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Stochastic energy management 
of a microgrid incorporating 
two‑point estimation method, 
mobile storage, and fuzzy 
multi‑objective enhanced grey wolf 
optimizer
Serajuddin Habibi , Reza Effatnejad *, Mahdi Hedayati  & Payman Hajihosseini 

In this study, the stochastic energy management, and scheduling of a renewable microgrid involving 
energy sources and dynamic storage is performed considering energy resource and demand 
uncertainties and demand response (DR) using the two‑point estimation method (2 m + 1 PEM). 
The three‑dimensional objective function is defined as maximizing the renewable hosting capacity 
and minimizing the operation cost, and emission cost minimization. The decision variables include 
installation location and size of the renewable resources and mobile energy storage system (MESS), 
determined using a multi‑objective enhanced grey wolf optimizer (MOEGWO) improved based on 
the logistic chaotic mapping integrated with fuzzy decision‑making approach. The simulations are 
implemented for several cases of employing MESS, DR, and uncertainties to investigate the proposed 
approach’s efficacy. The MOEGWO performance is confirmed to solve the ZDT and CEC’09 functions 
according to some well‑known algorithms. Then, the performance of the MOEGWO is evaluated on 
the stochastic energy management and scheduling of the renewable microgrid. The results indicate 
that considering the dynamic MESS causes reducing the operation and emission costs by 23.34% and 
34.78%, respectively, and increasing the renewable hosting capacity by 7.62% in contrast to using the 
static MESS. Also, the stochastic problem‑solving considering uncertainties showed that operation 
and emission costs are raised, the renewable hosting capacity is decreased, and the uncertainty 
impact is reduced in the condition of DR application. So, the results validated the proposed 
methodology’s effectiveness for minimizing the operation and emission costs and maximizing the 
renewable hosting capacity. Moreover, the superior capability of the MOEGWO is confirmed in 
comparison with the multi‑objective particle swarm optimization to obtain lower operation and 
emission costs and higher renewable hosting capacity.

Abbreviations
ERs  Energy resources
CC  Commercial consumer
CCmax

t   Reduction of the maximum demand recommended by commercial consumer in period t
CCO2
Emiss−DG  DG pollution coefficient of CO2

CSO2
Emiss−DG  DG pollution coefficient of SO2

CNOx
Emiss−DG  DG pollution coefficient of NOx

CCO2
Emiss−Grid  Grid pollution coefficient of CO2

CSO2
Emiss−Grid  Grid pollution coefficient of SO2
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CNOx
Emiss−Grid  Grid pollution coefficient of NOx

CEmiss−DG  Cost of pollution caused by energy resource units
CEmiss−Grid  Cost of the pollution caused by the purchase of grid electricity
DR  Demand response
FCEmiss  Pollution emission function
FPDG  Function of Ddg generation hosting
gc,j  Weight factors of zc
IC  Industrial consumer
ICmax

t   Reduction of the maximum demand recommended by industrial consumer in period t
MCS  Monte Carlo simulation
MESS  Mobile energy storage system
MOEGWO  Multi-objective enhanced grey wolf optimizer
MOPSO  Multi-objective particle swarm optimization
NDG  Number of DG sources
NF  Number of objective functions
NND  Number of non-dominant solutions
PDR  Unsatisfied load demand due to the incentive package caused by DR
PDemand  Power demanded by the load
PDF  Probability distribution function
PDG  Power of each DG energy source
Pmax
DG,i  Maximum power value of energy sources

Pmin
DG,i  Minimum power value of energy sources

PEM  Point estimation method
PFC  Fuel cell power
PGrid  Grid power
PLoss  Power loss
PchMESS  MESS charge power
PdchMESS  MESS discharge power
Pmax
MESS−charge  MESS maximum charging power

Pmax
MESS−discharge  MESS maximum discharging power

PMS  Mobile storage power
PMT  Micro-tuebine power
PV  Photovoltaic
PPV,rated  Photovoltaic rated power
PWT  WT power
RC  Residential consumer
RCmax

t   Reduction of the maximum demand recommended by residential consumer in period t
S  Irradiance
Sref  Reference irradiance
SOC  State of charge of the MESS
SOCmax  Maximum limit of SOC
SOCmin  Minimum limit of SOC
SOE  Available energy of the MESS
vcutin  Cut-in wind speed
vcutout  Cut-out wind speed
vW  Wind speed
WT  Wind turbine
−→

X   Vector of the position of the wolf
−→

X P  Position vector of the prey
µU  Mean of the output variable
µZ  Value of membership function z
µzc  Mean of zc
η
dch
MESS  MESS discharging efficiency

η
ch
MESS  MESS charging efficiency

σU  Standard deviation of the output variable
σzc  Standard deviation of zc
ζc,j  Standard places of the random input variable
�c,3  Kewness of the random input variable zc

Motivation and research background
Future distribution systems will likely contain a greater proportion of renewable photovoltaic (PV) and wind 
turbine (WT) energy sources (ERs) as a result of growing environmental concerns and efforts to minimize energy 
costs. These resources offer numerous benefits to distribution networks. One of the most significant benefits 
of distributed generation (DG) based on ERs in distribution networks is that it enables the construction of 
 microgrids1,2. A microgrid typically consists of multiple ERs, such as WT, PV, hydro, microturbine (MT), fuel 
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cell (FC), biomass, natural gas generator, load, and energy storages, which can be operated independently or 
connected to the network. Globally, there is a wave of change toward adopting renewable energy sources, 
which are frequently incorporated into the power system as the  DGs3,4. Some of these disadvantages have been 
discussed within the context of energy management if the resources of DGs, particularly those that depend on 
renewable energies, aren’t being applied effectively, resulting in network operation problems such as significant 
resistance losses and voltage drops in transmission  lines5,6. On the other hand, the increased presence of these 
resources introduces technical constraints, such as bus voltage and the amount of electricity passing through the 
distribution network’s feeders. In addition, the hosting capacity of the distribution network is defined as the total 
maximum hosting capacity of ERs that can be implemented in the distribution network without exceeding the 
operational constraints of the distribution  network7–9. Uncertainty in the output power of renewable resources, 
such as wind and photovoltaic (PV) energy, in distribution microgrids is one of the primary challenges the 
operator encounters in managing these sources, which impacts the network’s capacity to host them. This indicates 
that the actual production capacity of these resources is distinct from its predicted value. Due to the uncertainty 
in the production energy of these resources, the network operators will need help creating a balance between 
power production and consumption. In addition to the uncertainty surrounding ERs, the consumption burden is 
also uncertain. In this manner, the sources are uncertain, and their correlation has a significant effect. Therefore, 
the primary challenge of grid-connected microgrids is energy management that considers the operational costs 
and emission costs of environmental pollutants in the presence of uncertainty and the application of optimization 
and uncertainty modeling techniques. In the  literature10,11, deterministic and stochastic approaches are used to 
solve microgrids’ scheduling and energy management. In deterministic microgrid energy management, it is 
assumed that the output power of renewable energy sources, the demand power, and market prices are identical to 
their predicted values. Several stochastic energy management input variables are uncertain. Due to the stochastic 
nature of wind speed and solar radiation, it is exceedingly difficult to precisely predict WT and PV output 
power. In addition, the predicted values of load demand and market price will not be exact due to unanticipated 
disturbances, forecaster errors, and fluctuations in demand and  price12.

Literature review and research gap
Due to the challenge of coordinating among diverse generation units, energy storage devices, and load manage-
ment equipment, resolving the energy management problem of microgrids is an especially challenging undertak-
ing.  In13, a multi-layer ant colony optimization (ACO) is suggested to address microgrid energy management in 
order to establish energy scheduling in order to minimize total production costs. A multi-period artificial bee 
colony (ABC) method is presented  in14 to address economic load flow taking generation, storage, and respon-
sive load into consideration.  In15, an efficient algorithm called particle swarm optimization (PSO) is presented 
to solve the microgrid energy management problem considering different energy storage units and distributed 
generation sources.  In16, the energy management of multiple microgrids is implemented with the help of a com-
mon line with a common connection point to the network.  In17, real-time energy management is developed 
to solve the optimal scheduling of the battery charge and discharge pattern in a microgrid by minimizing the 
operation and charge/discharge cost of the battery using the PSO.  In18, the energy management of a microgrid 
is implemented to minimize the operating cost by considering the battery degradation using the PSO.  In19, the 
energy management of a proposed integrated microgrid with WT and PV sources, diesel generator, energy stor-
age, and CHP sources to meet electrical and thermal demands to minimize operating costs via a reinforcement 
learning (RL).  In20, multi-objective optimization and energy management of a microgrid is presented to reduce 
energy exchange with the main grid based on the independence performance factor and also minimize power 
loss, pollution, and voltage drop considering DR using an epsilon-greedy algorithm (EGA).  In21, a stochastic 
decision-making method based on a compromised program (CP) is presented for the energy management of a 
multiple microgrids with the aim of minimizing the investment costs of installing power cables and operating 
costs.  In22, the optimal operation of a microgrid connected to the distribution system is developed, and the best 
investment and operation strategy of the CHP system, boiler, PV power generation, and battery are determined 
by the optimization method.  In23, stochastic scheduling of a microgrid is implemented considering the power 
uncertainty of PV and WT sources using Monte Carlo simulation (MCS) based on the hybrid Jaya algorithm 
and interior point method (Jaya-IPM). Multi-objective microgrids operation integrated with distributed genera-
tion and combined heat and power (CHP) is devised  in24 to minimize cost, energy loss, and voltage deviation 
via Mont Carlo simulation and point estimate technique with teaching–learning-based optimization and firefly 
algorithm (TLO-FA).  In25, an optimal microgrid energy management method is developed to meet CHP demand 
by hydrogen stations, EVs, and fuel cells to minimize the operating cost incorporating the alternating direction 
method of multipliers (ADMM).  In26, a microgrid scheduling model with multiple energy sources is proposed 
to supply the electricity, gas, and heat needs of subscribers using renewable sources and multi-energy conversion 
methods.  In27, an energy microgrid operation integrated with energy resources and also electric vehicles is imple-
mented to minimize the operation cost and also the voltage deviation considering uncertainty of the resources 
using GAMS software.  In28, a stochastic scheduling method for microgrid participation in the energy market is 
developed by determining the scheduling of energy resources considering DR for minimizing the operating cost 
of electric and thermal loads using water wave optimization (WWO).  In29, scheduling the energy management of 
a microgrid is performed considering uncertainty and DR to minimize the cost of operation and emission via a 
quantum PSO (QPSO).  In30, the dynamic scheduling of an energy microgrid is presented based on the colored 
Petri net (CPN) integrated with the QPSO.  In31, the stochastic scheduling of a microgrid based on renewable 
energy sources and battery energy storage is developed using the barnacles mating optimizer (BMO).  In32, the 
multi-objective and stochastic scheduling of a microgrid including storage, energy sources, and DR based on 
clustering and scheduling layers is presented to minimize the operation cost and pollution emission using the 
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column and constraint generation (C&CG) algorithm. Mathematical programming and meta-heuristic methods 
are applied to solve the microgrid scheduling and energy management in previous studies. Mathematical pro-
gramming methods are capable to guarantee reaching the optimal point, while meta-heuristic methods do not 
guarantee this. Heuristic techniques, on the other hand, can tackle large and complex optimization problems, 
whereas mathematical programming techniques might not work as the complexity of the optimization problem 
expands. Mathematical methods are based on the derivative, in other words, the Lagrange function is calculated 
in them, and then the Cuhn-Tucker constraint is derived for it and the problem is solved. Differentiability is 
also obtained when the problem is convex, but the problem of load distribution in electrical networks such as 
microgrid is non-convex. Therefore, there is the problem of derivability, which of course has solutions, but they 
are  complicated33. Moreover, problem solving is based on complex mathematical algorithms. But solving these 
problems is easily possible using meta-heuristic algorithms. For this reason, meta-heuristic algorithms have been 
used in this study to prevent the complexity of the problem and to prevent the increase of computational cost.

