~~ ".
8 \..... ‘e
0 ——
0 2 4 6
log(number of rules)
Figure 9. UDP requests per second.
No. of rules KVM | Docker | LXD | IncludeOS
1 689 884 908 675
10 657 886 860 716
100 657 907 854 769
1000 616 901 715 745
10,000 382 371 362 690
100,000 87 77 68 351
1,000,000 5 4 3 78
Table 8. TCP connections per second.
KVM % Docker m LXD ¢ IncludeOS
1000
T I8esgypguunnnnnn® CEEEEE T %
§ * LR - 5. .
BPER TEPIA DA
g 750 L e B QLTI
E T 0‘ " 0’
o % % ‘..
2 500
o e .
= ¢ .
g ™,
c * *e
£ 250 s, .
8 * e
o “, *
[$] W, v
[0 Twam
0 2 4 6

log(number of rules)

Figure 10. TCP connections per second.

ICMP latency

In the last two experiments, we measured the latency of the traffic flowing between the Sender and the Receiver
hosts. In order to measure the ICMP latency, 100 ICMP echo requests were sent from the Sender to the Receiver
to obtain the average. The average values are shown in Table 9 and Fig. 11. Although the ICMP latency of
IncludeOS images is higher than the ICMP latency of containers for firewall images with a small number of rules,
once the firewall image reaches 10,000 rules the latency is the lowest. Moreover, for an image with 1,000,000
rules the ICMP latency for other technologies increases rapidly, while for IncludeOS the rate is more stable.

TCP latency

The final experiment involved measuring TCP latency using the hping3 tool*®. One hundred TCP packets were
sent from the Sender to the Receiver and the average TCP latency was derived. The average values are shown in
Table 10 and Fig. 12. In this case IncludeOS achieves worse results than other technologies used in the experi-
ment. The only exception is an image with 100,000 rules where the TCP latency for other images is already
increasing, while it remains stable for IncludeOS.

Scientific Reports |

(2024) 14:557 | https://doi.org/10.1038/541598-024-51167-8

nature portfolio

www.nature.com/scientificreports/

No.ofrules | KVM | Docker | LXD IncludeOS
1 0.686 | 0.429 0.428 0.635

10 0.697 | 0.427 0.43 0.619

100 0.682 | 0.437 0.436 0.619

1000 0.747 | 0.422 0.494 0.62

10,000 1.067 | 0.845 0.824 0.652
100,000 4.428 | 4.035 4.257 1.004
1,000,000 52.14 |72.784 76.233 | 4.774

Table 9. ICMP latency (ms).

® KVM % Docker m LXD ¢ IncludeOS

80
[
o
d
60 ':
N >
£ g
oy o
E 40 :.
K. :
o >
E 20
-
.
0 2 4 6
log(number of rules)
Figure 11. ICMP latency.
No.ofrules | KVM | Docker |LXD IncludeOS
1 2.826 2.76 2.619 2.901
10 291 2.695 2.583 3.139
100 2.745 2.683 2.596 2.951
1000 2.89 2.652 2.668 3.132
10,000 3.554 2.769 3.191 3.206
100,000 16.435 | 12.688 11.954 | 3.441
1,000,000 76.2 62.8 74.6 184.755
Table 10. TCP latency (ms).
KVM x Docker m LXD ¢ IncludeOS
200
>
= 150 .:
(7] .
E)
3 :
& 100 .
% . I
5 . El
o DX
o 50 I X
(= RO
ved®
it
0q............................n::‘.:!‘
0 2 4 6
log(number of rules)
Figure 12. TCP latency.

Scientific Reports |

(2024) 14:557 |

https://doi.org/10.1038/s41598-024-51167-8

nature portfolio

www.nature.com/scientificreports/

Observations and discussion

By conducting an extensive investigation of various parameters of a firewall service implemented in four different
technologies, we evaluated the performance of unikernels and VUNFs and compared them to traditional VMs
and containers. The data presented in the previous section shows that IncludeOS images achieve inconclusive
results and the exact numbers vary as the number of firewall rules changes. However, the following observations
can be made.

First of all, in most cases IncludeOS images achieve better performance results than KVM Ubuntu images.
This is understandable, since IncludeOS images are more lightweight compared to Ubuntu images, while under-
neath they use the same virtualization technology of KVM. Moreover, in some cases IncludeOS images achieve
better results than container technologies. These parameters include image size, UDP throughput, TCP requests
per second and ICMP latency. Finally, IncludeOS usually deals better with firewall services with greater numbers
of rules.

