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Time‑series prediction 
of settlement deformation 
in shallow buried tunnels based 
on EMD‑SSA‑GRNN model
Tao Li *, Jiajun Shu  & Duliang Chang 

Tunnel settlement deformation monitoring is a complex task and can result in nonlinear dynamic 
changes. To overcome the disturbances caused by historical data and the difficulty in selecting input 
parameters during deformation prediction, a decomposition, reconstruction and optimization method 
for tunnel settlement deformation prediction is proposed. First, empirical mode decomposition (EMD) 
is used to decompose the in‑situ monitoring data and reduce the interactions among information at 
different scales in sequences. Then, the monitoring data are decomposed into intrinsic mode functions 
(IMFs). Secondly, the smoothing factor of the generalized regression neural network (GRNN) is 
optimized by using the sparse search algorithm (SSA). An EMD‑SSA‑GRNN deformation prediction 
model is developed using the optimized GRNN algorithm and is used to predict the changes in the 
decomposed IMFs. Finally, using the measured deformation data from a shallowly buried tunnel 
along the Kaizhou‑Yunyang Highway in Chongqing, China, the reliability and accuracy of different 
models are analysed. The results show that tunnel settlement deformation exhibited a trend and a 
slow change in the early stage, a rapid change in the middle stage and a slow change in the late stage, 
and the rate of change was significantly influenced by the excavation time and the upper and lower 
geological layers. The prediction accuracy of the EMD‑SSA‑GRNN model after EMD improved from 
19.2 to 59.4% relative to that of the SSA‑GRNN and single GRNN models. Moreover, we find that 
the three error evaluation indicators of the EMD‑SSA‑GRNN model are lower than those of the other 
models and that the results of the proposed model and are more strongly correlated with measured 
data.

The geological conditions in China are complex and variable, with mountainous and hilly terrain. The interiors 
of road tunnels located in mountainous areas contain many rock bodies with heavily developed joints and fis-
sures. This in turn leads to issues such as instability of the surrounding rock, which can result in tunnel collapses. 
The control of settlement deformation in tunnel engineering is a key factor in ensuring construction safety, and 
the development and trend of settlement deformation during the long-term construction of a tunnel can be 
mitigated with appropriate control. Therefore, carrying out research on the prediction of tunnel settlement and 
deformation time series is highly practical for engineering safety.

To overcome the shortcomings of traditional methods in the temporal prediction of tunnel deformation, we 
can apply intelligent algorithms to improve the traditional prediction  models1–6. Intelligent algorithms are capable 
of self-optimizing measured tunnel settlement deformation data and fitting complex nonlinear relationships. 
These algorithms include back propagation (BP), support vector machine (SVM), particle swarm optimization 
(PSO), and artificial neural network (ANN)  algorithms7–12. Moreover, many algorithms have certain defects, and 
the existence of such defects decreases the calculation accuracy. For example, the BP algorithm is significantly 
affected by the initial parameters and may yield a local optimal solution. The parameters of the SVM algorithm 
are difficult to select, and the network structure is complex, so its operation efficiency is  low13,14. Based on the 
development of the neural network algorithm, scholars constructed a generalized regression neural network 
(GRNN) algorithm with powerful analytical capabilities. The GRNN has significant advantages in parameter 
optimization, kernel function selection and sample processing. Moreover, the value of the smoothing factor for a 
single parameter is empirical, so the GRNN algorithm is widely used in foundation pit displacement prediction, 
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surface settlement prediction and other related  tasks15–20. At the same time, scholars have targeted the optimi-
zation of intelligent algorithms applied for deformation prediction. The core of algorithmic optimization is 
the use of neural network elements to construct a deformation prediction model for AI-based  assessment21,22. 
For instance, Zhang et al.17 and Zhang et al.23 optimized the smoothing factor in the GRNN algorithm using 
the particle swarm optimization (PSO) algorithm and fruit fly optimization algorithm (FOA), respectively. 
The impact of the empirical selection of parameters such as the smoothing factor on the model accuracy and 
generalization ability was reduced with this approach, which in turn improved the prediction accuracy of the 
model. Shen et al.24 and Elbaz et al.25,26 predicted the energy consumption of the cutter drive process in shield 
tunnelling and the trajectory of shield movement during tunnelling with CNN and LSTM methods, respectively. 
Moreover, engineering researchers have shown that the neural network method can be effectively used to predict 
the displacement changes in a shield during the process of tunnel construction.