According to the literature review summarized in Table 1, the research gaps are presented as follows:

• The literature review has shown that most studies have not considered modeling uncertainties in microgrid 
scheduling. Due to the uncertainty of the production of renewable energy sources and also the load demand, 
the amount of load may be higher than the predicted value and the production may be lower than the pre-
dicted value in a deterministic scenario. Therefore, the output results are not reliable because the reserve 
level considered may not respond to the fluctuations of renewable resources. Moreover, in this situation, 
microgrid planning should be performed based on the stochastic model, taking into account the uncertain-
ties of resource and load generation, which is less addressed in the previous researches.

• In the studies that are implemented based on the stochastic model, they used the conventional method of 
Monte Carlo simulation (MCS) to model the uncertainties. The MCS is a method that requires the probability 
distribution function (PDF) of parameters with uncertainty, while its computational cost is high and its output 
is highly dependent on the definition of input scenarios. The Monte Carlo method’s primary drawback is the 
large number of simulations required to obtain convergence. Devoid of complete knowledge of the probability 
functions of random variables, there is a requirement for uncertainty modeling techniques that involve less 
computational burden and can circumvent the challenges resulting from this lack of knowledge.

• The microgrid operators try to overcome existing uncertainties and increase the hosting capacity from the 
DGs especially renewable energy resources contribution to have a certain amount of storage in the system. 
Although these problems were overcome by buying more energy from the upstream network or increasing 
the number of resources, it caused problems such as increasing the amount of pollution. The evaluation of 
the literature review has shown that the use of mobile storage for this purpose has not been well conducted. 
In general, mobile energy storage system (MESS) is a type of storage that is installed on a vehicle and can 
move in the distribution network. The effect of simultaneously using these resources with demand-side load 
management has not been well evaluated in previous studies.

Table 1.  Summarize of the literature.

Ref Determinstic/stochastic Demand response
Dynamic (mobile) 
storage Hosting capacity Fuzzy decision making Solver

13 Determinstic Yes No No No ACO
14 Stochastic/Markov model Yes No No No ABC
15 Determinstic No No No No PSO
16 Determinstic No No No No MILP
17 Determinstic No No No No PSO
18 Determinstic No No No No PSO
19 Determinstic No No No No RL
20 Stochastic Yes No No No EGA
21 Stochastic Yes No No Yes CP
22 Stochastic No No No No MILP
23 Stochastic Yes No No No Jaya-IPM
24 Stochastic Yes No No Yes TLO-FA
25 Stochastic Yes No No No ADMM
26 Stochastic Yes No No No MINLP
27 Stochastic Yes No No Yes MINLP
28 Stochastic Yes No No No WWO
29 Stochastic Yes No No No QPSO
30 Determinstic No No No No CPN-QPSO
31 Stochastic No No No No BMO
32 Stochastic No No No Yes C&CG

Proposed model Stochastic Yes Yes Yes Yes MOEGWO
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Paper contributions
The contributions of this paper according to the research gaps are presented as follows:

• Stochastic and scheduling and energy management of a microgrid is implemented using the 2 m + 1 two-point 
estimation method (PEM) considering the mobile energy storage system (MESS) and demand response (DR) 
considering renewable generation and load demand uncertainties.

• A three-dimensional multi-objective framework for stochastic scheduling and energy management of the 
energy microgrid is defined to minimize the operation and emission costs as well as maximize the hosting 
capacity

• The DR and MESS are applied in microgrid scheduling and energy management to overcome the uncertainty 
of renewable energy sources and increase the hosting capacity.

• A multi-objective enhanced grey wolf optimizer (MOEGWO) is proposed based on a Logistic chaotic map-
ping technique for circumventing local optima and achieving more precise solutions.

Paper structure
The structure of the sections in this paper is as follows. Formulation of the problem, which includes the MESS 
model, the goal functions, and the constraints are presented. Then, the multi-objective optimization framework 
used by the problem-solver based on the MOEGWO algorithm is outlined. In this study, 2 m + 1 PEM approach 
to model the uncertainties is presented. Finally, the outcomes and findings summaries are given.

Problem formulation
In this study, a stochastic and multi-objective optimization model for distribution microgrid scheduling IS pro-
posed considering the DR and dynamic MESS based on the two-point estimation method (2 m + 1 PEM) and 
MOEGWO with objective of maximizing the generation hosting of ERs, minimization of operational costs as 
well as pollution emission cost minimization. In the following, the modeling of PV and WT is presented along 
with the energy storage.

Microgrid model
A microgrid includes distributed generation and renewable energy sources, energy storage, and load demand 
that can operate independently of or connected to the main power grid. The microgrid studied in this research 
is a 33-bus distribution network type and includes PV, WT, MT, FC, and dynamic MESS.

Wind energy model: The WT’s production power is calculated using manufacturer data and wind speed 
information. The generated electricity of a wind turbine is defined by the following  formula2,4,5.

where  PWT is wind turbine output power, vW wind speed, vcutin low cut-off speed, vcutout cut-out wind speed in m/s, 
PWT,max is upper turbine output power in kW and Pfurl is output power at high cut-out wind speed.

To model the uncertainty of wind power, the most appropriate distribution is the Weibull PDF, therefore, in 
this study, the Weibull PDF is used for the wind speed, and it should be evaluated by considering the appropriate 
parameters of the wind speed change curve. This function can be shown as  follows4:

where x is the wind speed, η and βw are the scale parameter and the shape parameter, respectively.
PV energy model: The production power of the PV panel is calculated based on the manufacturer’s data and 

radiation and temperature data. The output power of a PV panel is defined as  follows2,6.

where  Prated is the rated power of the photovoltaic panel,  Sref solar radiation, reference solar radiation (1000 W/
m2) and ηMPPT is tracking efficiency of the maximum photovoltaic power point (in this study, it is considered 
equal to 0.95)2,6.

According to the behavior of solar radiation, beta PDF is applied to model it according to the following 
 equation34.

where s is the solar radiation in kilowatts per square meter,  fb(s) is the statistical density function of the beta 
distribution for the variable s, and αs and βs are parameters of the beta distribution are calculated as follows.
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where µe and σ e are the mean and standard deviation of this distribution, respectively.
Dynamic MESS model: The dynamic MESS is comparable to conventional energy storage  systems2, which 

at first are typically employed to provide reserve energy for unreliable energy generation in the power distribu-
tion network. The distinction between traditional energy storage and dynamic energy storage is the fact that 
dynamic MESS can be transferred based on the system’s objective functions or particular conditions, such as 
system reconfiguration or a rise in production capacity. Dynamic MESS acts as a load or generator according 
to the state of charge and discharge. Energy management decides whether or not to receive energy from the 
dynamic MESS during system operation.

where SOE is available energy of the MESS, SOC denotes state of charge of the MESS. The SOC is ratio of avail-
able energy to the maximum available capacity of the MESS.  EMESS is the MESS maximum available capacity, 
 SOCmin and  SOCmax refer to the lower and upper SOC of the MESS,  SOEmin and  SOEmax are lower and upper SOE 
of the MESS. SOE (t-1) represents the charging state of the storage at hour t-1, PchMESS(t) and PdchMESS(t) refer to the 
MESS charge and discharge power and ηchMESS and ηdchMESS represent MESS charging and discharging efficiency.

DR model
The DR is considered as incentive based program.The following equations show how their behavior can be mod-
eled. In this study, electricity consumers are divided into three categories: residential, commercial, and industrial. 
Constraints indicate that the total quantity of energy saved by each user throughout each hour should be less 
than or equal to the upper quantity of its  offers35.

where r, c, and i are the residential (RC), commercial (CC), and industrial (IC) consumers number; RC(r, t) , 
CC(c, t) , and IC(i, t) denote load reduction planned amount by each RC, CC, and IC consumer in period t; RCmax

t  , 
CCmax

t  , and ICmax
t  refer to reduction of the maximum demand recommended by each consumer in period t; 

ξr,t ,, ξc,t , and ξi,t clear the incentive payment amount to each consumer in t; and RP(r, t) , CP(c, t) , and IP(i, t) are 
load reduction cost by RC, CC, and IC consumers in t for the recommended reducing the demand , respectively.

