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A whale optimization algorithm 
based on atom‑like structure 
differential evolution for solving 
engineering design problems
Junjie Tang  & Lianguo Wang *

The whale optimization algorithm has received much attention since its introduction due to its 
outstanding performance. However, like other algorithms, the whale optimization algorithm still 
suffers from some classical problems. To address the issues of slow convergence, low optimization 
precision, and susceptibility to local convergence in the whale optimization algorithm (WOA). 
Defining the optimization behavior of whale individuals as quantum mechanical behavior, a whale 
optimization algorithm based on atom‑like structure differential evolution (WOAAD) is proposed. 
Enhancing the spiral update mechanism by introducing a sine strategy guided by the electron orbital 
center. Improving the random‑walk foraging mechanism by applying mutation operations to both 
the electron orbital center and random individuals. Performing crossover operations between the 
newly generated individuals from the improved mechanisms and random dimensions, followed by 
a selection process to retain superior individuals. This accelerates algorithm convergence, enhances 
optimization precision, and prevents the algorithm from falling into local convergence. Finally, 
implementing a scouting bee strategy, where whale individuals progressively increase the number of 
optimization failures within a limited parameter L. When a threshold is reached, random initialization 
is carried out to enhance population diversity. Conducting simulation experiments to compare the 
improved algorithm with the whale optimization algorithm, other optimization algorithms, and 
other enhanced whale optimization algorithms. The experimental results indicate that the improved 
algorithm significantly accelerates convergence, enhances optimization precision, and prevents the 
algorithm from falling into local convergence. Applying the improved algorithm to five engineering 
design problems, the experimental results demonstrate that the improved algorithm exhibits good 
applicability.

The Optimization Problem (OP)1 as defined by refers to the task of identifying the optimal choice among various 
strategies and parameters under specific conditions. This problem is prevalent in real-world applications and 
encompasses a wide range of scenarios where the goal is to find the best solution within a set of alternatives. 
Some of the classic intelligent optimization algorithms, including Particle Swarm Optimization (PSO) inspired 
by bird foraging  behaviors2,3, Genetic Algorithm (GA) simulating genetic and evolutionary  processes4, Ant 
Colony Optimization (ACO)5 mimicking ant collective pathfinding, and Simulated Annealing (SA)6 emulating 
material annealing, have been widely applied in various fields. In recent years, researchers have introduced novel 
intelligent optimization algorithms for solving optimization problems. For instance, the Bat Algorithm (BA)7 is 
inspired by the echolocation behavior of bats in detecting prey and navigating around obstacles. The Grey Wolf 
Optimization Algorithm (GWO)8 draws inspiration from the leadership and hunting behavior of wolf packs. 
The Hybrid Frog-Leaping Algorithm (SFAL)9 is inspired by the foraging mechanisms of frogs in constrained 
environments. Additionally, the Moth Flame Optimization Algorithm (MFO)10 is based on the spiral flight 
behavior of moths around flames. These emerging algorithms have shown promise in addressing a wide range 
of optimization challenges. Different intelligent optimization algorithms continue to drive advancements and 
transformations in the industrial sector and real-world applications. For instance, scheduling  problems11–13, 
industrial  manufacturing14,15,  aviation16,17, facial  recognition18–20, and medical  imaging21,22, among others, have 
all seen the influence and application of various intelligent optimization algorithms.
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The Whale Optimization Algorithm (WOA)23 is a novel intelligent optimization algorithm proposed by Aus-
tralian researchers in 2016. It is inspired by the collective hunting behavior of whales in the natural world. This 
algorithm offers advantages such as simplicity in principles, fewer parameters, and ease of implementation. It has 
successfully been applied to solve a variety of problems in fields such as image  retrieval24, image  segmentation25, 
 medicine26,  energy27, neural  networks28, feature  selection29, wind speed  prediction30, key  recognition31, and 
sentiment  analysis32, among others. However, WOA still faces challenges when applied to nonlinear, high-
dimensional, and complex optimization problems, including issues related to low optimization precision, slow 
convergence, and susceptibility to local convergence. To address these challenges, researchers have proposed 
various strategies to enhance WOA.

Improvements to WOA primarily fall into two categories: (1) enhancing WOA through improvements in 
initialization, parameter settings, and algorithm structure; and (2) leveraging the complementary strengths of 
WOA with other algorithms.

Parameter tuning in optimization algorithms has a significant impact. Therefore, Chen et al.33 introduced an 
Enhanced Whale Optimization Algorithm with Dual Adaptive Random Alternates. They introduced a random 
alternate strategy to preserve the positions of better dimensions and incorporated dual adaptive factors from 
the particle swarm algorithm. The improved algorithm was applied to engineering design problems, and experi-
mental results demonstrated its superior performance compared to other algorithms. Wen et al.34 proposed an 
enhanced Whale Optimization Algorithm for solving large-scale optimization problems. They used an opposi-
tion-based learning strategy for population initialization and designed a nonlinear convergence factor. Experi-
ments were conducted on large-scale high-dimensional functions, and the results showed that it outperformed 
other comparative algorithms. Wang et al.35 introduced a Whale Optimization Algorithm based on chaotic search 
strategy. They employed a chaos reverse learning strategy for population initialization and designed a nonlinear 
convergence factor along with an inertia weight factor. Performance testing was conducted on 10 benchmark 
functions and 6 composite functions, with experimental results demonstrating significant improvements in the 
algorithm’s performance over the baseline. Jiang et al.36 introduced an enhanced Whale Optimization Algorithm 
based on military planning and strategic adjustment. They modified key parameters of the original algorithm 
to enable classification search. The improved algorithm’s performance was tested using CEC2014 functions and 
three constrained optimization engineering problems, showing favorable results for optimization tasks. Wen 
et al.37 proposed a whale optimization algorithm based on refraction learning strategy, employed for solving 
high-dimensional optimization problems and photovoltaic model parameter estimation. They utilized the Logis-
tic model and refraction learning strategy in the improved algorithm and applied it to solve high-dimensional 
optimization problems, two engineering design problems, and the photovoltaic model parameter estimation 
problem. Comparative analysis against other algorithms demonstrated its robust performance.

While the Whale Optimization Algorithm (WOA) introduced by Mirjalili and  Lewis23 exhibits strong per-
formance in solving function optimization problems compared to algorithms like Glover and  Marti5,38–40, its 
simplistic algorithm structure still falls short in addressing complex optimization problems. Therefore, improving 
algorithm structures can effectively enhance algorithm performance. Zhao et al.41 proposed an Orthogonal Learn-
ing Design Whale Optimization Algorithm with a clustering mechanism. It employs a cluster-based mechanism 
for population exchange, guiding individuals towards dominant regions in the search space. Experimental results 
demonstrated the significant effectiveness of the improved algorithm. Agrawal et al.29,42 introduced a Quan-
tum Whale Optimization Algorithm for feature selection problems. It represents population individuals using 
quantum bits and incorporates mutation operators, improved mutations, and crossover operators. Statistical 
tests showed that the improved algorithm outperforms other metaheuristic algorithms.  Liu43 proposed a Multi-
Population Bidirectional Learning and Information Exchange Whale Optimization Algorithm. This algorithm 
divides the population into multiple mutually independent subgroups and introduces a linearly decreasing 
probability of individual replacement to facilitate information exchange between different subgroups. It achieved 
excellent results in various optimization problems. Jingsen et al.44 presented an improved Whale Optimization 
Algorithm for engineering design optimization problems. They introduced a feedback mechanism based on the 
current global optimum in the random walk foraging strategy, segment-wise random inertia weight in other 
strategies, and improved boundary handling. The improved algorithm was applied to 12 complex benchmark 
test functions and 3 engineering optimization design problems, demonstrating significant performance. Wu 
and  Fei45 introduced a Whale Optimization Algorithm based on an improved spiral updating position model. It 
incorporated opposition learning strategies, random parameter adjustments, and normal mutation operations to 
enhance the algorithm. Finally, it conducted large-dimensional comparative experiments with high-dimensional 
functions, comparing  IMWOA45 with  IWOA34 and found that IMWOA outperforms the other algorithms.