The actual tunnel construction process is long. The surrounding rock deformation fluctuates widely and is 
obviously affected by various factors. When an intelligent optimization algorithm is directly trained on initial 
deformation data and used to make predictions, certain problems, such as slow data convergence, poor fitting 
of wave segments, and prediction distortion, can easily occur. If the initial data are smoothed or denoised in 
advance, it is easy to lose some information associated with the data, which reduces the practicality of the predic-
tion results. Therefore, we can first decompose complex time series into IMFs to reduce the complexity of the 
time  series27,28. Second, we can use a neural network algorithm to optimize the IMFs and improve the accuracy 
of predictions. Finally, we can superimpose the prediction components to obtain the prediction result, which 
reduces the prediction error. At present, commonly used time–frequency analysis methods include short-time 
Fourier transform (STFT), wavelet transform (WT) and empirical mode decomposition (EMD). Compared 
to the STFT and WT methods, EMD can be utilized to decompose complex time series into relatively simple 
intrinsic mode components and thus reduce the data component mixing phenomenon; this approach is com-
monly applied for nonsmooth signals.

Based on the brief introduction above, we know that the EMD, SSA and GRNN methods have different pur-
poses in data analysis. Specifically, the EMD method is used to reduce the influence of different types of scale 
information in a data series, and the GRNN is used to perform deep learning of the data components. However, 
if we directly use the GRNN model to analyse settlement deformation data, oscillations and dispersion may 
occur in the analysis results. There is an urgent need for an optimization method that can correlate different 
influencing factors. This method can improve the prediction accuracy and reliability of GRNNs and overcome 
the defects introduced by the direct optimization process. In this paper, we focus on the real-time deformation 
monitoring of a shallow buried tunnel along the Kaizhou-Yunyang Highway in Chongqing, China, as an example. 
First, we utilize EMD to disaggregate the initial data obtained from monitoring, thus reducing the interaction 
effects of information at different scales over time. Second, we perform the comprehensive learning of differ-
ent components via the GRNN and optimize the smoothing coefficients with the SSA. Finally, we establish a 
decomposition-prediction-reconstruction tunnel deformation model based on EMD-SSA-GRNN. We compare 
our model with other prediction models to verify its reliability and practicality.

The conclusions of this study can be used to prevent sudden changes caused by the short-term rapid con-
struction of shallow buried tunnels and for the prediction of future settlement and deformation. Moreover, we 
introduce the SSA to optimize the key parameter smoothing factor of the GRNN, which is difficult to subjectively 
set, to reduce the adverse effects of artificially determined parameters on the prediction accuracy and generaliz-
ability of the model. The aim of this study is to provide a reference basis for deformation prediction during the 
long-term construction of shallow buried tunnels.

Principle of the EMD‑SSA‑GRNN model
The deformation of shallow buried tunnels is mainly affected by two main factors: geological conditions and 
external effects. The geological conditions include the topography, geomorphology, lithology, etc., and the exter-
nal effects include rainfall, construction conditions, measurement conditions, etc.29. Tunnel deformation is a 
time-dependent displacement term under geological conditions and a random displacement term under exter-
nal effects. The displacement trend is a smooth series that reflects the main pattern of deformation. Random 
displacement is a smooth noise sequence, and this sequence reduces the realism and accuracy of deformation 
prediction. To accurately represent the variation in each displacement component, we analyse tunnel settlement 
deformation data using a time series principle, as shown in Eq. (1)30:

where s(t) is the total displacement of tunnel settlement deformation, α(t) is the trend displacement, and β(t) is 
the random displacement.

Since most signals can be split into intrinsic mode components, we use EMD to decompose a nonsmooth and 
nonlinear time series into multiple smooth and linear  IMFs31. The IMFs have essentially the same number of zeros 
and local extrema over the entire time series range, so the sum of the local maxima of the upper envelope and 
the local minima of the lower envelope of the IMFs is zero. To decompose the input signal via EMD, we need to 
create the time series function X(t) over a given period. After obtaining the function X(t), we use a cubic spline 
curve to connect the local maxima and local minima of the time series function X(t) to form the upper envelope 
O+(t) and the lower envelope O-(t), respectively. Ultimately, it is possible to include all the input data points 
between the upper and lower envelopes. Accordingly, we obtain the mean envelope m1(t) of the function X(t).

(1)s(t) = α(t)+ β(t),

(2)m1(t) =
o+(t)+ o−(t)

2
.
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The time series function X1(t) is subtracted from the mean envelope m1(t) to obtain the first intrinsic mode 
component h1(t).