Objective function
The problem of stochastic and multi-objective scheduling of a microgrid including ERs, dynamic MESS, and 
DR strategy is formulated in form of a multi-objective optimization model. The stochastic and multi-objective 
scheduling model is presented to maximize the renewable generation hosting capacity of ERs, minimizing the 
operational costs as well as pollution emission cost minimization via a 2 m + 1 PEM considering ERs generation 
and load demand uncertainties. In addition, a DR program based on incentive-based payment has been applied 
to eliminate the uncertainty parameters effect. In Fig. 1, the scheduling model is depicted. The framework of the 
proposed scheduling model based on the MOEGWO-based fuzzy decision-making is shown in Fig. 1.

ERs generation hosting: The objective function of ERs generation hosting includes power generation of WT, 
PV, microturbine (MT) and fuel cell (FC) resources, which is defined as follows:

where FPDG represents the function of renewable generation hosting capacity of the network of energy sources, 
NDG is the number of sources and PDG is the power of each energy source. Here, the objective is to maximize sys-
tem revenue from microgrid electricity sales (electricity generation multiplied by unit cost is defined as revenue). 
Of course, according to the other objective functions that are defined in following, based on the multi-objective 
optimization framework and fuzzy decision making, a compromise is made between them.

Operating cost: The objective function of operation cost includes the cost of energy losses, the cost of pur-
chased power from the main grid, the operation cost of ERs, the cost of storage, in addition a DR program are 
defined as  follows35,36:

(5)βs = (1− µe).(
µe.(1+ µe)

σ e2
− 1)

(6)αs =
µe.βs

1− µe

(7)
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(8)RP(r, t) = RC(r, t).ξr,t ,RC(r, t) ≤ RCmax
t

(9)CP(c, t) = CC(c, t).ξc,t ,CC(c, t) ≤ CCmax
t

(10)IP(i, t) = IC(i, t).ξi,t , IC(i, t) ≤ ICmax
t

(11)Max F1 = FPDG =

NDG
∑

i=1

PDG(i)
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where FCOp represents the operating cost function. PLoss(t) , PGrid(t) , PPV (t) , PWT (t) , PMT (t) , PFC(t) , PMS(t) and 
PDR(t) represent power loss, power purchased from the grid, , PV power, WT power, MT power, FC power, 
storage power and unsatisfied load demand due to the incentive package caused by DR. CLoss is the price of each 
kW of losses, CGrid is the price of grid electricity, CPV and CWT is the price of PV and WT electricity, CMT is the 
price of MT electricity, CFC is the price of FC electricity, CMS is the price of each kWh of storage power and CDR 
is the price of the proposed DR package.

Pollution emission cost: The pollution emission formula ( FCEmiss ) includes functions that determine the quantity 
of pollution produced by DG devices and by the network at the time of buying it. Pollutants consist of CO2,  SO2, 
and NOx, and the resulting emission function is able to be obtained the following way from the pollution  model35:

where CEmiss−DG(t) and CEmiss−Grid(t) represent the cost of pollution caused by energy resource units and the 
cost of the pollution caused by the purchase of grid electricity, respectively and T is the simulation period.

The average pollution caused by ERs can be calculated as follows:

where CCO2

Emiss−DG , CSO2

Emiss−DG and CNOx
Emiss−DG are pollution coefficients of  CO2,  SO2 and  NOx due to ERs (kg/MWh) 

caused by DG. PDG,i(t) is the production power of the  ith energy source at time t.
Likewise, the pollution resulting from the grid during the procurement of energy can be expressed by

where CCO2

Emiss−Grid , CSO2

Emiss−Grid and CNOx
Emiss−Grid are pollution coefficients of  CO2,  SO2 and  NOx due to grid (kg/

MWh). PGrid(t) is the power purchased from the grid at time t.

Constraints
The objective function of the microgrid scheduling problem should be optimized subjected to the following 
 constraints35–37:

Power balance

(12)
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T
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Emiss−DG(i)+ CSO2
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)
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.PGrid(t)

No

Multi-objective Enhanced Grey Wolf

Optimizer (MOEGWO)

Based on Fuzzy Decision-Making

Scheduling Problem

Load:

33-bus Micro-grid Demand

Devices:

PV, WT, MT, FC, MESS, Grid

Objective Function (Three dimensional):

ERs Hosting

Operation Cost

Emission Cost

Output (Decision variables):

Installation location and sizing of

PV, WT, MT, FC, ESS in the 33-bus

micro-grid

Figure 1.  Proposed framework of stochastic and multi-objective scheduling of the microgrid.
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where PDemand(t) and PDR(t) respectively express the power demanded by the load and the unsupplied power 
of the load due to the DR strategy at time t.

PDR(t) is the quantity of engaged involvement in demand response strategies and is defined by

ERs powerwhere Pmin
DG,i(t) and Pmax

DG,i(t) are the lower and upper power values of energy sources at time t, 
respectively.

MESS capacitywhere Eq. (19) denotes the SOC maximum and minimum values of the MESS. Pmax
MESS−charge(t) 

and Pmax
MESS−discharge(t) are the MESS maximum charging and discharging power, respectively at time t. 

γ(t)∈ {0, 1} and γ(t) = 1 and γ(t) = 0 clear the discharge and charge modes of the MESS, respectively.

The stochastic model
In this study, the stochastic and multi-objective scheduling of a microgrid is performed including ERs, dynamic 
MESS, and also DR strategy considering uncertainties of ERs generation and load demand uncertainties, and 
forecasting the ERs generation hosting is one of the major challenges in microgrid scheduling researches. Uncer-
tainty modeling methods are divided into three categories: MCS, analytical methods, and approximate methods. 
In this study, the PEM based on approximate methods is used to model uncertainties. The PEM, unlike the MCS, 
does not depend on the PDF of uncertain variables, and due to their approximateness, it can overcome these 
problems considering its first few statistical moments. Also, compared to the MCS, it has a lower computational 
cost and iteration of convergence. The 2 m + 1 PEM is derived from statistical information that utilizes the 
minimum estimated value (the central instances of the input randomized variables). The empirical instances of 
the output variables may be determined by multiplying 2 m + 1 times the objective function with solely the two 
middle instances of each unpredictable input variable. In the PEM, the information gathered from the central 
instances is applied for identifying certain indicative locations (s locations for each variable) termed centers. 
These representation points are used for solving the approach, and the statistical data of the uncertain output 
variable can be determined using the representative locations’  answers38–40. To calculate the central instances 
of the output variables for the stochastic microgrid scheduling challenge, the following 2 m + 1 PEM execution 
 phases38–40 have been provided:

Step 1 Specify the total amount of variable inputs (m).
Step 2 Setting the moment vector of the output variable as E(Ui) = 0, i = 1, 2.
Where, E(Ui) represents the ith moment vector of the output variable.
Step 3 Setting c = 1(c = 1, 2, ...,m).
Step 4 Two standard coordinates of the unpredictable variable are presented by

where ζc,j expresses the standard places of the random input variable, �c,3 is skewness of the random input vari-
able zc and �c,4 is expression of the kurtosis of the random input variable zc.

Step 5) The positions zc are defined as follows:

where zc,j is the positions of random input variables, µzc mean of zc and σzc refers to the std of zc.
Step 6) The microgrid deterministic scheduling problem is performed for two positions zc.

where Uc,j indicates deterministic scheduling for places zc.
Step 7 Two weighting factors of zc are determined.

(16)
NDG
∑

i=1

PDG,i(t)+ PGrid(t) = PDemand(t)− PDR(t)

(17)PDR(t) =
∑

r

RC(r, t)+
∑

c

CC(c, t)+
∑

i

IC(i, t)

(18)Pmin
DG,i(t) ≤ PDG,i(t) ≤ Pmax

DG,i(t)

(19)SOCmin(t) ≤ SOCmin(t) ≤ SOCmin(t)

(20)PchMESS(t) ≤ Pmax
MESS−charge(t).(1− γ (t))

(21)PdchMESS(t) ≤ Pmax
MESS−discharge(t).γ (t)

(22)ζc,j =
�c,3

2
+ (−1)3−j .

√

�c,4 −
3�2c,3

4
j = 1, 2

(23)zc,j = µzc + ζc,j .σzc j = 1, 2

(24)Uc,j = f (µz1 ,µz2 , ..., zc,j , ...,µzm)j = 1, 2
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where gc,j represents weight factors of zc.
Step 8 E(Ui) is updated.

Step 9 Steps 4 to 8 (for c = c + 1) until all input random variables are considered.
Step 10 The microgrid deterministic scheduling problem is implemented according to the following variable 

vector of the input random. 

where zµ is the input random variable vector.
Step 11) The weight coefficient of the microgrid scheduling problem solved in step 10 is calculated as follows.

where g0 is the weighting factor of the scheduling problem.
Step 12) E(Ui) is as follows.

Step 13) Knowledge of the statistical instances of the variable at random output, the mean µU and standard 
deviation σU values are defined as follows.

where µU and σU represent the output variable mean and standard deviation, respectively.
The probability distribution function of each output random variable is calculated according to the values 

µU and σU and the Gram–Charlier  method41.

Multi‑objective optimizer
Overview of the GWO
Social hierarchy: The GWO algorithm is an evolutionary algorithm based on the population of grey wolves, 
which is inspired by their hunting performance and social behavior. In the population of grey wolves, four types 
of wolves α, β, δ, and ω are defined, where α is the main leader of the group (the first level of leadership) and is 
responsible for many decisions such as hunting, resting and sleeping places, waking time, etc. The wolf β is in 
charge of the second level of leadership that helps wolf α in making decisions and is a suitable substitute in the 
event of Wolf α’s death. The ω wolf is the lowest level in the wolf population and the last group allowed to eat 
food. Wolves other than those defined are named δ. In GWO, the best solution is algorithm α and the two best 
answers are β and ω and the rest of the solutions are considered δ42.