On the other hand, researchers have aimed to enhance the performance of  WOA23 by complementing it with 
other algorithms and have achieved promising results when applying improved versions of the algorithm to 
real-world problems. For example, Yanfeng et al.46 proposed an Enhanced Whale Optimization Algorithm based 
on the encirclement mechanism. This algorithm utilizes the Tent chaotic map, nonlinear parameters, restricted 
fitness control, and Gaussian detection mechanisms. It also incorporates the encirclement mechanism from 
the Harris’s Hawk  Algorithm47. Experimental results demonstrated significant improvements in convergence 
precision and speed. Andi et al.48 introduced a Chaos-based Multi-Elite Whale Optimization Algorithm, which 
employs the cubic mapping chaotic operator, incorporates the sine–cosine  algorithm39, and utilizes multi-elite 
search strategies. The improved algorithm was validated through testing on 20 benchmark functions and tra-
jectory planning simulations, showing notable enhancements in optimization performance. In response to the 
global COVID-19 pandemic in 2019, Abdel-Basset et al.49 proposed an enhanced Whale Optimization Algorithm 
combined with the slime mold algorithm for detecting COVID-19 in X-ray images. The algorithm demonstrated 
significant performance in addressing the challenges posed by COVID-19 chest X-ray images in the proposed 
metrics.
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The aforementioned improved algorithms exhibit better performance compared to the basic Whale Optimi-
zation Algorithm. However, they still face some inherent challenges, such as convergence speed, optimization 
precision, the ability to escape local convergence, and the need for further enhancement in solving engineer-
ing design problems, as well as their overall applicability. Therefore, to address the issues of slow convergence, 
low optimization precision, and susceptibility to local convergence in the Whale Optimization Algorithm, we 
redefine the optimization behavior of whale individuals as atom-like behavior and propose a whale optimiza-
tion algorithm based on atom-like structure differential evolution (WOAAD). We define the global optimum 
individual as the nucleus center and the concentric circle formed by the nucleus center as the electron orbit. 
We calculate the local optimum individual within the electron orbit and define it as the electron orbit center. In 
the spiral update mechanism, we introduce a sine-based strategy guided by the electron orbit center, which is 
combined with the original update process.

In the contraction enclosure mechanism, we retain the nucleus center for approaching prey. In the random 
walk foraging mechanism, we perform mutation operations on both the electron orbit center and random 
individuals. This prevents the random individuals from blindly searching. The newly obtained individuals are 
subjected to crossover operations with random dimensions, followed by a selection process to retain the better 
individuals. This accelerates the optimization process, improves optimization precision, and helps avoid getting 
trapped in local optima. Finally, we execute the scout bee strategy, where whale individuals gradually increase 
the number of optimization failures within the restricted parameter L. Once it reaches a threshold, random 
initialization is performed to enhance population diversity. We conducted simulation experiments comparing 
the improved algorithm with other algorithms. The results demonstrate a significant improvement in optimiza-
tion speed and the ability to avoid getting trapped in local optima. We applied the improved algorithm to five 
engineering design problems: cantilever beam, tension spring, three-bar truss, pressure vessel, and gearbox. The 
experimental results indicate that the improved algorithm exhibits good applicability in these cases.

The main contributions of this paper include:

1. Introducing a novel version of the Whale Optimization Algorithm (WOAAD) that retains the basic algorithm 
structure while innovatively incorporating quantum mechanics theory and Bohr atomic model theory. It also 
introduces a differential evolution mechanism to accelerate algorithm convergence, improve convergence 
precision, and avoid local optima. Additionally, the scout bee strategy is introduced to enhance population 
diversity.

2. Demonstrating the significant competitiveness of the proposed algorithm through experiments on 23 stand-
ard benchmark functions. Further validation of the algorithm’s effectiveness and applicability is provided by 
solving five mechanical optimization design problems.

The remaining sections of this paper are organized as follows:
Section “Whale Optimization Algorithm” provides an overview of the basic WOA. Section “Whale Opti-

mization Algorithm based on atom-like structure differential evolution” presents the content of the WOAAD 
algorithm. Section “Time complexity analysis of WOAAD” analyzes the time complexity of the WOAAD algo-
rithm. Section "Convergence analysis of WOAAD" discusses the convergence analysis of the WOAAD algorithm. 
Section "The experiments and comparisons" presents comparative experiments on standard functions, along with 
their analysis and discussion. Section "Engineering design problems" discusses experiments related to solving 
engineering design problems, along with their analysis and discussion. Section “Conclusions” summarizes the 
conclusions of this paper and suggests directions for future work.

Whale Optimization Algorithm
The behavior of whales cooperating in hunting, known as bubble-net feeding, is depicted in Fig. 1. During this 
predation process, whales move in circular or “9”-shaped patterns and release unique bubbles to accomplish 
their hunting. Researchers have delved deeper into this behavior and found that it can be simulated to solve 
optimization problems, involving processes such as collective searching, encircling, and pursuit within a whale 
group.

Figure 1.  Schematic diagram of bubble net feeding for humpback whales.
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Assuming a whale population size of N and a search space of D dimensions, the position of the i-th whale 
individual is represented as Xi = (Xi,1, Xi,2, …, Xi, D), where i ∈ 1, 2, …, N. The current best position within the 
population is considered the prey. Whale individuals move towards the target prey for encircling, while other 
individuals in the population move towards the best individual for encirclement. This is achieved by updating 
their positions using Eq. (1):

where, t is Current iteration number; X(t) is Current individual’s position vector; X* is Position of the prey. The 
coefficient vectors A and C are defined as follows:

where, r1 and r2 is random numbers in the range [0, 1]; a is Convergence factor, which linearly decreases from 2 
to 0 with an increasing number of iterations.

where, t is Current iteration number; T is Maximum number of iterations.
In the Whale Optimization Algorithm, there are two different methods: the Contraction Boundary Mecha-

nism and the Spiral Updating Position method. The Contraction Boundary Mechanism is implemented as the 
convergence factor ‘a’ decreases. In the Spiral Updating Position method, it simulates the spiral behavior of 
whales, and its mathematical model is as follows.

where, D =| X*(t)−X(t)| represents the distance between the whale and its prey, where b is a constant used to 
define the logarithmic spiral shape, and l is a random number within the range [− 1, 1]. Here, the whales move 
around the prey’s shrinking circle while following a spiral path. To simulate this behavior, in the optimization 
process of the algorithm, the probabilities of choosing the shrinking enclosure mechanism and updating the 
spiral position are both set to 0.5. Of course, in addition to these strategies, whales can also engage in random 
foraging. The mathematical model for the random searching behavior of whale individuals can be represented as.

where Xrand(t) represents the position vector of a randomly selected whale individual from the whale population.
In summary, the pseudocode for the Whale Optimization Algorithm (WOA) is presented in Algorithm 1.