If h1(t) does not satisfy the IMFs, we repeat the above steps to continue the decomposition to obtain h2(t). 
This process is continued until we obtain hk(t) satisfying the conditions defined by the IMFs. At this point, the 
first IMF1(t) is obtained.

A new time series function X2(t) is obtained by subtracting the intrinsic mode component h1(t) from the 
time series function X1(t).

The decomposition behaviour is repeated until Xn(t) becomes a monotonic function, at which point there 
are no longer IMFs of Xn(t).

For the target signal of modal superposition, the first IMF obtained from its decomposition mainly represents 
the most complex state in the superposition. Moreover, the energy generated by the superposition is much greater 
than the modal energy contained in the IMFs of the later sequences. First, the reconstructed target signal is 
obtained by superimposing all the IMFs other than the first IMFs. Second, these samples from the first IMF are 
circularly shifted to obtain different samples. These samples are subsequently superimposed on the remaining 
IMFs to obtain a noisy target signal with a constant signal-to-noise ratio. In the newly obtained noise-containing 
signal, the target signal remains almost unchanged, while the power of the Gaussian white noise is largely attenu-
ated. Repeating the above steps several times can gradually weaken the power of the noise signal. Finally, the 
noise is further suppressed using a method similar to wavelet soft threshold denoising.

Immediately afterwards, we need to add the SSA to the GRRN. The SSA is inspired mainly by the foraging 
behaviour and antipredation behaviour of sparrows when searching for the optimal solution. The essence of SSA 
optimization is to gradually find the position corresponding to the highest food energy, i.e., to find the optimal 
solution of the objective, by updating and changing the positions of the discoverers, followers, and alerters in 
the sparrow population in each  generation32. It is assumed that the sparrow population is X = [x1, x2,···, xn]T and 
that n is the number of sparrows. The individuals in the d-dimensional SSA are initialized as Xi = [xi,1, xi,2,···, xi,d]. 
The positions of the discoverers, followers and alerters are calculated for each iteration of the update process, as 
shown in Eqs. (7), (8) and (9),  respectively33.

where itermax is the maximum number of iterations. a is a random number between [0, 1]. Q is a random number 
obeying a normal distribution. L is a 1 × d dimensional matrix, the range of R2 is [0, 1] as the warning value, 
and the range of ST is [0.5, 1] as the safety value. Xworst is the worst position of a sparrow at the tth iteration in d 
dimensions, and Xp is the optimal position of the sparrow at iteration t + 1 in d dimensions, A denotes a matrix 
of order 1 × d, and A+ = AT(AAT)-1. Xbest is the current globally optimal position. β and K are the step control 
parameters. β is a normally distributed random number with a mean of 0 and a variance of 1. K is [0, 1] and is 
the moving direction of the sparrow. ε is a very small number to prevent a denominator of 0 from occurring. fi, fg, 
and fw are the current individual sparrow value, optimal adaptation value and worst adaptation value, respectively.

From Eq. (7), we can find that if R2 < ST, the finder will continue its search for the optimal location and fly to 
another safe place to forage. This step improves the global and local search capabilities of the algorithm. From 
Eq. (8), if i > n/2, the current position is very poor, and other positions need to be analysed. Then, the discoverer 
continues to explore. During this step, the follower has the possibility of becoming a new discoverer. This step 
can improve the iteration speed of the algorithm. Equation (9) shows that when fi ≠ fg, the sparrow is at the edge 
of the population, and the sparrow moves to the optimal position. When fi = fg, the sparrow is at the global opti-
mal position, and the current position is not ideal; thus, movement to another position is needed. This step can 
prevent the algorithm from converging to a local optimal solution.

(3)h1(t) = X1(t)−m1(t).

(4)h1(t) = IMF1(t).

(5)X2(t) = X1(t)− IMF1(t).

(6)X(t) =

n−1
∑

i=1

IMFn−1(t)+ Xn(t).

(7)Xt+1
i,j =

{

Xij exp
(

−
i

a·itermax

)

R2 < ST

Xij + QL R2 ≥ ST
,

(8)Xt+1
i,j =











Q exp

�
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The theoretical basis of the GRNN is nonlinear regression analysis. With this basis, the GRNN does not have 
to perform iterative calculations and can directly use the independent variables to find the regression value of the 
dependent variable. As shown in Fig. 1, the top-step structure of the GRNN consists of an input layer, a model 
layer, a summation layer and an output layer, and the operation process is shown in Eq. (10).

where X is the network input variable, Xi is the learning sample corresponding to the i-th neuron, and σ is the 
smoothing factor. SD is the model layer summation, SNj is the model layer weighted summation, and Yjk is the 
prediction result.