Limitations and future work

Although the experimental results presented in the previous sections provide a solid overview of the perfor-
mance of the investigated technologies, it is important to mention some limitations of the method used in this
paper. While firewall images for KVM, Docker and LXD were prepared based on the Ubuntu image and iptables
software, IncludeOS images were compiled using the IncludeOS NaCl interface. This means that the actual
firewall implementation was different for IncludeOS and other technologies. It should be noted that although
we attempted to use the iptables source code to compile IncludeOS images, this was unsuccessful due to the
limitations of IncludeOS itself. Other limitations of IncludeOS, such as high RAM consumption and long com-
pilation time when compiling firewall images with a high number of rules, are mentioned in®. It should also be
noted that the research carried out did not cover a bare metal implementation. This was due to the limitations
of the testing environment itself—this option was not available in the IncludeOS project at the time of writing
this article. The only available option was the KVM build. There were also some limitations imposed by the tools
used for data collection (e.g., a lack of standard deviation of the measurements). We used typical, widely used
engineering tools, utilizing their regular methods and settings for collecting and presenting measurement data.
Consequently, in the case of ICMP delay, TCP delay, TCP/UDP throughput, TCP connections per second, the
results are presented only in a manner typical for the applied tools such as iperf, netperf, hping3.

Future work should investigate the performance of a custom network service when implemented in all four
technologies. Such a service would run as a process inside the KVM, Docker and LXD images. Its code would
be used directly when compiling IncludeOS images instead of using the NaCl interface. This means that the
service would need to be implemented in C. A relatively simple example of such a service would be a packet
scanner. Potential future research may also include a study on the implementation of a variable number of vir-
tual machines and assessing its impact on system performance. Work in this area would be both purposeful and
interesting. The performance evaluation of Unikernels is particularly valuable and interesting when comparing
the computing resource requirements, such as CPU and RAM usage, of the examined systems. A comparative
analysis of this kind would be significant for a meaningful assessment of the considered solutions.

Conclusions

In response to the challenges related to network function softwarization, such as increasing demand for improved
performance and security, TSPs have started exploring alternatives to traditional virtualization. Unikernels are
one such technology, making it possible to compile specialized, embedded, highly secure images. Due to their
lightweight nature they are also expected to achieve performance results comparable to containers. Network
functions based on unikernels, referred to as UNFs, can either run as VMs (VUNFs) or directly on bare metal
machines (BUNFs).

This paper presents an evaluation of VUNFs. For this purpose a firewall service was implemented in four
different technologies—KVM, Docker, LXD and IncludeOS—and basic performance parameters were investi-
gated through a set of experiments and benchmarks based on official benchmarking methodology for firewall
performance. Analysis of the results of the experiments revealed that IncludeOS generally achieves better per-
formance results than KVM images based on Ubuntu and iptables. In certain cases, such as UDP throughput,
TCP requests per second and ICMP latency, IncludeOS also achieves better results than containers. Finally, we
found that IncludeOS generally deals better with firewall services with a high number of rules.

Data availibility
The authors declare that data supporting the findings of this study (performance evaluation) are available within
the article.

Received: 17 March 2023; Accepted: 1 January 2024
Published online: 04 January 2024

References

1. Chiosi, M. et al. Network Functions Virtualisation: An Introduction, Benefits, Enablers, Challenges & Call for Action. ETSI white
paper (2012).

2. NFV ETSIISG. Network Functions Virtualisation (NFV); NFV Performance & Portabiliy Best Practises. ETSI white paper (2014).

3. Leira, R. et al. Performance assessment of 40 Gbit/s off-the-shelf network cards for virtual network probes in 5G networks. Comput.
Netw. 152, 133-143 (2019).

4. Cziva, R. & Pezaros, D. P. Container network functions: Bringing NFV to the network edge. IEEE Commun. Mag. 55(6), 24-31
(2017).

Scientific Reports |

(2024) 14:557 | https://doi.org/10.1038/s41598-024-51167-8 nature portfolio

www.nature.com/scientificreports/

5. Kurek, T. OSM Release seven: Container network functions and more. ETSI Open Source MANO Blog [Online] (2020). https://
osm.etsi.org/news-events/blog/64-osm-release-seven-container-network-functions-and-more.

6. Gao, X., Gu, Z., Kayaalp, M., Pendarakis, D. & Wang, H. ContainerLeaks: Emerging Security Threats of Information Leakage in
Container Clouds. In 47th Anuual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN), Denver, CO,
237-248 (2017).

7. Pavlicek, R. Unikernels (O’Reilly, 2016).

8. Kurek, T. Unikernel network functions: A journey beyond the containers. IEEE Commun. Mag. 57(12), 15-19 (2019).

9. Filipe, J. B., Meneses, F, Rehman, A. U,, Corujo, D. & Aguiar, R. U. A performance comparison of containers and unikernels for
reliable 5G environments. In 2019 15th International Conference on the Design of Reliable Communication Networks (DRCN),
Coimbra, 99-106 (2019).

10. Behravesh, R., Coronado, E. & Riggio, R. Performance evaluation on virtualization technologies for NFV deployment in 5G
networks. In 2019 IEEE Conference on Network Softwarization (NetSoft), Paris (2019).

11. Acharya, A., Fanguede, J., Paolino, M. & Raho, D. A performance benchmarking analysis of hypervisors containers and unikernels
on ARMv8 and x86 CPUs. In 2018 European Conference on Networks and Communications (EuCNC), Ljubljana (2018).