(1)D = |C · X∗(t)− X(t)|

(2)X(t + 1) = X∗(t)− A · D

(3)A = 2a · r1 − a

(4)C = 2 · r2

(5)a = 2−
2t

tmax

(6)X(t + 1) = D · ebl · cos(2π l)+ X∗(t)

(7)D = |C · Xrand(t)− X(t)|

(8)X(t + 1) = Xrand(t)− A · D
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Initialize random distributed agents xi (i=1, 2, 3...., N) 

Calculate the �itness of each search agent 

x*=the best search agent 

while (t < tmax) 

for each search agent 

Update a,A,C,L,and p

if (p<0.5)

if (|A|<1)

Update the position of search agent use Eq. (1) 

else if (|A|>1)

Select a random search agent (x ) 

Update the position of search agent use Eq. (8) 

end if 

else if (p>0.5) 

Update the position with spiral Eq. (6) 

end if

end for 

Check if any search agent goes beyond the search space and amend it

Calculate the fitness of solutions 

Update X* if the method can detect a better solution 

t=t+1 

end while 

Algorithm 1. Pseudocode of WOA

Whale Optimization Algorithm based on atom‑like structure differential evolution
Quantum mechanics (QM) is a branch of physics that serves as the theoretical foundation for understanding the 
behavior of microscopic particles in the physical world. It primarily deals with the study of atoms, molecules, 
condensed matter, as well as the structure and properties of atomic nuclei and fundamental particles.

In this paper, we conceptualize a whale population as a representation of the motion of microscopic particles. 
Furthermore, we introduce the Bohr atomic model  theory50,51 into the algorithm. The theory has been intensively 
applied to optimization  problems52–56.

In this context, the global best individual and local best individuals are defined as the nucleus center and 
electron orbit center, respectively. These definitions are utilized in the context of differential evolution to enhance 
the algorithm’s performance. The mechanisms of the shrinkage and encircling of the whale population, random 
foraging, and spiral updating are defined as quantum mechanical behaviors. These quantum-inspired behaviors 
are incorporated into the whale optimization algorithm to propose a novel optimization approach known as the 
Whale Optimization Algorithm based on Atom-like Structure Differential Evolution (WOAAD).

Fundamental concepts
Definition 1 (Electron Orbit): The search space of the initialized whale population is defined as a quantum space. 
In this quantum space, there exists an atomic model. Multiple whales can be considered as multiple electrons 
within this atomic model, with one representing the nucleus center represented by the global best individual.

The current whale individual Xi = (Xi,1, Xi,2, …, Xi, D), where i ∈ 1, 2, …, N, is defined as the reference position. 
The group of individuals {i, i + 1, i + 2, …, i + k-1} is defined as the electron orbit. In the quantum space, there are 
N initial whale individuals and k electron orbit individuals.

Definition 2 (Electron Orbit Center): The local best individual within the electron orbit k is defined as the 
electron orbit center, denoted as Xk(t) = (Xk

1 ,X
k
2 , ...,X

k
D).
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Definition 3 (Nucleus Center): The global best individual within the whale population is defined as the nucleus 
center, denoted as Xg (t) = (X

g
1 ,X

g
2 , ...,X

g
D).

Definition 4 (Spiral Updating Mechanism): The position distance parameter in the sine function update formula 
within the spiral updating mechanism is defined as the vector difference between the electron orbit center and 
the current individual’s position, denoted as Dk =

∣

∣C · Xk − X(t)
∣

∣.

Definition 5 (Random Foraging Mechanism): The position distance parameter in the random foraging 
mechanism is defined as the vector difference between the electron orbit center and the position of a randomly 
selected individual, denoted as Dkr =

∣

∣C · Xk − Xrand

∣

∣.

Differential evolution strategy
The Differential Evolution Algorithm (DE)57 consists of mutation, crossover, and selection operations. It controls 
the direction of population individuals by adjusting parameters such as scaling factor and crossover probability. 
After initializing the population in the algorithm, an individual is randomly chosen as a differential vector. 
Depending on different mutation strategies, this individual is subjected to mutation operations to generate 
new individuals. Subsequently, the new individuals are randomly recombined with components from various 
dimensions to create crossover individuals. Finally, a greedy selection process is employed to retain the better 
individuals. Here are some commonly used mutation strategies.

where v(t + 1) represents the mutated individual, F is the scaling factor, xg is the global best individual, and xr1, 
xr2, xr3, xr4, and xr5 are randomly selected individuals.

Mutation operations
In the Differential Evolution algorithm, the mutation operation involves generating new mutated individuals 
v(t) = (vi1, vi2, vi3, …, viN) from different individuals in the t-th iteration. In this paper, the spiral update mecha-
nism and random foraging mechanism from the WOA are improved using different strategies:

Drawing inspiration from the sine cosine  algorithm39, the algorithm’s performance is enhanced by utilizing 
the periodic oscillations of sine and cosine functions. The sine function is introduced into the spiral update 
mechanism, guided by the electron orbit center. The cosine function guided by the atomic nucleus center is used 
along with the sine function guided by the electron orbit center with a probability based on a random value 
r = rand () for coordinated optimization.

(9)DE/rand/1 : v(t + 1) = xr1 + F · (xr2 − xr3)

(10)DE/best/1 : v(t + 1) = xg + F · (xr2 − xr3)

(11)DE/current − to− best/1 : v(t + 1) = xi + F · (xg − xi)+ F · (xr1 − xr2)

(12)DE/best/2 : v(t + 1) = xg + F · (xr1 − xr2)+ F · (xr3 − xr4)

(13)DE/rand/1 : v(t + 1) = xr1 + F · (xr2 − xr3)+ F · (xr4 − xr5)

(14)
v(t + 1) = D · ebl · cos(2π l)+ Xg r < 0.5

v(t + 1) = Dk · ebl · sin(2π l)+ Xk r > 0.5
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The random foraging mechanism in the WOA algorithm exhibits pseudo-randomness, where random whales 
from the population are selected for position updates, adding uncertainty to the algorithm and wasting com-
putational resources. The improved random foraging mechanism determines the new position jointly with the 
electron orbit center and a randomly selected individual from the population. This approach avoids the blind 
search of random individuals, effectively enhancing algorithm stability.

In these mutation operations, the random individual is randomly selected from the current population and 
may not be equal to the individual being mutated. These different strategies work together and complement each 
other, effectively balancing the algorithm’s global search and local exploitation capabilities, thus preventing the 
algorithm from getting stuck in local optima. Additionally, the new individual v(t) obtained from the contrac-
tion–expansion mechanism, as per Eq. (1), directly proceeds to the subsequent operations.

Crossover operation
In the Differential Evolution algorithm, the crossover operation involves generating a crossover individual 
u(t) = (ui1, ui2, uiN) by randomly recombining the various components of the mutated individual v(t) = (vi1, vi2, 
viN) and Xi. This process enhances population diversity. The components of u(t) are obtained as follows.

where, CR is a constant crossover probability, r3 is a random number in the range [0, 1], and jrand ∈ {1, 2, N} is 
a randomly selected dimension index. It ensures that u(t) must obtain at least one element from v(t), ensuring 
the creation of a new individual.