Bait siege: The grey wolf surrounds its prey while hunting. The encirclement behavior is defined as  follows42.

where t represents the repetition number, −→A  and −→C  are the vector of coefficients, −→X P is position vector of the 
prey, and −→X  is vector of the position of the wolf.

The vector of coefficients is defined as  follows42:

where −→r 1 and −→r 2 represent random vectors in the interval [0,1] and −→a  is vector with decreasing behavior from 
2 to 0 in the process of iterations.

Hunting: is led by α wolves and sometimes β and δ wolves also help in hunting. They may also occasionally 
participate in hunting. In this phase, the three best elements are α, β, and δ wolves, which have more knowledge 

(25)gc,j =
(−1)3−j

ζc,j .(ζc,1 − ζc,2)
j = 1, 2

(26)E(Ui
) = E(Ui

)+

2
∑

j=1

gc,j(Uc,j)
i

(27)zµ = [µz1 ,µz2 , ...,µz,c , ...,µzm ]j = 1, 2

(28)g0 = 1−

m
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1

�c,4 − �
2
c,3

(29)E(Ui
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m
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2
∑
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about the hunting area. Therefore, the three best elements are stored and the rest of the wolves (ω) must update 
their position based on the position of α, β, and δ wolves. This behavior is presented as  follows42.

Attacking prey: The grey wolves end the hunting process by attacking and tiring the prey and by stopping the 
prey from moving. The value of −→a  decreases when the wolf approaches the prey. When the random �A  values 
are in the interval [1, -1], the next position of a search agent can be anywhere between the current position and 
the prey position. Under the circumstances |A| ≺ 1 , wolves are forced to attack prey. The GWO algorithm allows 
search agents to update their position based on alpha, beta, and delta location and attack the  prey42.

Search for prey: The GWO method mainly searches for alpha, beta and delta positions. The grey wolves diverge 
from each other and separate to search for prey and converge to attack it. In the condition of |A| ≻ 1 , the grey 
wolves are forced to diverge from the prey to hopefully search for a specific prey. �C is a random number in the 
interval [0, 2] and provides random weights for the bait. �C is also used for global exploration and avoidance of 
local GWO  optima42.

The pseudocode of the GWO is presented in Algorithm 1.

1: Initiate the population Xi , for i = 1, . . . , M

2: Insert a = 2 

3: Insert vectors A and C 

4: Calculate the fitness of the wolfs

5: Xα: best wolf of the pack

6: Xβ: second best wolf 

7: Xδ: third best wolf 

8: While t < maximum number of iterations do
9: For each wolf i do
10: Update the position by Eq. (37) 

11: End For
12: Update a, A, and C 

13: Compute the new fitness for each wolf 

14: Update Xα, Xβ, and Xδ

15: increment the iteration number (t = t + 1) 

16: End While
17: Return Xα

Algorithm 1.  The GWO pseudo code

Overview of the enhanced GWO (EGWO)
The GWO achieves a balance between global and local search by adjusting −→A  , thereby partially avoiding the 
local optimum. Nevertheless, the search process’s randomization could potentially converge to a local opti-
mum. Chaos is a prevalent nonlinear phenomenon in the natural world. It possesses the attributes of ergodicity 
and randomization. Therefore, chaos is frequently combined with them to enhance the global search capabili-
ties of other optimization  algorithms43,44. In this investigation, logistic chaos is implemented within the GWO 
to enhance its capability.

where χi , i, and k denote the iteration number and chaotic state related to the logistic equation, respectively. The 
logic equation becomes entirely chaotic when κ = 4 . By utilizing this methodology, logistic chaotic mapping 
(LCM) can assist the GWO in circumventing local optima and achieving more precise solutions.

Determine the chaos map that will be utilized in the subsequent iteration to modify the initial positions of 
the GWO in accordance with population conditions.

where −→X
max

i  and −→X
min

i  refer to the −→X i boundaries, α ∈ (0, 1) denotes the space shrinkage factor.
The EGWO flowchart is shown in Fig. 2a.
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Overview of the MOEGWO
Multi-objective problem entails the concurrent optimization of multiple contradictory objectives that have to 
meet a variety of limitations. In single-objective optimizing, there is an optimum answer, whereas in optimiza-
tion with multiple goals, there is no optimal answer, and various objectives can come into conflict. Thereby, the 
primary objective of solving the problem using optimization with multiple goals is to identify the Pareto  front8 
of the optimal solution to construct an acceptable compromise within every one of the goals. The multi-objective 
function is characterized below, taking limitations into account:

Start

Choice the random variable set for

each grey wolf

Compute the fitness for wolf population

and find the best solution with best

fitness

Initiate the algorithm’s parameters

Have all agent been

checked?
Next wolf

Update a, A & C

and also position’s population

No

Yes

Have the convergence conditions been

met?

Yes

No

Print the optimal

solution

End

Compute the fitness for wolf population and find the best

solution with best fitness and replace with the old one

Update the wolfs population based on the logistic chaotic

mapping (LCM) and determine the random variables

Compute the fitness for wolf population and find the best

solution with best fitness and replace with the old one

Start

Generate the initial population of the optimizer , randomly.

Each wolf selects a set of decision variables at random within

the allowable range of the search space

Run the load flow for each set of variables determined by the

wolfs and check the constraints

Apply the Pareto front to determine the normalized objective

function (Eq. (42))

Normalize each of the objective functions and calculate the

objective function by Eq. (43)

Application of microgrid technical and economical data,

renewable resources data, loading and GWO optimizer

parameters

Sort the wolfs based on the objective function value (Eq.

(43)) and determine the best and worst values

Update the wolfs population and determine the random

variables

Run the load flow for the new variables set

Compute the objective functions according to the Pareto front satisfying

the constraints and normalize each of the objectives and replace it with the

old best wolfs if the new variables have a better objective function value

If convergence criteria is met?

Save the results

Yes

Stop

No

Update the wolfs population based on the logistic chaotic

mapping (LCM) and determine the random variables

Run the load flow for the new variables set

Calculate the objective functions based on the Pareto front satisfying the

constraints and normalize each of the objectives and replace it with the old

best wolfs if the new variables have a better objective function value

(a) (b)

Figure 2.  Flowchart of (a) EGWO (b) MOEGWO implementation to solve the problem.



12

Vol:.(1234567890)

Scientific Reports |         (2024) 14:1667  | https://doi.org/10.1038/s41598-024-51166-9

www.nature.com/scientificreports/

where X is the decision variables vector, F(X) is the decision vector objective functions, and z is the objective 
functions number (z = 3).

The Pareto front consists of a number of solutions. Planners rely on intuition as a basic tool to select the final 
solution from among Pareto solutions. Due to the uncertainty of the planner’s evaluation, the fuzzy decision-
making approach is used. The membership function for zth function between kth optimal Pareto solution ( µk

Z ) 
is defined as  follows8:

where µZ clears the membership function value of z. f max
Z  and f min

Z  are the upper and lower quantities of the Zth 
function and fZ(X) is the Zth objective function quantity throughout the optimization.

µk
Z clears 0 and 1 so that µk

Z = 0 shows the contradiction in the solution with the goals of the designer, while 
µk
Z = 1 indicates full congruence.

The normalized membership function is presented as below 8 for every Pareto solution k:

where NF is the non-dominant answer and NND indicates the objective functions number.
Therefore, the compromised solution is defined by

The maximum value is the best compromise solution.
In this study, three objective functions (ERs generation hosting, operating cost, and pollution emission cost) 

are considered, and the proposed multi-objective algorithm should create a compromise between all objectives. 
Based on the created Pareto front solution set, the fuzzy decision-making approach selects the solution with the 
best compromise between three different objectives as the final solution.

The MOEGWO implementation
In this section, the implementation steps of multi-objective and deterministic scheduling of the microgrid are 
described using the MOEGWO and fuzzy decision-making for minizing the operating costs, minimize the cost of 
pollution emission, and maximize the renewable generation hosting capacity considering DR and dynamic MESS.

Step 1 Establish data. The optimization program is currently utilizing the technical data of the microgrid, 
information regarding the hosting capacity of renewable generation on the ERs, the grid price, the cost of energy 
loss, and data regarding the operation and emission costs of renewable energy sources. Furthermore, the program 
has been provided with data pertaining to the normalized load demand of the microgrid over a 24-h period, in 
addition to the normalized power profile of PV and WT.

Step 2 Determination of the variables. At this step, for the population of grey wolves, the set of variables 
within the allowed range is determined, randomly. The variables are considered as installation location and size 
of renewable resources and also MESS in the distribution network.

Step 3 The objective function value (Eq. (42)) for each set of random variables chosen in step 2 that satisfies 
the operational constraints and ERs has been computed using load flow.

Step 4 Identification of the non-dominant solutions. In this stage, solutions that are not dominated by the set 
of solutions acquired in step 3 are identified.

Step 5 Archiving. The non-dominated solutions are segregated from the remaining solutions and archived 
at this stage.

Step 6 Identify the most desirable non-dominant wolf. This stage involves identifying the optimal grey wolf 
from the archive that was presented in step 5.

Step 7 Reconcile the population. This stage involves the update of grey wolf populations and the positions 
of individual members.

Step 8 The new non-dominant solution is being appended to the archive. The optimal wolf exhibiting a non-
dominated solution is appended to the archive during this stage.

Step 9 Cleaning-centric solutions and superfluous components. The dominated solutions are eliminated from 
the clear archive at this stage. Additionally, additional archive members are removed in proportion to the total 
number of archive members.

Step 10 Using the logistic chaotic mapping (Eqs. (38–39)), update the population and aid the GWO in avoid-
ing local optima in order to attain more precise solutions. This stage involves the update of grey wolf populations 
and the positions of individual members.