In the calculation process, two types of data need to be obtained and analysed, namely, data for the tunnel 
vault surrounding rock and the settlement time sequence at a given surface point. At the same time, to avoid the 
influence of sudden changes in the data caused by the short-term rapid construction of shallow tunnels on future 
deformation prediction, we introduce EMD to decompose the deformation and settlement data into regular 
modal components. Furthermore, we transform the measured data into a superposition of modal functions via 
deep learning with the  GRNN34. Since the key parameter smoothing factor of the GRNN is difficult to determine 
and subjectively set, we introduce the SSA for intelligent optimization and analyse and process each component 
and residual of the GRNN. Finally, we construct a tunnel deformation prediction model using EMD-SSA-GRNN 
and reconstruct the total predicted value by superimposing each predicted value. The sedimentation value func-
tion curve conforms to the following equation:

where Res(t) is the residual.
To remove the excessive noise signal due to modal superposition during EMD, Gaussian white noise is attenu-

ated by reconstructing all the IMFs except for the first IMFs. We then circularly shift the samples of the first IMF 
and superimpose them with the remaining IMFs while retaining the target signal. We require this process to be 
repeated until the noise signal is satisfactorily mitigated.

Preprocessing
Data acquisition
The measured settlement deformation data were obtained from the tunnel inlet section and cross section of 
the Kaizhou-Yunyang Highway in Chongqing, China. The tunnel is a separate and independent double-length 
tunnel, and all the inlets are constructed with bamboo-type cavern doors. The left tunnel inlet pile number 
is ZK55 + 007.734, and the exit pile number is ZK57 + 424, spanning 2414.266 m. The right tunnel inlet pile 
number is YK55 + 016.00, and the exit pile number is YK57 + 450, spanning 2434 m. According to site borehole 
surveys and engineering geological investigations, the tunnel inlet is characterized by tectonic denudation and 
the erosion of the low mountainous terrain in the area. The stratigraphic lithology is supported by the establish-
ment of a new artificial accumulation layer in the Quaternary system, which includes silty clay with crushed 
stone, crushed stone soil, argillaceous limestone and limestone intercalated with shale. There are many joints, 
fissures and seriously weathered rock masses at the entrance of the tunnel. Moreover, a large amount of weak 
surrounding rock is distributed inside the tunnel. As shown in Fig. 2, the excavation faces of several tunnels are 
characterized by poor interlayer bonding in the surrounding rock, severe joint development and water seepage, 
which are serious construction safety hazards.

(10)























Pi = exp

�

−
(X − Xi)

T (X − Xi)

2σ 2

�

SD =

i=n
�

i=1

Pi , SNj =

i=n
�

i=1

yijP,Yj =
SNj

SD i

,

(11)F(t) = IMF1(t)+ ...+ IMFk(t)+ Res(t),

...

...

X1k

X2k

X3k

Y1k

Ymk

Xnk

...

P1

P2

P3

P4

Pn

...

SD

SN1

SN2

SN3

SNj

X1k

X2k

X3k

Y1k

Ymk

Xnk

...

P1

P2

P3

P4

Pn

SD

SN1

SN2

SN3

SNj

X1k

X2k

X3k

Y1k

Ymk

Xnk

...

P1

P2

P3

P4

Pn

SD

SN1

SN2

SN3

SNj

X1k

X2k

X3k

Y1k

Ymk

Xnk

...

P1

P2

P3

P4

Pn

SD

SN1

SN2

SN3

SNj

Layer 1

Input layer
Layer 2

Model layer
Layer 3

Summation layer

Layer 4

Output layer

Figure 1.  Topology of the GRNN.
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The focus of existing studies has mainly been on the prediction of long-term deformation after the completion 
of construction. However, short-term deformation is an important factor affecting construction time and project 
quality in many tunnels. To clarify the effects of different parameters on different sections of the tunnel during 
construction, we introduced the EMD-SSA-GRNN algorithm to predict short-term deformation. Moreover, we 
analysed the prediction accuracy of other models and compared those models with our model.

To obtain field data, we monitored the changes in displacement at surface points in the tunnel portal section 
and at various points in the perimeter rock at the tunnel vault. We measured the displacement of a reflective 
sticker at a centre cross-section point to determine the in situ soil displacement caused by tunnel construction. 
Additionally, we calculated the changes in the coordinates of neighbouring monitoring points every two days to 
monitor deformation. As shown in Fig. 3, Measurement Point A is a rock settlement observation point located in 
the tunnel vault section, Measurement Point BC is an upper-layer convergence observation point, and Measure-
ment Point DE is a lower-layer convergence observation point.