Selection operation
In the Differential Evolution algorithm, the selection strategy involves choosing the superior individual for the 
next generation based on the fitness values of X(t) and the crossover individual u(t). For minimization problems, 
the selection operation is determined by the following equation.

Scout Bee strategy
After several iterations, it is possible for individuals to remain unaltered over multiple iterations. Ineffective 
searching in known areas not only wastes computational resources but may also lead to getting stuck in local 
optima. The Artificial Bee Colony  algorithm58, inspired by the characteristics of bee colonies, is a population-
based optimization algorithm known for its strong global optimization capabilities, minimal parameters, high 
precision, and robustness. In this paper, we adopt the scout bee strategy from the Artificial Bee Colony algorithm 
and design a dynamic expression (Eq. 18). When an individual has remained unchanged for a certain number 
of consecutive iterations, exceeding the threshold L without finding a better solution, it indicates that the indi-
vidual is trapped in a local optimum. In this case, the individual is randomly initialized, effectively enhancing 
the diversity of the population and improving global exploration capabilities.

In summary, the pseudocode for the Whale Optimization Algorithm Based on Quantum Centered Differential 
Evolution (WOAAD) is presented in Algorithm 2.

(15)v(t + 1) = X(t)+ A · |C · Dk r |

(16)u(t + 1) =
{

v(t) r3 <CR or j �= jrand
v(t) r3 ≥CR or j �= jrand

(17)X(t + 1) =
{

u(t) f (u(t))< f (X(t))
X(t) f (u(t))≥ f (X(t))

(18)L = ⌊tmax/50⌋
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Initialize random distributed agents Xi (i=1, 2, 3...., N) 

Calculate the �itness of each search agent 

X g=Nuclear center (the best search agent) 

while (t < tmax) 

for each search agent 

Update a, A, C, L, CR, p, r and k 

X k=Electronic orbital center (the local best search agent) 

if (p<0.5)

if (|A|<1)

Update the position of search agent use Eq. (1) 

else if (|A|>1)

Select a random search agent (x ) 

Update the position of search agent use Eq. (15) 

end if 

else if (p>0.5) 

Update the position with spiral Eq. (14) 

end if

Update the position of Cross operation in Differential evolution Eq. (16)

Update the position of Selection operation in Differential evolution Eq. (17) 

end for 

Check if any search agent goes beyond the search space and amend it

Calculate the �itness of solutions 

Update X g if the method can detect a better solution 

t=t+1 

end while 

Algorithm 2. Pseudocode of WOAAD

Time complexity analysis of WOAAD
In intelligent optimization algorithms, time complexity is a significant criterion for evaluating algorithm effi-
ciency. In WOA, assuming a population size of N and an individual dimensionality of n, the computation of 
global best individual information is represented by s0, while s1 signifies the time required to initialize individu-
als in each dimension during the algorithm’s initialization process. Additionally, f(n) denotes the time spent on 
evaluating the fitness function. Therefore, the time complexity associated with the initialization phase in WOA 
can be expressed as follows.

During the iterations of the algorithm, with a maximum number of iterations represented as tmax, and assum-
ing that the computation time for other algorithm parameters is s2, and the time for handling the boundaries 
of each dimension for individuals is s3, the time complexity for the parameter setting part can be represented 
as follows.

In WOA, different strategies are executed with certain probabilities. Specifically, the spiral updating strategy 
is executed with a probability of p, while the other strategies are executed with a probability of 1−p. Additionally, 
the parameter A plays a crucial role in determining which strategy to execute. Based on these probabilities, we can 
deduce that there will be N1, N2, and N3 individuals executing three different mechanisms, with dimensionality 

(19)O(s0 + N(n · s1)) = O(n+ f (n))

(20)O(N(n · s3 + s2) = O(n+ f (n))
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update times represented as s4, s5, and s6, respectively. Therefore, the time complexity associated with the strategy 
optimization phase can be expressed as.

Therefore, the time complexity of WOA is given by the sum of the time complexities for the initialization, 
parameter settings, and strategy optimization phases.

In comparison to WOA, the improved algorithm WOAAD has the same basic information in the initializa-
tion phase, such as population size and individual dimensions. In WOAAD, it is assumed that the individual 
information for the electron orbital center is represented by c1. The introduced DE strategy includes the setting of 
CR, which is considered as a constant value and is not included in the calculation. Therefore, the time complexity 
of the initialization part for WOAAD can be expressed as:

During the algorithm’s iterative process, the maximum number of iterations, denoted as tmax, is the same as 
in WOA. Additionally, the calculation time for the parameter L in the scout bee strategy is represented as c2. 
Therefore, the time complexity of the algorithm’s parameter setting phase can be expressed as follows:

In WOAAD, the fundamental optimization strategy is the same as in WOA. Furthermore, the random walk 
foraging mechanism utilizes a search strategy based on the vector between the electron orbit center and the cur-
rent individual’s position. The time consumed by this part has already been calculated in the previous sections. 
However, what differs is the addition of the spiral update mechanism, which includes a sinusoidal function search 
strategy guided by the electron orbit center. Assuming that this part involves N4′ individuals and requires s7′ time 
for dimension updates, the time complexity of the strategy optimization phase can be expressed as:

Due to the introduction of the DE strategy in WOAAD, individuals are required to undergo crossover and 
selection operations. Assuming that the time required for crossover operation is w1 and the time required for 
selection operation is w2, the time complexity of this part can be expressed as:

Based on the calculations and considerations mentioned above, the time complexity of WOAAD can be 
summarized as follows:

Convergence analysis of WOAAD
WOAAD is a stochastic search algorithm, and its global convergence can be analyzed using the general conver-
gence  criteria59. It is considered to satisfy global convergence if the following two assumptions are met:

Assumption 1. 
 In Hypothesis 1, denoted by Eq. (28), various symbols and conditions are introduced. Let’s clarify their mean-
ings: E represents the algorithm under consideration; S is defined as the search space, encompassing the set of 
feasible solutions; f stands for the fitness function, the objective function to be optimized by algorithm E; We set 
k = 0, indicating the initial iteration count. For k iterations, we use xk, and the subsequent iteration is expressed 
as xk + 1 = P (xk, ζ), where ζ represents the solutions discovered during the algorithm E process; Satisfying these 
conditions allows us to conclude that is monotonically non-increasing. We can formally define it as the lower 
extreme value of the Lebesgue measure volume.