Step 11 Step 10 is considered when adding the new non-dominated solution to the archive, and the optimal 
wolf containing the non-dominated solution is appended to the archive. In addition to removing dominated 
solutions from the archive, additional members are removed in proportion to the number of archive members.
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Step 12 Evaluating the criterion for convergence. The convergence criterion of the algorithm, which involves 
executing the utmost number of algorithm iterations, is evaluated during this phase. If convergence criteria is 
met, the algorithm terminates at step 13; otherwise, it returns to step 7.

Step 13 The final solution should be saved. During this stage, the final solution is determined using the fuzzy 
decision-making method from among the optimal solutions.

The MOEGWO implementation flowchart to solve the problem is depicted in Fig. 2b.

The MOEGWO performance
In this section, the performance of the MOEGWO is evaluated to solve two well-known benchmark test suits, 
ZDT (Table 2) and CEC’09 (Table 3)45,46. In the ZDT test suit, MOEGWO performance is investigated to solve 
the six cases such as ZDT1, ZDT2, ZDT3, ZDT4, and ZDT6 as well as CEC’09 including two-objective functions 
(UF1-UF7) and three-objective functions (UF8-UF10). The ZDT and CEC’09 benchmark test suits are presented 
in detailed  in45,46. The results of MOEGWO are compared with the MOGWO, MOPSO, MOEA/D, NSGA-II, 
and MOCOVIDOA. Also, for the performance metric, some indices are considered such as Inverted Genera-
tional Distance (IGD) for measuring convergence. The Spacing (SP) and Maximum Spread (MS) are employed 
to quantify and measure the coverage. The mathematical formulation of IGD is similar to that of Generational 
Distance (GD). The formulation of these indices is presented in detailed  in45,47. All the algorithms are run 20 
times on the test problems we used 300,000 function evaluations for each algorithm.

For example, the best Pareto fronts obtained from the execution of all algorithms including the proposed 
MOEGWO and the MOGWO, MOPSO, MOEA/D, NSGA-II and  MOCOVIDOA47 algorithms for solving the 
ZDT3 test function are depicted in Fig. 3. Based on this figure, it shows the convergence and high coverage of 
the Pareto optimal solutions obtained by the proposed algorithm, because the obtained Pareto front is almost the 
same as the actual Pareto front for all cases. It can be seen that the proposed MOEGWO algorithm shows the most 
convergence and coverage compared to other algorithms, and its Pareto front is better than other algorithms.

The results of Table 4 show the superiority of the MOEGWO method over the MOGWO, MOPSO, MOEA/D, 
NSGA-II, and MOCOVIDOA algorithms in most indicators and in 20 out of 24 indicators for 6 test functions, 
the proposed method obtained the best results for five cases. However, in the remaining one case (ZDT6), other 
algorithm such as MOCOVIDOA is slightly better than the proposed method.

The real Pareto optimal front and the best Pareto optimal front for UF2, UF4 and UF7 obtained from the 
MOGWO algorithm and its improved version, MOEGWO, are shown in Figs. 4, 5, 6. It can be seen that the 
optimal Pareto front of MOEGWO is better than MOGWO in the implemented tests and the coverage of the 
Pareto front is wider. Also, the results show that MOEGWO Pareto optimal solutions have better distribution 
in both objectives.

As shown in Table 5, the MOEGWO in 8 functions UF1, UF2, UF3, UF5, UF6, UF8, UF9 and UF10 has 
obtained the best results in all evaluation criteria compared to other algorithms. For functions UF4 and UF7, the 
 MOCOVIDOA47 has obtained better criteria than other algorithms. Therefore, in most functions, the proposed 
MOEGWO has shown better performance.

Table 2.  Characteristics of the Zitzler-Deb-Thiele’s (ZDT) benchmark functions 45.

Name Objectives Parameter domains Characteristic

ZDT1 2 [0,1]n Convex PF

ZDT2 2 [0,1]n Nonconvex PF

ZDT3 2 [0,1]n Many local Pareto fronts

ZDT4 2 [0,1]✕[-5,5]n-1 Local density solutions near

ZDT6 2 [0,1]n Pareto front/nonuniformly spaced, nonconvex

Table 3.  Characteristic of CEC’09 test functions 46.

Name Objectives Search space range Characteristic of PF

UF1 2 [0,1]✕[-1,1]n-1 Concave

UF2 2 [0,1]✕[-1,1]n-1 Concave

UF3 2 [0,1]n Concave

UF4 2 [0,1]✕[-2,2]n-1 Convex

UF5 2 [0,1]✕[-1,1]n-1 21 point front

UF6 2 [0,1]✕[-1,1]n-1 One isolated point and two disconnected parts

UF7 2 [0,1]✕[-1,1]n-1 Continuous straight line

UF8 3 [0,1]2✕[-2,2]n-2 Parabolic

UF9 3 [0,1]2✕[-2,2]n-2 Planar

UF10 3 [0,1]2✕[-2,2]n-2 Parabolic
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Simulation results and discussion
System data
To investigate the capability of the recommended methodology, the stochastic and multi-objective scheduling 
of the microgrid is performed on a 33-bus distribution microgrid that includes MT, WT, PV, FC and dynamic 
MESS. The 33-bus distribution microgrid is depicted in Fig. 7. The load demand of consumers is supplied through 
PVs, WTs, MTs and FCs or power purchased from the post. Dynamic MESSs are capable to inject energy into 
the grid, as well as moving during the study period, in different busses of the grid, along with each of the ERs. 
The microgrid lines data is taken from Ref.42 and load data of the modified distribution microgrid is given in 
Appendix A.

In this study, the 2 m + 1 PEM approach is used for the stochastic microgrid scheduling. The forecasted hourly 
power of the PV unit and WT unit, the percentage of the peak load of the network during 24 h, and the grid price 
are presented in Figs. 8, 9, 10, 11 48, respectively. Also, the electricity price and emission coefficients of different 
ERs and the proposed package for DR are presented in Tables 6 and 7, respectively.

The proposed methodology is coded in the MATLAB 2020b software environment and by a personal com-
puter with Corei7 specifications, with 8 GB of memory and HDD with a capacity of 1 TB. The number of popula-
tion, maximum iteration, and independent executions of the algorithm is considered to be 70, 100, and 20, respec-
tively. The effectiveness of the proposed methodology has been simulated and checked in the following cases:

• Case 1 Without considering DR and uncertainty and with static MESS
• Case 2 Without considering DR and uncertainty and with dynamic MESS (dynamic MESS effect)
• Case 3 Without considering DR and with uncertainty and dynamic MESS (effect of uncertainty)
• Case 4 Considering DR, uncertainty, and dynamic MESS (effect of DR)

Figure 3.  Best Pareto optimal front obtained on ZDT3 problem by MOEGWO, MOGWO, MOPSO, MOEA/D, 
NSGA-II, and MOCOVIDOA.
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• Case 5 Comparison of single and multi-objective scheduling results

Results of dynamic MESS effect
In cases 1 and 2, the results of deterministic and multi-objective scheduling of microgrid with the objective 
of maximizing the ERs generation, minimizing operation costs, and also minimizing the cost of pollution 
emission, considering static and dynamic MESS, respectively using the MOEGWO. In this case, the effect of 
considering dynamic MESS is evaluated compared to the static MESS in solving the deterministic microgrid 
scheduling problem. The Pareto optimal solution set obtained for cases 1 and 2 using the MOEGWO is shown 
in Figs. 12a and 8b, respectively. According to Figs. 8a and 12b, it can be seen that based on the Pareto solution 
set, case 2 has more dispersion than case 1. It should be noted that in Fig. 8, the reason for its negative ERs is 
that the objective  F1 defined in Eq. (11) is maximization, which is presented in the form of a minimizing (-F1) 
in the MATLAB coding environment.

The final solution including optimal size of microgrid devices among the non-dominated solutions based on 
the fuzzy decision-making method is presented in Fig. 13. In these figures, the optimal and scheduled capacity 
of each device in the day-ahead has been determined using the MOEGWO with the aim of achieving the best 
performance of the microgrid.

The numerical results of multi-objective deterministic microgrid scheduling, including the installation 
location of each of the ERs and MESS, the peak power produced by the ERs, the cost of each device, as well as 
the value of the objective are given in Tables 8 and 9, respectively. Based on Tables 8 and 9, the results show that 
868 kWh of battery is installed in bus 25 in case 1 with static MESS, and 756 kWh of dynamic battery MESS 
is shifted between buses 10, 25, and 33 during the study period. In case 1, the static storage (not portable) is 
located in the microgrid and it is installed in only one place (bus) in the network. The optimization algorithm 
installed 868 kWh of static battery storage in bus 25 of the network.On the other hand, in Case 2, the storage 
device is modeled dynamically and portable among the electrical network buses. The optimization algorithm has 
transferred the amount of 756 kWh of dynamic storage (MESS) during 24 h a day between buses 10, 25 and 33 of 
the electric network. The changes of this transmission during 24 h are shown in Fig. 14b. According to Table 10, 
by considering the dynamic MESS, the value of each objective has been improved more compared with the static 
MESS. Moreover, considering MESS dynamic, the cost of energy loss is reduced from $1,241,506 to $1,144,926, 
and the cost of network energy is decreased from $3,465,866 to $-285,632 (receiving power from the microgrid 
by the main grid), the cost of pollution is declined from $8,199,544 to $5,347,756 and the operation cost has 
been reduced from $13,938.79 to $10,685.55. Therefore, microgrid scheduling based on dynamic MESS has been 
able to change the location based on the objective functions of the system or increase the renewable generation 

Table 4.  Results for ZDT test functions. Significance values are in bold.