We chose the deformation measured at two locations in the tunnel, namely, at the surface point of the right 
hole in the tunnel inlet section and at the perimeter rock of the arch in the YK68 + 376 section, as the focus of 
the study. The number of monitoring days at the surface point of the right tunnel was 56 days, and the number 
of monitoring days for the YK68 + 376 section was 48 days. The monitoring frequency was 1 time/d. The results 
obtained from the actual monitoring of both parameters are shown in Fig. 4.

The inlet section of the right cavern of the tunnel is classified as V-class surrounding rock, with a poor bear-
ing capacity and low deformation resistance. Additionally, the layers above and below the tunnel opening are 
subjected to large disturbances during mechanical excavation. As shown in Fig. 4a, the maximum daily settlement 
at Monitoring Point Y01-4 along the centreline of the right tunnel inlet reached − 5.6 mm from Day 1 to Day 10 
of the monitoring. This was the maximum value among those observed at surface monitoring points in the right 
cave, and the rate of settlement increased linearly with time. Figure 4b shows that the settlement deformation 
of the surrounding rock at the tunnel vault can be divided into three main stages: the first 10 days (initial stage), 
20 to 30 days (middle stage), and 30 days and after (late stage). In the initial stage, the unstable support of the 
surrounding rock after tunnel excavation results in a large deformation rate. After completing the primary lining 

Figure 2.  Actual image of the partial collapse of the tunnel.
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Figure 3.  Layout of the surface survey points and the rock surrounding the vault.
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of the upper layer, the settlement deformation of the surrounding rock at the tunnel vault gradually stabilizes. 
In the middle stage, construction operations such as excavation of the lower layer, establishment of sidewalls 
and establishment of superelevation arches are carried out, leading to a further increase in the rate of settlement 
deformation. In the late stage, the structure of the tunnel section gradually stabilizes, and the settlement defor-
mation trend enters a phase of smooth change.

EMD decomposition
After monitoring the measured data, we perform decompose the vault monitoring data obtained at surface points 
Y01-4 and YK68 + 376. As shown in Fig. 5, the decomposed tunnel settlement and deformation data are divided 
into three parts: the high-frequency component IMF1, medium-frequency component IMF2 and low-frequency 
component residual Res. IMF1 is a high-frequency component that reflects the noise in the tunnel settlement 
deformation data. Fluctuations in IMF1 are caused mainly by factors such as the external environment and errors 
generated by the measurement instruments. IMF2 is a medium-frequency component that displays a large degree 
of fluctuation. Fluctuations in IMF2 are subject to a variety of factors, such as construction techniques, support 
methods, geologic conditions, and temporal and spatial effects. Res is a low-frequency component with relatively 
smooth fluctuations and can thus reflect the essential characteristics of tunnel settlement deformation. Notably, 
the data that fluctuate up and down in Fig. 5 are not the settling values but the IMF components, and the settling 
curves are the descending curves in black and green.

As shown in Fig. 5a, we can obtain two intrinsic mode components, IMF1 and IMF2. The curves of IMF1 and 
IMF2 basically satisfy the requirements of the intrinsic mode components regarding the overzero point and the 
local extremum point. The value domain is basically symmetrical about the X-axis and is depicted as an up-and-
down oscillating curve. The residual characteristic curve reflects the approximate characteristics of the original 
time series data. From the frequency of the IMF curves, the vibration frequency of IMF1 to IMF2 continues to 
decrease, and the curve shows a flat trend. That is, the EMD basically result generally reflects the frequency 
decrease of the original time series, as supported by deep learning with the neural network. As shown in Fig. 5b, 
the decreasing trend of the two intrinsic mode components here is consistent with that in Fig. 5a. This shows 

Figure 4.  Cumulative sedimentation change curve. (a) At the surface of the inlet section of the right cave (b) At 
the rock surrounding the vault of the YK68 + 376 section.

Figure 5.  Plots of the intrinsic mode components and residuals. (a) At the surface of the inlet section of the 
right cave (b) At the rock surrounding the vault of the YK68 + 376 section.
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that the EMD strategy is consistent for various types of data, including settlement feature data. The decomposed 
IMF1 and IMF2 meet the conditions of IMFs decomposition, and their corresponding value domains are basically 
symmetric about the X-axis, represented as upward- and downward-vibration curves.