In the equation, v[X] represents the Lebesgue measure on the set X, signifying the existence of non-empty 
subsets within the search space, where the fitness values of members can approach β infinitely closely. Conse-
quently, we can define the optimality region as follows:

(21)
O(N(N1(n · s4)+ N2(n · s5)+ N3(n · s6)
= O(n+ f (n))

(22)

O(WOA)

= O(s0 + N(n · s1))+ tmax(O(N(n · s3 + s2)

+ O(N(N1(n · s4)+ N2(n · s5)+ N3(n · s6))
= O(n+ f (n))

(23)O(s0 + c1 + N(n · s1)) = O(n+ f (n))

(24)O(N(n · s3 + s2 + c2) = O(n+ f (n))

(25)
O(N(N1(n · s4)+ N2(n · s5)+ N3(n · s6)+ N4(n · s7)

= O(n+ f (n))

(26)O(N(N1(n · w1)+ N2(n · w2) = O(n+ f (j))

(27)

O(WOAAD)

= O(s0 + c1 + N(n · s1))+ tmax(O(N(n · s3 + s2 + c2)

+ O(N(N1(n · s4)+ N2(n · s5)+ N3(n · s6)+ N4(n · s7))
= O(n+ f (n))

(28)f (E(x, ξ)) ≤ f (x) and if ξ ∈ S, f (E(x, ξ)) ≤ min {f (x), f (ξ)}

(29)α = inf (t : v
[

x ∈ S|f (x) < t
]

> 0)
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In the equation, ε > 0, and C < 0. If a random search algorithm finds a point within R ε, M, it can be considered 
that the algorithm has discovered the global optimum or an approximate global optimum.

Assumption 2. For any Borel subset A in S with v(A) > 0, then:

where μk is the probability measure of algorithm E on set L at step k

Lemma 1. If the function f is measurable, the search space S is a measurable subset of Rn, and algorithm E satisfies 
Assumption 1 and Assumption 2, then for the sequence generated by algorithm E, denoted as {xk}∞k=0 , the following 
holds:

In the equation above, E(xk ∈ Rε,M) represents the probability measure of the point xk generated by algo-
rithm E at step k in the set Rε,M.

Theorem 1. As per Hypothesis 1, it is evident that either condition xk or condition ξk from Rε,M implies condition 
x∗k ∈ Rε,M . Hence, all instances of k∗ ≥ k + 1 follow.

Proof. 
Theorem 2. Algorithm E satisfies condition 2.

Theorem 3. In the WOA algorithm, the iterations ensure that the best individual is smoothly transferred to the next 
generation through different optimization strategies. Therefore, based on the description, the WOAAD algorithm 
can be defined as P, and the WOAAD algorithm satisfies condition 1, which is expressed as

In the equation, the function m corresponds to the mutation operation in the differential evolution mecha-
nism. m (Xi, t) represents the updated position of whale individual i after the mutation operation at the t-th 
update.

In the equation, the function c corresponds to the crossover operation in the differential evolution mechanism. 
c (Xi, t) represents the updated position of whale individual i after the crossover operation at the t-th update.

In the equation, the function s corresponds to the selection operation in the differential evolution mechanism. 
s (Xi, t) represents the updated position of whale individual i after the selection operation at the t-th update.

Gt represents the position of the atomic nucleus center, which is the current global optimum solution, and Kt 
represents the position of the electron orbit center, which is the current local optimum solution. As defined in 
the previous text, it is known that the fitness values corresponding to Gt and Kt are non-increasing and gradually 
converge to the lower bound of the solution space.

Theorem 4. The WOAAD algorithm satisfies Hypothesis 2.

Proof. The sample space of the whale population N must encompass S, which can be expressed as:

where, Mi,t represents the support set of the sample space for individual i in the t-th generation.

(30)Rε,M =
{

{x∈S|(x)<α+ε}, α is finite
{x∈S|(x)<C}, α=−∞

(31)
∞
∏

k=0

(1− µk(A)) = 0

(32)lim
k→∞

E(xk ∈ Rε,M) = 1

(33)E
(

xk ∈ Rε,M
)

= 1− E
(

xk ∈ S\Rε,M
)

≥ 1−
K−1
∏

l=0

(1− ul(Rε,M))

(34)1 ≥ lim
k→∞

E(xk ∈ Rε,M) ≥ 1− lim
k→∞

K−1
∏

l=0

(1− ul(Rε,M)) = 1

(35)P(Gt ,Kt ,Xi,t) =
{

Gtf (m(Xi,t)) ≥ f (Gt);
m(Xi,t), f (m(Xi,t)) < f (Gt);

(36)P(Gt ,Kt ,Xi,t) =
{

Gtf (c(Xi,t)) ≥ f (Gt);
c(Xi,t), f (c(Xi,t)) < f (Gt);

(37)P(Gt ,Kt ,Xi,t) =
{

Gtf (s(Xi,t)) ≥ f (Gt);
s(Xi,t), f (s(Xi,t)) < f (Gt);

(38)S ⊆
N
∪
i=1

Mi,t
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For the optimization mechanism in WOAAD algorithm, after the t-th iteration, there exists a positive integer 
t′, such that when t > t′, the expression for the j-th dimension of the i-th individual, as well as the probability 
density function, is given by:

When Borel subsets P of S satisfy v(P) > 0, we can obtain the following.

In this equation, if mi,j , ci,j , si,j < ∞ , then we have 0 < ηi,t [P] < 1 and Mi,t = RD ⊃ S . Here, Mi,t  represents 
the support of ηi,t in the sample space and P ⊃ Mi,t. Therefore, we can conclude that the union of supports of all 
individuals is.

In this equation, Mt represents the support of the distribution μ. The probability measure of P generated by 
μ can be expressed as.

Hence

That is,

Therefore, based on the above analysis, it can be concluded that the WOAAD algorithm satisfies the assump-
tions of a globally convergent algorithm. Thus, by Lemma 1, it can be asserted that WOAAD possesses global 
convergence properties.

The experiments and comparisons
To assess the performance of the WOAAD algorithm, this study conducted a series of simulation experiments 
using 23 standard benchmark  functions60. These benchmark functions encompass both unimodal functions 
(f1 to f7) and multimodal functions (f8 to f13), as well as fixed-dimensional multimodal functions (f14 to f23). 
These functions were selected for their diverse characteristics and varying degrees of difficulty in achieving global 
optimal solutions. The parameters for these test functions are provided in Table 1. Below are 3D plots depicting 
some representative standard functions shown in Fig. 2.

The experimental setup for this study consisted of a system running Windows 10 64-bit on an AMD Ryzen 7 
5800H processor with 16 GB of RAM. All experiments were conducted using MATLAB R2019a.

Evaluation indicators
In this section, four evaluation metrics were utilized to gauge the performance of the algorithm.

1. Mean. The average solution obtained from running the algorithm independently 30 times. It is calculated 
as.

2. Standard Deviation. This metric measures the dispersion or spread of fitness values. It is used to assess the 
level of variability in the dataset and is computed as.

P(xi,t) =
D
∏

d=1

1

mi,t

exp

(

−2
∣

∣xi,t − (Gi,t + Ki,j)
∣

∣

mi,t

)

1

ci,t
exp

(

−2
∣

∣xi,t − (Gi,t + Ki,j)
∣

∣

ci,t

)

1

si,t
exp

(

−2
∣

∣xi,t − (Gi,t + Ki,j)
∣

∣

si,t

)

(39)

P(xi,t) =
D
∏

d=1

1

mi,t

exp

(

−2
∣

∣xi,t − (Gi,t + Ki,j)
∣

∣

mi,t

)

1

ci,t
exp

(

−2
∣

∣xi,t − (Gi,t + Ki,j)
∣

∣

ci,t

)

1

si,t
exp

(

−2
∣

∣xi,t − (Gi,t + Ki,j)
∣

∣

si,t

)

(40)

ηi,t [P] =
∫

P

[

D
∏

d=1

1

mi,t

exp

(

−2
∣

∣xi,t − (Gi,t + Ki,j)
∣

∣

mi,t

)

,
1

ci,t

exp

(

−2
∣

∣xi,t − (Gi,t + Ki,j)
∣

∣

ci,t

)

,
1

si,t
exp

(

−2
∣

∣xi,t − (Gi,t + Ki,j)
∣

∣

si,t

)]

(41)Mt = ∪N
i=1Mi,t = RD ⊃ S

(42)ηt [P] = 1−
N
∏

i=1

(1− ηi,t [P])

(43)V [P] > 0, ηi(p) =
N
∑

i=1

ηi,t(P) = 1

(44)
∞
∏

t=0

(1− ηt [P]) = 0

(45)Mean =
1

T

∑

T
i=1fi
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3. Worst. The worst fitness value obtained among the independent runs. It indicates the highest fitness value 
achieved.