Function Metric MOEGWO MOGWO MOPSO MOEA/D NSGA-II MOCOVIDOA 47

ZDT1

IGD 0.0031420 0.0053735 0.0051100 0.0126900 0.0045300 0.0034000

GD 0.0000556 0.0002355 0.0004414 0.0004116 0.0001543 0.0000756

MS 0.5839822 0.8528273 0.9788900 1.5740000 1.6425000 0.6769100

SP 0.0032286 0.0051827 0.0090021 0.0117790 0.0050178 0.0035578

ZDT2

IGD 0.0033374 0.0062849 0.0053234 0.0097974 0.0041723 0.0037042

GD 0.0000287 0.0000763 0.0004322 0.0052154 0.0000833 0.0000339

MS 0.6284646 0.9002664 1.0787800 1.7000000 1.5497000 0.7737700

SP 0.0017368 0.0033296 0.0084532 0.0074974 0.0053305 0.0020165

ZDT3

IGD 0.0025311 0.0075673 0.0116510 0.0080097 0.0048673 0.0140560

GD 0.0004630 0.0007936 0.0008908 0.0007859 0.0005052 0.0007451

MS 0.5736001 0.8510024 0.7418100 0.5632800 1.1718000 0.8477900

SP 0.0045328 0.0143521 0.0182750 0.0130730 0.0058912 0.0140560

ZDT4

IGD 0.0106651 0.0143563 0.0342531 0.0923300 0.0128282 0.0118080

GD 0.0000504 0.0000722 0.0005441 0.0043800 0.0000617 0.0000861

MS 0.7297514 0.8642673 0.9675700 1.5673000 0.8024400 0.7618900

SP 0.0028763 0.0038548 0.0092780 0.0453700 0.0043051 0.0037710

ZDT6

IGD 0.0040428 0.0042075 0.0042184 0.0083440 0.1863300 0.0039223

GD 0.0000295 0.0000410 0.0035230 0.0033820 0.0192260 0.0000263

MS 0.9898350 1.1560831 0.9212300 1.4356000 0.9858100 0.9666700

SP 0.0054932 0.0064492 0.0077384 0.0097600 0.0070768 0.0051128
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hosting capacity of the network and has improved each of the objectives more compared to the scheduling 
based on the static MESS. Based on Tables 8 and 9, it can be seen that the amount of PV power capacity by using 
dynamic MESS has arised from 169 kW (in static MESS, case 1) to 198 kW (case 2), and the WT power capacity 
has increased from 196 to 200 kW. Also, the amount of storage capacity has decreased from 868 kWh with static 
MESS to 756 kWh hours with dynamic MESS, which by reducing the cost of MESS by shifting it in the network 
buses has improved the objectives more compared to using static MESS. The implementation of portable storage 
devices (Table 8) results in enhanced distribution network characteristics. As a consequence, the implementation 
of dynamic MESS has increased the hosting capacity for renewable resource generation and, as shown in Table 9, 
has decreased the costs associated with energy loss, network energy, operation, and pollution emissions.

Changes in MESS displacement timing, MESS power, and SOC are illustrated in Fig. 14 for cases 1 and 2. 
The MESS remains constant, as illustrated in Fig. 10a. However, in case 2 (Fig. 14b), the dynamic MESS is trans-
ferred between network buses at 2:00, 12:00, 13:00, and 17:00. The utilization of dynamic MESS-based microgrid 
scheduling has resulted in a greater capacity for hosting renewable generation (Table 8), in addition to enhanc-
ing each of the objectives outlined in Table 9. Therefore, the utilization of portable storage devices results in an 
enhancement of network performance as a consequence of the optimal injection of scheduled energy.

Results of uncertainty effect
In this case, the stochastic scheduling of the distribution microgrid based on the 2 m + 1 PEM method has been 
implemented, considering uncertainties of the PVs and WTs generation, in addition to the load demand of 
the microgrid. It is assumed that the PVs and WTs generation as well as the microgrid load demand has beta, 
Weibull, and normal PDFs, respectively. In this section, the effect of PVs and WTs generation and microgrid 

Figure 4.  Best Pareto optimal front obtained on UF2 problem (a) MOEGWO (b) MOGWO.
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demand uncertainties is investigated in solving the MOEGWO-based microgrid scheduling problem in form 
of a multi-objective optimization framework based on fuzzy decision-making. In this way, microgrid multi-
objective scheduling has been solved using the PEM method (Case 3) due to uncertainties and its results have 
been compared with Case 2 (without uncertainty). In this section, the scheduling problem is implemented using 
dynamic MESS and considering the uncertainty and without DR. The Pareto optimal solution set for Case 3 using 
the MOEGWO method is shown in Fig. 15. According to Fig. 15, based on the compromise created between all 
objectives, the set of fuzzy solutions are distributed considering different objectives.

The final solution related to the optimal size of energy sources and MESS among the non-dominated solutions 
based on the fuzzy decision-making method using the MOEGWO with the aim of achieving the best performance 
of the microgrid is shown in Fig. 16.

The tables that contain the numerical outcomes of stochastic and multi-objective microgrid scheduling are 
Tables 10 and 11, respectively. These tables detail the installation location and scheduled capacity of the ERs, the 
cost of REs, and the values of the various objectives for cases 2 and 3. According to Table 10, taking into account 
the uncertainties, the energy storage level has increased from 756 to 803 kWh, which is due to the uncertainties 
caused by the resource capacity and network load demand. Also, according to Table 11, it is clear that consider-
ing the uncertainty of operation and the emission costs has increased, and on the other hand, it has caused a 
decrease in the hosting capacity of renewable resources.

The dynamic MESS displacement scheduling pattern, power capacity, and their SOC changes for case 3 are 
presented in Fig. 17. It can be seen that the dynamic MESS is shifted between the network buses at 4:00, 10:00, 
18:00, 19:00, and 24:00. The results demonstrated that the number of dynamic MESS displacements increased 

Figure 5.  Best Pareto optimal front obtained on UF4 problem (a) MOEGWO (b) MOGWO.
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compared to the deterministic scheduling and without uncertainty in network buses, and on the other hand, the 
reserve power level increased to compensate  the uncertainties caused by resource power.

Results of DR effect
The effect of including DR in the solution of the multi-objective scheduling problem using the fuzzy decision-
making method MOEGWO is presented. In this section for Case 4, the scheduling problem is implemented 
considering dynamic MESS, uncertainty, and DR. Figure 18 depicts the Pareto optimal solution set for Case 4 
employing the MOEGWO. As depicted in Fig. 18, the set of fuzzy solutions is distributed with various objectives 
in mind, in accordance with the compromise reached within all objectives.

The final solution among the non-dominated solutions based on the fuzzy decision-making method is 
presented in Fig. 19. In these figure, the scheduled capacity of each microgrid device is determined optimally 
via the MOEGWO to obtain the best performance of the microgrid.

The numerical results of microgrid stochastic and multi-objective scheduling, including the installation 
location and peak capacity of the ERs, as well as the installation location and scheduled capacity of the MESS, the 
cost of REs, and the different objectives value are given in Tables 12 and 13, respectively. According to Tables 12 
and 13, the MOEGWO in PEM-based stochastic scheduling installs 114 kW of PV power, 131 kW of PV power, 
160 kW of MT power, and 152 kW of FC power in buses 6, 7, 9, and 11, respectively. It has also moved 806 kWh 
hours of the MESS in buses 14, 15, and 21 during the simulation period. According to Table 13, by considering 
the DR in solving the microgrid scheduling problem using the MOEGWO method, the values of energy loss cost, 
operation, and pollution emission costs are decreased and the renewable generation hosting capacity is increased 
compared to the scheduling without DR. In the microgrid scheduling problem, considering DR, the energy 

Figure 6.  Best Pareto optimal front obtained on UF7 problem (a) MOEGWO (b) MOGWO.
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loss cost has decreased from $1666.83 to $1501.81, the pollution emission cost has declined from $10,444.99 to 
$9825.54, and the operation cost has reduced from $17,236.91 to $15,767.27. The results show that the cost of 
grid purchased energy has increased from $6620.49 to $10,139.17 when DR is considered. Also, the production 
of ERs has decreased from 10,285.95 kW to 4521.76 kW. Therefore, the results have shown that considering DR 

Table 5.  Results for CEC’09 test functions. Significance values are in bold.