Moreover, the fluctuations in IMF1 and IMF2 are approximate sinusoidal functions, which reflect the results 
of neural network learning and the development of settlement. The above analysis shows that EMD can be 
used to decompose settlement data effectively into intrinsic mode components and decompose intrinsic mode 
components from high to low with relatively regular variation. Therefore, we find that there is no need to set 
the number of decomposition modes in EMD. Settling datasets with similar patterns are processed with similar 
decomposition strategies and similar numbers of modal components. On the other hand, decomposed modal 
components are influenced by the original signal, resulting in more sudden changes in subsidence and greater 
volatility. This indicates that the tunnel deformation time series has multiscale characteristics.

Relevance analysis
According to the on-site construction situation, we selected ten influential parameters, namely, span B, height 
H, burial depth D, compression modulus E, cohesion c, internal friction angle φ, distance from the palm surface 
S, critical time T, and the deformation values P1 and P2 at neighbouring measurement points. The data for some 
of the measurement points are shown in Tables 1 and 2.

To further analyse the correlation between each key factor and the maximum deformation of the supporting 
piles, we performed grey correlation analysis. The calculation is shown in Eq. (12)34.

where ri is the correlation of key factors, N is the number of factors, Δ (min) is the minimum difference at the 
second level, Δ (max) is the maximum difference at the second level, and ρ is the discrimination coefficient.

To ensure a strong correlation between the input and output variables and a simple model structure, we need 
to quantitatively validate the results. We evaluated the correlation between each input variable and the settle-
ment at the surface and vault points based on gray correlation. The correlations of the different parameters are 
shown in Fig. 6.

As shown in Fig. 6, the gray correlation values of the above ten parameters are all greater than 0.5. This 
means that the correlations between these parameters and the deformation at the surface and vault points are 
high. At the same time, the correlation values for the distance from the palm surface S and the critical time T 
and the deformation values at neighbouring measurement points P1 and P2 are significantly greater than those 
for other related factors. These findings verify that the deformation of the ground surface and the surrounding 
rock has obvious spatial and temporal effects during the tunnel construction process. Therefore, it is of practical 
significance to establish a dataset of tunnel deformation using the ten influencing factors selected in this paper.

(12)ri =
1

N

N
∑

k=1

[

�(min)+ ρ�(max)

�i(k)+ ρ�(max)

]

,

Table 1.  Settlement deformation-related parameters (partial) measured at surface point Y01-4.

Measurement point B (m) H (m) D (m) E (MPa) c (kPa) φ (°) S (m) T (d) P1 (mm) P2 (mm) X (mm)

Y01-4

10.25 5 1.8 1.7 15 20 2.4 1  − 0.4 0  − 0.3

10.25 5 1.8 1.7 15 20 4.8 2  − 0.8 0  − 1.1

10.25 5 1.8 1.7 15 20 7.2 3  − 1.3 0  − 3.5

… … … … … … … … … … …

10.25 5 1.8 1.7 15 20 96.6 46  − 44.9  − 46.1  − 47.8

10.25 5 1.8 1.7 15 20 98.4 47  − 44.8  − 46.3  − 47.6

10.25 5 1.8 1.7 15 20 100.2 48  − 44.6  − 46.2  − 47.8

Table 2.  Vault settlement deformation-related parameters (partial) measured in the YK56 + 376 section.

Measurement point B (m) H (m) D (m) E (MPa) c (kPa) φ(°) S (m) T (d) P1 (mm) P2 (mm) X (mm)