(46)SD =
√

1

T − 1

∑

T
i=1(fi −Mean)

Table 1.  Parameters of 23 standard benchmark functions.

Name Function Dim Range Fmin Name Function Dim Range Fmin

Sphere f1 30 [− 100, 100] 0 Penalized2 f13 30 [− 50, 50] 0

Schwefel 2.22 f2 30 [− 10, 10] 0 Shekel Foxholes f14 2 [− 65, 65] 1

Schwefel 1.2 f3 30 [− 100, 100] 0 Kowalik f15 4 [− 5, 5] 0.00030

Schwefel 2.21 f4 30 [− 100, 100] 0 Six_Hump Camel_Back f16 2 [− 5, 5] − 1.0316

Rosenbrock f5 30 [− 30, 30] 0 Branin f17 2 [− 5, 5] 0.398

Step f6 30 [− 100, 100] 0 Goldstein_Price f18 2 [− 2, 2] 3

QuarticWN f7 30 [− 1.28, 1.28] 0 Hartman1 f19 3 [0, 1] − 3.86

Schwefel2.26 f8 30 [− 500, 500] -12,569.5 Hartman2 f20 6 [0, 1] − 3.32

Rastrigin f9 30 [− 5.12, 5.12] 0 Sheke_5 f21 4 [0, 10] -10.1532

Ackley f10 30 [− 32, 32] 0 Shekel_7 f22 4 [0, 10] -10.4028

Griewank f11 30 [− 600, 600] 0 Shekel_10 f23 4 [0, 10] -10.5363

Penalized1 f12 30 [− 50, 50] 0

Figure 2.  3D graphs of some typical benchmark functions.
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4. Best. The best fitness value obtained among the independent runs. It represents the lowest fitness value 
achieved.

where, fi denotes the fitness value for the i-th run of the algorithm; T is the total number of independent 
runs of the algorithm.

Comparison experiment of WOAAD algorithm with other optimization algorithms
In this section, we conducted comparative experiments to evaluate the performance of the WOAAD algorithm 
against several other optimization algorithms, including the  WOA23, the Grey Wolf  Algorithm8, the Harris 
Hawk  Algorithm47, and the Salp Swarm  Algorithm61. The results of these experiments are presented in Table 2. 
To ensure fair comparisons, all algorithms were configured with uniform parameters: a population size of N = 30 
and a maximum iteration count of tmax = 500. The parameter settings for the WOAAD algorithm are as fol-
lows: constant b = 1, k = 5, and CR = 0.5. The remaining parameters for the other algorithms were set according 
to their respective original literature. Each algorithm was independently executed 30 times, and the best results 
are highlighted in bold in the comparison table.

From Table 2, it can be observed that in terms of average best values and standard deviations, the comparison 
experiments between the WOAAD and the WOA show the following results: For functions f9, f15, f16, and f17, 
the average best values of WOAAD are comparable to WOA. For functions f15 and f17, the standard deviations 
of WOAAD are worse than WOA, while for functions f9 and f16, the standard deviations are similar to WOA. 
For the remaining 19 functions, the optimization results of WOAAD are superior to WOA. In the comparison 
experiments between the WOAAD and the Harris Hawk Optimization (HHO) algorithm: For functions f9, f10, 
f11, f16, and f17, the average best values of WOAAD are comparable to HHO. For function f17, the standard 
deviation of WOAAD is worse than HHO. For functions f9, f10, f11, and f16, the standard deviations are similar 
to HHO. For functions f7, f8, f13, f15, and f18, both the average best values and standard deviations of WOAAD 
are worse than HHO. For the remaining 13 functions, the optimization results of WOAAD are superior to HHO. 
In the comparison experiments between the WOAAD and the Grey Wolf Optimization (GWO) algorithm: For 
functions f16, f17, and f18, the average best values of WOAAD are comparable to GWO. For functions f19 and 
f20, the standard deviations of WOAAD are worse than GWO. For the remaining 18 functions, the optimization 
results of WOAAD are superior to GWO. In the comparison experiments between the WOAAD and the Salp 
Swarm Algorithm (SSA): For functions f16 and f17, the average best values of WOAAD are comparable to SSA. 
The standard deviations of WOAAD are better than SSA. For the remaining 21 functions, the optimization results 
of WOAAD are superior to SSA. Regarding the maximum and minimum values: In the comparison with the 
WOA, WOAAD shows comparable results for 14 functions and superior results for the remaining 9 functions. 
In the comparison with HHO, WOAAD demonstrates comparable results for 11 functions and superior results 
for the remaining 12 functions. In the comparison with GWO, WOAAD achieves comparable results for 10 
functions and superior results for the remaining 13 functions. In the comparison with SSA, WOAAD performs 
comparably for 4 functions and superiorly for the remaining 19 functions.

Comparison experiments between WOAAD algorithm and other improved WOA algorithms
Next, we compare the WOAAD with other improved whale optimization algorithm (WOA) variants, includ-
ing enhanced WOA (EWOA)62, Improved WOA (IWOA)63, and improved WOA with modified spiral update 
(IMWOA)45. The experimental results are shown in Table 3. All compared algorithms are configured with uni-
form parameters: population size N = 30, maximum iterations tmax = 500, and WOAAD parameters as follows: 
constant b = 1; CR = 0.5. To ensure fairness, each compared algorithm is independently run 30 times, and the 
best values in the comparison results are highlighted.

From Table 3, it can be observed that. In single-peak functions f1–f7, WOAAD outperforms both EWOA 
and IWOA in terms of optimization results. In comparison with IMWOA, WOAAD is worse for functions f6 
and f7, equivalent for functions f1 and f3, and superior for the remaining 3 functions. In multi-peak functions 
f8–f13, WOAAD surpasses EWOA and IWOA. In comparison with IMWOA, WOAAD is worse for function f13, 
equivalent for functions f8, f9, f10, and f11, and superior for function f12. In fixed-dimension multi-peak func-
tions f14–f23, WOAAD equals EWOA for functions f15, f16, and f17, outperforms EWOA for the remaining 6 
functions. In comparison with IWOA, WOAAD equals IWOA for functions f16, f17, and f20, outperforms IWOA 
for the remaining 6 functions. In comparison with IMWOA, WOAAD equals IMWOA for functions f14, f16, 
f17, f21, f22, and f23, is worse for functions f15 and f18, and outperforms IMWOA for the remaining 2 functions.