Function Metric MOEGWO MOGWO MOPSO MOEA/D NSGA-II MOCOVIDOA 47

UF1

IGD 0.0470293 0.0683170 0.0634330 0.2171600 0.0807200 0.0541270

GD 0.0037922 0.0062330 0.0085620 0.0097130 0.0086960 0.0044620

MS 0.7563583 0.9792352 1.3510100 1.2280000 1.6470000 0.8309000

SP 0.0082176 0.0621600 0.0637380 0.0072095 0.0076305 0.0105930

UF2

IGD 0.0328428 0.0381703 0.0575220 0.0516600 0.0500130 0.0350020

GD 0.0037524 0.0048226 0.0112530 0.0046049 0.0648800 0.0042994

MS 1.0744060 1.2767923 1.2218800 1.2933000 1.3131000 1.1118000

SP 0.0026936 0.0074296 0.0442810 0.0062903 0.0154310 0.0034600

UF3

IGD 0.1744562 0.1998735 0.2119200 0.4449300 0.2873400 0.1935100

GD 0.0210078 0.0260352 0.0235320 0.0445060 0.0276410 0.0230520

MS 1.1554210 1.2689737 1.4230200 1.7093000 1.3013000 1.2244000

SP 0.0173115 0.0270516 0.0265100 0.2203700 0.0283180 0.0202600

UF4

IGD 0.0596772 0.0704730 0.0655230 0.0995160 0.1174000 0.0585620

GD 0.0034408 0.0048340 0.0242190 0.0077704 0.0112550 0.0032200

MS 0.6810622 0.7859355 0.9781100 1.4574000 1.3238000 0.6644300

SP 0.0120267 0.0141252 0.0281500 0.0121850 0.0175020 0.0111750

UF5

IGD 0.1783456 0.2766781 0.1982020 0.6830500 0.1909900 0.1909200

GD 0.1272175 0.1477392 0.1926160 0.1573590 0.1436620 0.1428100

MS 0.7521481 0.9601356 1.2741300 1.0067000 1.1284000 0.8194000

SP 0.0152743 0.0178731 0.2127700 0.0461900 0.0503410 0.0176000

UF6

IGD 0.2529865 0.2975627 0.3651700 0.3078700 0.7387800 0.2864000

GD 0.1730425 0.2014936 0.3371300 0.3550100 0.2350100 0.1985400

MS 0.5477061 0.7033479 1.3537100 1.5783000 1.2372000 0.6060400

SP 0.3748623 0.3821538 0.3661700 0.4225000 0.1315700 0.3998400

UF7

IGD 0.0432572 0.0469927 0.0453110 0.2670000 0.0827680 0.0428340

GD 0.0023806 0.0031205 0.0077820 0.0151700 0.0065911 0.0021517

MS 0.0361295 0.0471064 1.2261400 1.0317000 1.4710000 0.0352180

SP 1.0037803 1.0060107 0.0431200 0.0082483 0.0077955 1.0013000

UF8

IGD 0.0876083 0.1154822 0.1338200 0.1329000 0.2435200 0.1053600

GD 0.0281581 0.0496278 0.1828100 0.0322580 0.0867320 0.0307100

MS 0.7091004 0.8301217 0.7863800 1.4588000 0.8273000 0.7746300

SP 0.1498872 0.1685590 0.1293700 0.1483580 0.1986300 0.1639200

UF9

IGD 0.0892337 0.1146526 0.1489100 0.1196000 0.2167900 0.1093300

GD 0.0530164 0.0697320 0.2239200 0.0841910 0.0623140 0.0613920

MS 0.8854710 1.1028869 1.0972200 1.4761000 1.4985000 1.0107000

SP 0.0253932 0.0314241 0.2757400 0.0322340 0.2587200 0.0275440

UF10

IGD 0.1989473 0.2165282 0.2395900 0.2370000 0.3739300 0.2175400

GD 0.1447620 0.1676964 0.3624300 0.1585670 0.1882200 0.1584000

MS 1.1590371 1.1833403 1.0253000 1.5162000 1.5676000 1.1770000

SP 0.0924479 0.1170047 1.3943000 0.0577390 0.2247800 0.1079900
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by reducing the level of production and paying fines to the load demand, has reduced the operating and emission 
pollution emission costs.

The results demonstrated that utilizing DR programs to alter the electricity consumption patterns of custom-
ers, the capacity of the microgrid can be better synchronized with the renewable energy resources generation and 
the stored energy of the MESS. The findings also established that demand response (DR) pertains to the process 
of balancing power grid demand by incentivizing consumers to adjust their electricity consumption to periods of 
greater availability or reduced demand, commonly achieved through pricing mechanisms or financial rewards.

In Fig. 20, the displacement timing, power and SOC changes related to the dynamic MESS for Case 4 are 
shown. As can be seen, in this case, the number of MESS moves is much higher than in other cases. In terms 
of considering DR, the program for DR has increased the number of MESS moves in the face of the proposed 
DR package.

Figure 7.  The studied 33-bus distribution microgrid.

Figure 8.  Forecasted PV power during 24  h48.

Figure 9.  Forecasted WT power during 24  h48.
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Results of multi‑objective scheduling effect
The numerical results of microgrid stochastic and multi-objective scheduling, including the installation location 
and peak capacity of the ERs, as well as the installation location and scheduled capacity of the MESS, the cost of 
REs, and the value of the objects are given in Tables 14 and 15, respectively. According to Tables 14 and 15, the 

Figure 10.  Percentage of network peak load during 24  h48.

Figure 11.  The cost of purchasing power from the  network48.

Table 6.  Electricity price and emission coefficients of different ERs 35.

Unit Type Bid ($/kWh) CO2 (kg/MWh) SO2 (kg/MWh) NO2 (kg/MWh) Pmin (kW) Pmax (kW)

1 MT 0.457 720 0.0036 0.1 0 200

2 FC 0.294 460 0.003 0.0075 0 200

3 PV 2.584 0 0 0 0 200

4 WT 1.073 0 0 0 0 200

5 MESS 0.38 10 0.0002 0.001  − 200 200

6 Grid – 950 0.5 2.1

Table 7.  Recommended price-quantity offer package for DR 35.

Quantity (kW) 0–5 5–20 20–30 30–60

Price ($/kWh) 0.04 0.07 0.28 0.43
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MOEGWO in PEM-based stochastic scheduling installs 114 kW of PV power, 131 kW of PV power, 160 kW 
of MT power, and 152 kW of FC power in buses 6, 7, 9, and 11, respectively. It has also moved 806 kWh hours 
of the MESS in buses 14, 15, and 21 during the simulation period. According to Table 15, by considering the 
DR in solving the microgrid scheduling problem via the MOEGWO method, the values of energy loss cost, 
operation, and pollution emission costs are reduced and the renewable generation hosting capacity is increased 
compared to the scheduling without DR. In the microgrid scheduling problem, considering DR, the energy loss 
cost has decreased from $1666.83 to $1501.81, the pollution emission cost has decreased from $10,444.99 to 
$9825.54, and the operation cost has decreased from $17,236.91 to $15,767.27. The results show that the cost of 
grid-purchased energy has increased from $6620.49 to $10,139.17 when DR is considered. Also, the production 
of ERs has decreased from 10,285.95 to 4521.76 kW. Therefore, the results have shown that considering DR by 

Figure 12.  Pareto optimal solution set for (a) case 1 and (b) case 2.
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Figure 13.  The best solution obtained for (a) case 1 and (b) case 2.

Table 8.  The results of energy resources scheduling for Cases 1 and 2.

Device PV WT MESS MT FC

Case 1

Size (kW) 169 196 868 200 200

Location (Bus) 7 12 25 9 5

Cost ($) 3310.529 2696.864 667.220 1475.301 1081.501

Case 2

Size (kW) 198 200 756 200 200

Location (Bus) 32 33 25,10,33 11 29

Cost ($) 3884.335 2754.915 343.348 1835.025 1008.628
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Table 9.  The techno-economic scheduling results for Cases 1 and 2.

Item/Scenario Case 1 Case 2

Ploss before (kW) 91.615 91.615

Qloss before (kVAr) 62.041 62.041

Ploss after (kW) 56.690 52.280

Qloss after (kVAr) 40.335 37.274

Cost of energy loss ($) 1241.506 1144.926

Cost of energy grid ($) 3465.866 − 285.632

Cost of energy emissions ($) 8199.544 5347.756

ERs generation (kW) 10,701.357 11,516.794

Cost of operation ($) 13,938.79 10,685.55

Figure 14.  (a) MESS displacement scheduling, MESS power and SOC changes for a) case 1 and b) case 2.
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Table 10.  The results of energy resources scheduling for Cases 2 and 3.

Device PV WT MESS MT FC

Case 2

Size (kW) 198 200 756 200 200

Location (Bus) 32 33 25,10,33 11 29

Cost ($) 3884.335 2754.915 343.348 1835.025 1008.628

Case 3

Size (kW) 177 190 803 173 189

Location (Bus) 18 26 21,25,29 18 21

Cost ($) 3474.75 2626.48 424.88 1442.16 981.28

Figure 15.  Pareto optimal solution set for case 3.

Figure 16.  The best solution obtained for case 3.
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decreasing the level of production and paying fines to the load demand, has reduced the operating and emission 
pollution emission costs.

Power changes of WT and PV energy sources for different single-scheduling based on ERs generation, 
operation cost and pollution emission cost are depicted in Fig. 21. According to the figure, it can be seen that in 
single-objective scheduling with renewable generation hosting capacity maximization, resource generation is 
maximum  in comparison with the other single-objective optimizations. Also, the results showed that the lowest 
renewable generation hosting capacity is related to the objective function of minimizing the operating cost.

Results of MOEGWO’s validation
In this section, to investigate the capability of the recommended scheduling methodology (Case 4) using the 
MOEGWO method, its performance is compared with the MOPSO, and MOCOVIDOA. Thus, like the MOE-
GWO method, the number of population, maximum iteration, and independent executions of the MOPSO, and 
MOCOVIDOA algorithms are considered equal to 70, 100, and 20, respectively, and the best interactive solution 
is considered from among the non-dominated solutions of the Pareto front set. The parameters of the traditional 
PSO are selected as in the reference  research49. According to the results obtained based on the Table 16, it is 
clear that the MOEGWO with optimal scheduling of energy resources integrated with dynamic MESS and DR 
has been able to achieve lower costs of energy loss, pollution emission, and operation, as well as more renewable 
generation hosting capacity than the MOPSO, and MOCOVIDOA.

By taking into account 20 independent executions, the numerical results from the MOEGWO, MOSPO, and 
MOCOVIDOA algorithms are reasonably compared to one another. Based on the C index (CI), the outcomes of 

Table 11.  The techno-economic scheduling results for Cases 2 and 3.

Item/scenario Case 2 Case 3

Ploss before (kW) 91.615 91.615

Qloss before (kVAr) 62.041 62.041

Ploss after (kW) 52.280 76.11

Qloss after (kVAr) 37.274 53.43

Cost of energy Loss ($) 1144.926 1666.83

Cost of energy grid ($) − 285.632 6620.49

Cost of energy emissions ($) 5347.756 10,444.99

ERs generation (kW) 11,516.794 10,285.95

Cost of operation ($) 10,685.55 17,236.91

Figure 17.  MESS displacement timing, MESS power and SOC changes for Case 3.
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Figure 18.  Pareto optimal solution set for case 4.

Figure 19.  The best solution obtained for Case 4.

Table 12.  The results of energy resources scheduling for Cases 3 and 4.

Device PV WT MESS MT FC DR

Case 3

Size (kW) 177 190 803 173 189

Location (Bus) 18 26 21,25,29 18 21

Cost ($) 3474.75 2626.48 424.88 1442.16 981.28 –

Case 4

Size (kW) 114 131 806 160 152

Location (Bus) 6 7 14,15,21 9 11

Cost ($) 2223.41 1812.19 330.05 464.20 281.25 15.15
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Table 13.  The techno-economic scheduling results for Cases 3 and 4.