YK56 + 376

10.25 5 12.03 5.48 28 15 2.4 1  − 2.8 0  − 2.6

10.25 5 12.03 5.48 28 15 4.8 2  − 3.75 0  − 4.6

10.25 5 12.03 5.48 28 15 7.2 3  − 5.55 0  − 9.0

… … … … … … … … … … …

10.25 5 12.03 5.48 28 15 110.4 46  − 24.8  − 23.24  − 20.6

10.25 5 12.03 5.48 28 15 112.8 47  − 24.7  − 23.44  − 20.5

10.25 5 12.03 5.48 28 15 115.2 48  − 24.5  − 23.54  − 21.0
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Analysis and discussion
Tunnel construction is characterized by a high speed and complex construction conditions underground. To 
accurately predict future vault deformation in a timely manner, we use a single-step prediction method to con-
struct a prediction model with a 5-dimensional input and a single-dimensional output. Considering that the 
total data volume is relatively low, we set the ratio of the data volume between the training set and the predic-
tion set to 8:2. This means that at surface point Y01-4, data from the first 44 days of monitoring constitute the 
training set, and data from the last 12 days of monitoring constitute the prediction set. At the top of the arch in 
section YK56 + 376, data from the first 38 days of monitoring constitute the training set, and data from the last 
10 days of monitoring constitute the prediction set. With the training set and prediction set data, we can com-
pare the prediction accuracies of the GRNN, SSA-GRNN, EMD-GRNN and EMD-SSA-GRNN models. In the 
GRNN and EMD-GRNN models without SSA, the smoothing factor is set to the default value of 1 or 0.1. In the 
SSA-GRNN and EMD-SSA-GRNN models with SSA, the SSA is used for the intelligent selection of smoothing 
factors. Notably, in SSA, the sparrow population is 20, the maximum number of iterations is 50, the optimiza-
tion parameter is the smoothing factor, the variable dimension is 1, the safety threshold is 0.8, the proportion of 
finders is 0.7, and the proportion of sparrows aware of danger is 20%. The parameters of the base GRNN model 
are selected as shown in Table 3.

First, we utilize a single GRNN model with different smoothing factors for single-step prediction. The predic-
tion results of the single GRNN model are shown in Fig. 7.

Figure 6.  Grey correlations between different parameters and settlement deformation. (a) At the surface of the 
inlet section of the right cave (b) At the rock surrounding the vault of the YK68 + 376 section.

Table 3.  Base parameters of the GRNN model.

Neural network model Number of neurons Number of layers Number of iterations Number of epochs

GRNN 10 4 20 64

Figure 7.  Prediction results of the single GRNN model. (a) At the surface of the inlet section of the right cave 
(b) At the rock surrounding the vault of the YK68 + 376 section.
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As shown in Fig. 7, we find that the results of the single GRNN model differ significantly from the actual 
measured data, indicating low prediction accuracy. Notably, the GRNN-1.0 predictions differ more from the 
measured values than do the GRNN model predictions with various smoothing factors. Therefore, when using 
the GRNN model to carry out tunnel settlement prediction analysis, the value of the smoothing factor cannot 
be directly set to 1.0. Moreover, it is difficult to capture the data during some mutations because the time series 
information is limited. This leads to smooth and less smooth predictions at various iterations.

Second, we introduce the SSA to determine the optimal smoothing factor and analyse the prediction results 
of the single GRNN model and SSA-GRNN model for comparison. The predictions of the two models are shown 
in Fig. 8.

As shown in Fig. 8, the overall prediction accuracy of the SSA-GRNN model is higher than that of the sin-
gle GRNN model. This is because a single GRNN model tends to output results quickly during training if the 
smoothing factor is directly set to 0.1 or 0.2. Consequently, the prediction accuracy is unacceptable for complex 
deformation settlement data. Therefore, the absence of SSA optimization for the smoothing factor leads to a 
significant decrease in the prediction accuracy of the GRNN model. Based on the prediction accuracy of these 
two models, we believe that the SSA plays an important role in enhancing the prediction accuracy.

Finally, we decompose the input data via EMD and subsequently construct the EMD-SSA-GRNN prediction 
model based on an analysis of multiple influencing factors. The prediction results of the four considered models 
are shown in Fig. 9.

To verify the prediction accuracy of the different models, we use the following three evaluation metrics: mean 
square error (MSE), mean absolute error (MAE), and root mean square error (RMSE). The expressions of these 
three comprehensive evaluation indicators are as follows:

(13)MSE =

∑n
i=1 (ri − pi)

2

n

Figure 8.  Comparison of the prediction results of the single GRNN model and the SSA-GRNN model. (a) At 
the surface of the inlet section of the right cave (b) At the rock surrounding the vault of the YK68 + 376 section.

Figure 9.  Comparison of the prediction results of the SSA-GRNN model and the EMD-SSA-GRNN model 
based on gray correlations. (a) At the surface of the inlet section of the right cave (b) At the rock surrounding 
the vault of the YK68 + 376 section.
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where pi is the predicted value, ri is the actual value, n is the number of data points, and i is the number of 
iterations.

The error evaluation metrics for the four models in Fig. 9 are shown in Table 4.
According to Fig. 9 and Table 4, the EMD-SSA-GRNN model based on multiple influential factor analysis 

yields the highest prediction accuracy compared to the other three models. Focusing on the prediction curves 
of the EMD-GRNN and GRNN models, we find that both exhibit linear trends in the later stage of prediction. 
Focusing on the prediction curves of the EMD-SSA-GRNN and SSA-GRNN models, we find that the results of 
the EMD-SSA-GRNN model are more accurate than those of the SSA-GRNN model. By comparing the above 
results, we can clarify the contributions of the SSA and EMD to improving the prediction accuracy and can draw 
clear conclusions about the EMD-SSA-GRNN model constructed in this paper. That is, the EMD-SSA-GRNN 
model has three advantages: the ability to characterize the trend in fluctuation periods, provide accurate predic-
tions in the late prediction stage, and produce results close to the actual values.