Convergence curve analysis
To provide a more intuitive view of the convergence performance of the WOAAD, the data from Tables 2 and 
3 are plotted as convergence curves. Figures 3 and 4 depict the convergence curves of WOAAD against other 
optimization algorithms and improved WOA, respectively. From Figs. 3 and 4, it is evident that the WOAAD 
exhibits superior convergence speed and accuracy compared to the other algorithms under comparison. This 
is attributed to several factors, including the incorporation of quantum mechanics theory in the WOAAD, the 
redefinition of leadership in individual optimization using atomic and electronic centers, the introduction of 
the sine–cosine-based spiral update mechanism, and the integration of strategies led by atomic and electronic 
centers in the context of the sine–cosine function. These enhancements contribute to the stability of finding the 
optimal values and increase the success rate of optimization problems. Additionally, the adoption of differential 

(47)Worst, best =
{

max fi , 1 ≤ i ≤ T

min fi , 1 ≤ i ≤ T
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Function Algorithms Best Worst Mean SD

f1

WOAAD 0 0 0 0

WOA 3.8016e−84 5.5736e−73 2.2179e−74 1.0189e−73

HHO 4.1359e−116 5.5627e−96 2.3896e−97 1.0261e−96

GWO 1.2752e−29 9.9795e−27 8.8652e−28 1.7978e−27

SSA 349.9787 160.1822 585.6567 104.9715

f2

WOAAD 0 0 0 0

WOA 1.0723e−59 3.5846e−51 2.304e−52 6.7264e−52

HHO 1.5047e−58 2.1266e−49 1.1679e−50 4.0863e−50

GWO 2.1534e−17 3.0324e−16 9.8187e−17 7.1806e−17

SSA 5.9329 16.0439 11.0885 2.5342

f3

WOAAD 0 0 0 0

WOA 30,569.0906 75,655.1687 49,827.4082 12,621.0261

HHO 6.7466e−100 1.6596e−75 7.0408e−77 3.1101e−76

GWO 1.5171e−08 0.00036692 1.8288e−05 6.7217e−05

SSA 1617.5671 10,564.1312 5415.5913 2454.002

f4

WOAAD 0 0 0 0

WOA 2.224 88.9313 60.6109 26.3882

HHO 2.606e−58 2.1574e−48 1.0467e−49 4.1916e−49

GWO 6.8918e−08 2.162e−06 6.3851e−07 5.3574e−07

SSA 11.2376 28.9086 19.1829 4.3269

f5

WOAAD 0.01299 28.7512 24.995 9.6478

WOA 26.9858 28.818 27.8969 0.36887

HHO 1.6906e−06 0.087922 0.012376 0.018074

GWO 26.0538 28.7675 27.2375 0.84853

SSA 6248.809 73,748.5994 26,561.4827 17,964.0779

f6

WOAAD 0 1.3538e−12 1.3378e−13 3.4353e−13

WOA 0.09356 0.76614 0.32394 0.17272

HHO 1.9586e−08 0.00082251 0.00013159 0.00021025

GWO 0.24388 1.4806 0.80887 0.37708

SSA 119.977 580.8091 299.5929 99.5266

f7

WOAAD 7.7054e−06 0.0016439 0.00021498 0.00036221

WOA 0.00017931 0.023895 0.0034506 0.0048787

HHO 4.8214e−06 0.00039979 0.00011996 0.00010308

GWO 0.00052163 0.0043125 0.0015926 0.0010061

SSA 0.13346 0.71437 0.29577 0.12572

f8

WOAAD − 12,569.4866 − 9212.2855 − 12,351.7831 637.6677

WOA − 12,569.4863 − 6538.6952 − 10,308.062 1906.065

HHO − 12,569.4865 − 11,858.7627 − 12,537.6845 134.4068

GWO − 7776.6086 − 3635.7481 − 6040.2944 905.2374

SSA − 8314.9885 − 4503.7983 − 6511.0074 1046.0184

f9

WOAAD 0 0 0 0

WOA 0 0 0 0

HHO 0 0 0 0

GWO 5.6843e−14 18.1399 3.4543 4.8807

SSA 86.4546 168.3639 136.1698 22.4511

f10

WOAAD 8.8818e−16 8.8818e−16 8.8818e−16 0

WOA 8.8818e−16 7.9936e−15 3.9672e−15 2.5945e−15

HHO 8.8818e−16 8.8818e−16 8.8818e−16 0

GWO 7.9048e−14 1.4655e−13 1.1067e−13 1.7288e−14

SSA 4.4674 7.0992 6.2352 0.73225

f11

WOAAD 0 0 0 0

WOA 0 0.20269 0.011016 0.043061

HHO 0 0 0 0

GWO 0 0.03333 0.0058945 0.0097911

SSA 2.2407 5.5809 3.6086 0.8501

Continued
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Function Algorithms Best Worst Mean SD