12. Goethals, T., Sebrechts, M., Atrey, A., Volckaert, B. & Turck, F. D. Unikernels vs containers: An in-depth benchmarking study in
the context of microservice applications. In IEEE 8th International Symposium on Cloud and Service Computing (SC2), Paris, 1-8
(2018).

13. Tambs, T. Unikernel firewall performance evaluation: IncludeOS vs. Linux. Master thesis, Department of Informatics, Faculty of
Mathematics and Natural Sciences, University of Oslo (2018).

14. Talbot, J., Pikula, P., Sweetmore, C., Rowe, S., Hindy, H., Tachtatzis, C., Atkinson, R. & Bellekens, X. a security perspective on
unikernels. In International Conference on Cyber Security And Protection Of Digital Services (Cyber Security), Dublin, 1-7 (2020).

15. Weissberger, A. NFV status. In IEEE Communications Society Technology Blog [Online] (2018). http://techblog.comsoc.org/categ
ory/nfv-status/.

16. Raza, M. R. et al. Dynamic slicing approach for multi-tenant 5G transport networks. IEEE/OSA J. Opt. Commun. Netw. 10, 1 (2018).

17. Martins, J. et al. ClickOS and the art of network functions virtualization. In 11th USENIX Symposium on Networked Sytems Design
and Implementation (NSDI'14), 459-473 (WA, Seattle, 2014).

18. Bratterud, A., Walla, A., Haugerud, H., Engelstad, P. E. & Begnum, K. IncludeOS: A minimal, resource efficient unikernel for cloud
services. In 7th International Conference on Cloud Computing Technology and Science (CloudCom), Vancouver, BC, 250-257 (2015).

19. Raza, A. UKL: A unikernel baed on linux. A Red Hat Blog [Online] (2018). https://next.redhat.com/2018/11/14/ukl-a-unike
rnel-based-on-linux/.

20. Van Tu, N., Ko, K. & Won-Ki Hong, J. Architecture for building hybrid kernel-user space virtual network functions. In 13th
International Conference on Network and Service Management (CNSM), Tokyo, 1-6 (2017).

21. Network Functions Virtualisation (NFV); Use Cases, ETSI GS NFV 001 (2013).

22. Hu, Y. C. et al. Mobile edge computing—a key technology towards 5G. ETSI white paper 11 (2015).

23. Gavriil, C,, Seyvet, N. & Vandikas, K. Bare-metal, virtual machines and containers in OpenStack. In 20th Conference on Innovations
in Clouds, Internet and Networks (ICIN), Paris, 36-42 (2017).

24. Benchmarking Methodology for Firewall Performance, RFC 3511 (2003).

25. NaCl package (2023). https://github.com/includeos/NaCl.

26. iPerf website (2023). https://iperf.fr.

27. Netperf website (2023). https://hewlettpackard.github.io/netperf/.

28. Hping3 website (2023). http://www.hping.org/hping3.html.

Acknowledgements
Research was partly supported by the program “Excellence initiative—research university” for the AGH Uni-
versity of Krakow.

Author contributions
T.K. conceived and conducted the experiments. All authors analysed the results and reviewed the manuscript.

Competing interests
Tytus Kurek and Artur Lason declare they have no financial interests. Marcin Niemiec receives financial support
from the program “Excellence initiative-research university” for the AGH University of Krakow.

Additional information
Correspondence and requests for materials should be addressed to M.N.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International

o | icense, which permits use, sharing, adaptation, distribution and reproduction in any medium or
format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons licence, and indicate if changes were made. The images or other third party material in this
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2024

Scientific Reports |

(2024) 14:557 | https://doi.org/10.1038/s41598-024-51167-8 nature portfolio

https://osm.etsi.org/news-events/blog/64-osm-release-seven-container-network-functions-and-more
https://osm.etsi.org/news-events/blog/64-osm-release-seven-container-network-functions-and-more
http://techblog.comsoc.org/category/nfv-status/
http://techblog.comsoc.org/category/nfv-status/
https://next.redhat.com/2018/11/14/ukl-%20a-unikernel-based-on-linux/
https://next.redhat.com/2018/11/14/ukl-%20a-unikernel-based-on-linux/
https://github.com/includeos/NaCl
https://iperf.fr
https://hewlettpackard.github.io/netperf/
http://www.hping.org/hping3.html
www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Performance evaluation of a firewall service based on virtualized IncludeOS unikernels
	Related work
	From unikernels to unikernel network functions
	NFV technology evolution
	Introduction to unikernels
	Unikernel network functions

	Performance evaluation
	Image size
	Launch time
	Idle ping delay
	TCP throughput
	UDP throughput
	TCP requests per second
	UDP requests per second
	TCP connections per second
	ICMP latency
	TCP latency

	Observations and discussion
	Limitations and future work
	Conclusions
	References
	Acknowledgements