Additionally, to show the dispersion of the data used during training for the different models, we constructed 
box plots for the predicted models. The box plot information is shown in Fig. 10.

Conclusions

(1) The initial settlement rate of tunnel deformation is significantly lower than the mid-term settlement rate 
but much greater than the final settlement rate. The surface settlement at the midline of the tunnel entrance 
section is the largest, and the further away from the tunnel centre a point is, the smaller the surface set-
tlement deformation is. The settlement deformation and convergence trends of the vault of the internal 

(14)MAE =

∑n
i=1

∣

∣ri − pi
∣

∣

n

(15)RMSE =

√

∑n
i=1

(

ri − pi
)2

n
,

Table 4.  Prediction model error comparison.

Measurement 
points Predictive model Training time (s)

MSE  (mm2) RMSE (mm) MAE  (mm2)

R2Time series
Influencing 
factors Time series

Influencing 
factors Time series

Influencing 
factors

Y01-4

GRNN 11.2 0.6407 0.9275 0.8004 0.9631 0.6578 0.7750 0.755

EMD-GRNN 13.5 0.3885 1.0272 0.6233 1.0135 0.5411 0.8716 0.804

SSA-GRNN 16.8 0.1343 0.1343 0.3664 0.3665 0.3189 0.3189 0.851

EMD-SSA-GRNN 18.1 0.0471 0.0762 0.2171 0.2759 0.1797 0.2299 0.975

YK56 + 376

GRNN 9.5 2.6596 3.3801 1.6308 1.8385 1.5858 1.8265 0.742

EMD-GRNN 11.7 6.4696 4.1522 2.5435 2.0377 2.5079 2.0243 0.792

SSA-GRNN 15.2 0.0191 0.0369 0.1383 0.1922 0.1178 0.1494 0.855

EMD-SSA-GRNN 17.4 0.0548 0.0276 0.2342 0.1662 0.2036 0.1388 0.984

EMD-GRNN SSA-GRNN EMD-SSA-GRNN
0.0

0.2

0.4

0.6

0.8

1.0

R
an
ge

 25%-75%

 range within 1.5IQR

 median line

 mean

 ourlier value

Figure 10.  Box plots for the different models.
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section of the tunnel are consistent with those at the entrance section, both of which are obviously affected 
by the excavation of the upper and lower geological layers.

(2) The prediction results of different models are compared and verified with tunnel-measured data, and it is 
found that by using the SSA to optimize the smoothing factor for the key parameters of the GRNN model, 
compared with the GRNN model, the SSA-GRNN model can significantly improve prediction performance. 
Compared with that of the GRNN model, the prediction accuracy of the SSA-GRNN model is improved 
by 72% and 94% in terms of time series prediction and multifactor prediction, respectively.

(3) The correlation degree analysis method is used to analyse the factors affecting surface subsidence and sur-
rounding rock deformation, and datasets of 10 factors affecting tunnel deformation, such as the distance 
from the palm face, air-facing time, and burial depth, are established. Compared with that of other models, 
the prediction accuracy of the EMD-SSA-GRNN model based on multiple influencing factors improved by 
19.2% to 59.4%. The combined EMD-SSA-GRNN prediction model can avoid the interference of short-term 
mutation data on the prediction of the overall settlement trend, and the agreement between predictions and 
monitoring data is significantly better than that for other combined prediction models, reflecting better 
applicability and stability.

(4) The combination of soft carbonaceous slate and super high ground stress has made large deformation in soft 
rock a common worldwide problem in the history of tunnel construction. Compared with those of other 
deformation prediction models, the prediction results of the EMD-SSA-GRNN model are more advanta-
geous in terms of accuracy, and this model is faster to run than other models. Therefore, the application 
of this algorithm for short-term large deformation prediction during tunnelling will be the focus of our 
future research. The EMD-SSA-GRNN model constructed in this paper still needs to be further improved 
in terms of parameter optimization. Moreover, in future research, we can consider implementing the SSA 
in the grid search algorithm to establish a method capable of automatic search and optimization.

Data availability
If someone wants to request the data from this study, please contact the author Jiajun Shu.
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