Item/Scenario Case 3 Case 4

Ploss before (kW) 91.615 91.615

Qloss before (kVAr) 62.041 62.041

Ploss after (kW) 76.11 68.57

Qloss after (kVAr) 53.43 46.60

Cost of energy loss ($) 1666.83 1501.81

Cost of energy grid ($) 6620.49 10,139.17

Cost of energy emissions ($) 10,444.99 9825.54

ERs generation (kW) 10,285.95 4521.76

Cost of operation ($) 17,236.91 15,767.27

Figure 20.  MESS displacement scheduling, MESS power and SOC changes for case 4.

Table 14.  The results of energy resources scheduling for Case 4 with different single and multi-objective 
function.

Device PV WT MESS MT FC DR

Multi-objective function (Case 4)

Size (kW) 114 131 806 160 152

Location (Bus) 6 7 14,15,21 9 11

Cost ($) 2223.41 1812.19 330.05 464.20 281.25 15.15

Energy resources generation

Size (kW) 200 154 753 200 199

Location (Bus) 3 8 4,9,13 9 3

Cost ($) 3915.56 2120.21 192.84 1695.29 1029.95 4.30

Operation cost minimization

Size (kW) 23 16 852 200 155

Location (Bus) 10 16 6,12,20 21 7

Cost ($) 444.44 220.39 344.97 648.93 313.73 16.87

Emission cost minimization

Size (kW) 200 117 782 158 123

Location (Bus) 10 16 5,7,12 6 9

Cost ($) 3915.50 1616.99 397.54 693.17 311.31 4.69
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each algorithm have been contrasted. The ability of three algorithms for solving the multi-objective optimization 
problem has been compared using the C index. S1 and S2 are considered to be the output Pareto solutions of two 
algorithms in this assessment index. The expression (S1, S2), which reflects the proportion of solutions in set S2 
that are dominated by those in set S1, is defined  by50

(44)C(S1, S2) =
{ s2 ∈ S2; ∃s1 ∈ S1 : s1 ≤ s2}

|S2|
× 100

Table 15.  The techno-economic scheduling results for Case 4 with different single and multi-objective 
function. Significance values are in bold.

Item/scenario
Multi-objective function 
(Case 4)

ERs generation 
maximization

Operation cost 
minimization

Emission cost 
minimization

Ploss before (kW) 91.615 91.615 91.615 91.615

Qloss before (kVAr) 62.041 62.041 62.041 62.041

Ploss after (kW) 68.57 59.99 84.00 57.59

Qloss after (kVAr) 46.60 40.75 57.17 39.93

Cost of energy loss ($) 1501.81 1270.13 1839.79 1261.42

Cost of energy grid ($) 10,139.17 8555.52 11,405.80 7755.49

Cost of energy emissions 
($) 9825.54 11,573.32 11,492.63 8516.20

ERs generation (kW) 4521.76 10,704.14 2864.51 5597.94

Cost of operation ($) 15,767.27 18,783.84 14,234.95 15,956.14

Figure 21.  Power changes of WT and PV energy sources for (a) ERs generation (b) operation cost (b) pollution 
emission cost.
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where s1, s2 are the corresponding Pareto solutions for sets S1, S2, respectively. The C index is determined by the 
average of n independent executions, and a higher C value denotes a better Pareto solution.

In Table 17, C index is given for MOEGWO, MOSPO, and MOCOVIDOA algorithms. The results demon-
strated that in rows two and three, 59.31% and 54.85% of solutions obtained by the MOEGWO dominate those 
achieved by MOPSO, and MOCOVIDOA in Mean value. The superior performance of the MOEGWO to obtain 
the better Pareto front solutions is confirmed in comparison with the MOPSO, and MOCOVIDOA.

In51, allocation of hybrid PV/WT/Battery system in distribution network is presented aimed active losses 
cost minimization, voltage profile enhancement and minimizing power purchased from the hybrid system via 
an improved whale optimizer algorithm (IWOA). This research is implemented for four seasons. The power loss 
is reduced by 15.9%, 14.94%, 11.55%, and 22.90% for summer, autumn, winter, and spring, respectively which 
average is a 16.32% reduction in the power losses of the 33-bus network. Based on the proposed methodology in 
our study, the power loss reduction of 32.28% has been obtained, which has confirmed the superior performance 
of the proposed method.

Discussion
In this study, the stochastic energy management and scheduling of a microgrid with renewable energy sources 
and MESS was presented, with a multi-objective function that maximizes renewable generation hosting capac-
ity and minimizes the operation and pollution emission costs considering DR and uncertainties. The stochastic 
approach was performed using the 2 m + 1 PEM, and the best solution was found via the MOEGWO based 
on a fuzzy decision-making technique. In five cases, simulations are carried out. In Case 1, microgrid sched-
uling results are provided without taking DR and uncertainty and with static storage. In Case 2, Case 1 was 
implemented, taking MESS. Case 3 presented Case 2 with the uncertainties based on the 2 m + 1 PEM. Incor-
porating the DR, Case 3 was implemented in Case 4. Comparing the results of single-objective and multi-
objective microgrid scheduling is presented in Case 5. According to the mentioned cases, the effect of consider-
ing the MESS and uncertainties has been evaluated. Following are discussions regarding the evaluation of the 
outcomes derived from various cases:

• The results obtained from the comparison of cases 1 and 2 showed that microgrid scheduling based on 
dynamic MESS compared to static MESS leads to a greater reduction in the cost of energy losses, the cost of 
pollution emission, and maintenance cost, and also leads to a greater increase in the renewable generation 
hosting capacity the microgrid from energy resources. Therefore, the improvement achieved due to moving 
the dynamic storage at different hours in different buses of the distribution microgrid and optimal scheduled 
power injection.

• Comparison of cases 2 and 3 showed that considering the uncertainties in solving the microgrid scheduling 
problem using the PEM method, the values of energy loss cost, operation cost and pollution emission cost 
increase compared to deterministic scheduling without uncertainty. It was also found that the renewable 
generation hosting capacity of renewable resources has also decreased, and these changes are caused by 
modeled uncertainties and defined patterns in the PEM estimation method.

Table 16.  The techno-economic scheduling results for Case 4 using MOEGWO, MOPSO, and MOCOVIDOA.

Item/Scenario MOEGWO MOPSO MOCOVIDOA

Ploss before (kW) 91.615 91.615 91.615

Qloss before (kVAr) 62.041 62.041 62.041

Ploss after (kW) 68.57 75.45 77.14

Qloss after (kVAr) 46.60 52.34 54.08

Cost of energy loss ($) 1501.81 1654.50 1689.36

Cost of energy grid ($) 10,139.17 10,187.21 10,194.85

Cost of energy emissions ($) 9825.54 10,175.87 10,246.39

ERs generation (kW) 4521.76 4367.09 4351.64

Cost of operation ($) 15,767.27 15,966.38 16,032.76

Table 17.  Comparison of different algorithms using the CI for Case 3 for 33-bus unbalanced network. *std 
denotes standard deviation.

CI Mean std Maximum Minimum

C(MOEGWO, MOPSO) 24.08 16.33 44.78 12.66

C(MOPSO, MOEGWO) 59.31 29.04 100 0

C(MOCOVIDOA, MOEGWO) 54.85 20.11 89.63 5.37
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• Based on the comparison of cases 3 and 4, the results obtained from stochastic microgrid scheduling using 
the PEM and considering DR showed that the energy loss cost, operation cost and pollution emission cost 
were reduced compared to scheduling without the DR. Also, the generation hosting capacity of renewable 
resources has also decreased. Therefore, the results have shown that considering DR by decreasing the level 
of generation and paying fines to the load, has declined the operating costs and emission of pollution.

• In the multi-objective scheduling of the distribution microgrid, a compromise has been made between dif-
ferent objectives by satisfying the constraints of the microgrid and devices operation, and as a result, the 
capacity of energy resources is determined according to the improvement of each of the objectives of the 
overall objective function until the best solution was obtained among the solutions non-dominated Pareto 
answer set. On the other hand, in microgrid single-objective scheduling, with the significant enhancement 
of the objective to be optimized, some other objectives are significantly weakened.

Conclusions and future research
This study presented a stochastic and multi-objective energy management and scheduling model of a microgrid 
to maximize the renewable generation hosting capacity while minimizing operation and pollution emissions 
costs using the 2 m + 1 PEM method and MOEGWO. The 2 m + 1 PEM was utilized for modeling the renewable 
generation and demand uncertainties. The simulation outcomes have been provided in evaluating the use of 
the MESS, examining the effect of uncertainties, and determining the effect of DR based on incentive payments.

• Among the non-dominated solutions of the Pareto front set, the multi-objective MOEGWO based on the 
fuzzy decision-making approach was able to determine the optimal size of the ERs and storage system.

• The simulation results showed that microgrid scheduling based on the dynamic MESS 7.8%, 34.78%, and 
23.34% more reduced energy loss cost, pollution emission cost, and operation cost, respectively, as well as 
generation hosting capacity, has increased by 7.6% compared to the scheduling based on the static MESS.

• The results indicated that the stochastic scheduling due to the uncertainties using the 2 m + 1 PEM method 
causes an increase in the costs of energy losses, emission, and operation, as well as a decrease in the genera-
tion hosting capacity compared to the deterministic scheduling.

• In addition, the findings demonstrated that the implementation of the DR in solving the stochastic scheduling 
reduced each of the costs of energy loss, emission, and operation by 9.90%, 5.93%, and 8.535%, respectively 
compared to the scheduling without the DR.

• The microgrid optimization and energy management in unbalanced distribution network considering load 
and generation uncertainties is suggested for future work to improve the power quality indices. In this 
research the effect of uncertainties will be evaluated on the power quality in the network and the methods of 
improving the power quality will be analyzed in the conditions of uncertainties. The existing uncertainties 
are limitation of the research which the proposed stochastic approach able to overcome the challenges caused 
by the uncertainties and compensate for the resource power fluctuations by providing mobile energy storage 
system and demand response.

Data availability
The datasets used and/or analysed during the current study available from the corresponding author on 
reasonable request.
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