f12

WOAAD 1.5705e−32 4.1559e−13 1.3854e−14 7.5875e−14

WOA 0.0021747 0.6731 0.053854 0.12374

HHO 9.1456e−09 0.0001671 1.9895e−05 3.3609e−05

GWO 0.019602 0.086905 0.0464 0.021015

SSA 12.0544 50.8527 21.4979 8.227

f13

WOAAD 1.3498e−32 0.099222 0.0033074 0.018115

WOA 0.19234 1.061 0.52912 0.21779

HHO 2.7567e−07 0.00074823 0.00010577 0.0001519

GWO 0.19569 0.95751 0.5486 0.16911

SSA 30.763 19,387.8932 1293.6111 3586.6206

f14

WOAAD 0.998 0.998 0.998 1.6493e−16

WOA 0.998 10.7632 2.5721 2.7161

HHO 0.998 5.9288 1.4923 1.2892

GWO 0.998 12.6705 5.3674 4.5168

SSA 0.998 2.9821 1.3948 0.80721

f15

WOAAD 0.0003181 0.0022519 0.00063837 0.00048664

WOA 0.00030831 0.0015959 0.00060264 0.00034325

HHO 0.00031158 0.00044182 0.00035629 3.4657e−05

GWO 0.00030749 0.020363 0.0051599 0.0085359

SSA 0.00080767 0.0016345 0.0011294 0.00025323

f16

WOAAD − 1.0316 − 1.0316 − 1.0316 1.468e−09

WOA − 1.0316 − 1.0316 − 1.0316 1.2078e−09

HHO − 1.0316 − 1.0316 − 1.0316 1.5069e−09

GWO − 1.0316 − 1.0316 − 1.0316 2.5e−08

SSA − 1.0316 − 1.0281 − 1.0308 0.00079622

f17

WOAAD 0.39789 0.39926 0.39795 0.00025266

WOA 0.39789 0.39831 0.39791 7.6839e−05

HHO 0.39789 0.39802 0.3979 3.4401e−05

GWO 0.39789 0.39802 0.39789 2.3516e−05

SSA 0.39795 0.40621 0.39924 0.001829

f18

WOAAD 3 3.0015 3.0001 0.00029943

WOA 3 3.0269 3.0009 0.0048957

HHO 3 3 3 2.5959e−06

GWO 3 3.0002 3 4.0305e−05

SSA 3.0003 3.258 3.0628 0.05742

f19

WOAAD − 3.8519 − 2.1001 − 3.3111 0.39229

WOA − 3.8628 − 3.8219 − 3.8572 0.010211

HHO − 3.8628 − 3.8551 − 3.861 0.0018916

GWO − 3.8628 − 3.8549 − 3.8615 0.0025282

SSA − 3.8524 − 3.4878 − 3.7302 0.12673

f20

WOAAD − 3.2318 − 2.731 − 3.0658 0.11342

WOA − 3.3219 − 3.0614 − 3.2483 0.091984

HHO − 3.265 − 2.8352 − 3.1231 0.098049

GWO − 3.322 − 3.0869 − 3.2955 0.063009

SSA − 2.8826 − 1.2784 − 2.5952 0.26936

f21

WOAAD − 10.1532 − 10.1532 − 10.1532 5.6943e−15

WOA − 10.1519 − 2.6301 − 7.9425 2.7948

HHO − 9.9188 − 5.0401 − 5.2147 0.88846

GWO − 10.1529 − 2.688 − 9.2276 2.1388

SSA − 9.0729 − 2.2544 − 5.4779 2.2054

f22

WOAAD − 10.4028 − 10.4028 − 10.4028 3.7686e−12

WOA − 10.4025 − 1.8375 − 6.6248 3.1284

HHO − 5.0874 − 3.593 − 5.0322 0.27191

GWO − 10.4026 − 5.1275 − 10.225 0.96277

SSA − 9.844 − 2.2064 − 6.7549 2.2647

Continued
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evolution strategies, such as mutation, crossover, selection operations, and scouting bee strategy, accelerates 
convergence, enhances population diversity, and reduces the likelihood of getting stuck in local optima during 
the early stages of optimization.

Analysis and conclusion
In summary, the analysis results indicate that the WOAAD outperforms the other algorithms compared in this 
study. Specifically, for functions such as f1, f2, f3, f4, f5, f9, and f11, the WOAAD achieves average best values 
that have already converged to the theoretical optimum. For functions like f8, f14, f16, f18, f21, f22, and f23, the 
average best values obtained by the WOAAD are very close to the theoretical optimum. Although a small number 
of functions have not yet converged to the optimal values, overall, the proposed WOAAD demonstrates faster 
convergence and a higher likelihood of escaping local optima when compared to other optimization algorithms, 
making it more competitive.

Engineering design problems
In real-life scenarios, there are numerous optimization problems that are highly non-linear, high-dimensional, 
and constrained, such as engineering design problems. To validate the feasibility and applicability of the WOAAD, 
it was applied to traditional engineering design problems. The results of this validation are presented in the fol-
lowing sections.

Optimization model
The process of formulating mathematical models for engineering design problems involves several steps, includ-
ing defining design variables, formulating objective functions, and specifying constraints. Engineering design 
 problems64 as described by are classic problems within the engineering domain. They are typically represented 
as constrained optimization problems, and their mathematical models can be expressed as follows:

In the above equation, the optimization problem consists of design variables represented by x, where x = (x1, 
x2, …, xn) ∈ Rn, and f(x) is the objective function. The constraints include  gp for the p-th inequality constraint and 
hm for the m-th equality constraint. xub and xlb represent the upper and lower bounds of the design variables.

To solve constrained optimization problems, they are typically transformed into unconstrained optimization 
problems using penalty functions. The penalty function method involves adding a penalty term to the objective 
function to penalize solutions that do not satisfy the constraints. This transformation allows the constrained 
optimization problem to be converted into a series of unconstrained subproblems, which can be solved using 
standard unconstrained optimization methods. The penalty function is expressed as follows.

In the equation, F(x) represents the penalty function, f(x) is the original objective function of the optimiza-
tion problem, λ is the penalty factor, h2(x) is the penalty term related to equality constraints, and min {0, g(x)}2 
is the penalty term related to inequality constraints. The choice of the penalty factor λ has a significant impact 
on the algorithm. When λ is too large, it can lead to premature convergence of the algorithm, making it difficult 
to search for the optimal solution. When λ is too small, it may not achieve the desired penalty effect. The value 
of λ is typically determined through extensive experimentation.

Experimental parameter settings
To validate the feasibility and applicability of the improved algorithm, it was applied to three engineering 
design problems: the cantilever beam design problem, the tension spring design problem, and the three-bar 
truss design problem. These problems were then subjected to simulation experiments and compared against 
optimization algorithms such as Whale Optimization Algorithm (WOA), Grey Wolf Optimization (GWO), 
Harris Hawks Optimization (HHO), and Salp Swarm Algorithm (SSA).To ensure the fairness of the experiments, 
the parameters for each algorithm in the comparative experiments were set as follows: Population size N = 30, 

(48)

min f (x)

subject to gp(x) ≤ 0, p = 1, 2, ..., j;
hm(x) = 0,m = 1, 2, ..., y;
xub ≤ xi ≤ xlb, i = 1, 2, ..., n;

(49)F(x) = f (x)+ �
[

h2(x)+min{0, g(x)}2
]

Function Algorithms Best Worst Mean SD

f23

WOAAD − 10.5363 − 10.5363 − 10.5363 9.9068e−15

WOA − 10.536 − 2.4215 − 7.8055 3.1418

HHO − 10.1667 − 1.6669 − 5.1764 1.1341

GWO − 10.5355 − 10.5327 − 10.5344 0.000872

SSA − 9.937 − 3.9937 − 7.8785 1.7481

Table 2.  The optimization results of WOA, GWO, HHO and WOAAD.
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Maximum number of iterations T = 500, Each algorithm was independently run 30 times, and the results were 
averaged for comparison.

The Cantilever beam design problem
The optimization objective in the cantilever beam design  problem65 is to minimize the mass of a cantilever beam 
with a rectangular cross-section. (As in Fig. 5).

The mathematical expression for this problem is as follows.

Table 3.  The optimization results of WOA, GWO, HHO and WOAAD.

Function Evaluation criterion EWOA IWOA IMWOA WOAAD

f1
Mean 1.3597e−149 3.2291e−119 0 0

SD 1.923e−149 4.5638e−119 0 0

f2
Mean 7.6987e−83 6.1872e−70 8.82e−181 0

SD 1.3329e−82 1.0542e−69 0 0

f3
Mean 1.293e−13 30,539.6732 0 0

SD 2.2084e−13 15,486.7023 0 0

f4
Mean 6.1656e−48 80.3907 4.27e−184 0

SD 1.0679e−47 7.9271 0 0

f5
Mean 28.7989 28.7989 4.29e−05 24.995

SD 27.1782 0.016037 1.33e−04 9.6478

f6
Mean 0.63821 3.0134 0 1.3378e−13

SD 0.33835 0.55587 0 3.4353e−13

f7
Mean 0.0026091 0.0017601 0 0.00021498

SD 0.0022209 0.0022305 0 0.00036221

f8
Mean − 7593.7712 − 11,563.8375 − 12,455.60 − 12,351.7831

SD 1105.5206 1223.8682 172.0869 637.6677

f9
Mean 0 0 0 0

SD 0 0 0 0

f10
Mean 3.2567e−15 3.2567e−15 8.88e−016 8.8818e−16

SD 2.0512e−15 2.0512e−15 1.00e−031 0

f11
Mean 0 0 0 0

SD 0 0 0 0

f12
Mean 0.049635 0.31748 1.68e−08 1.3854e−14

SD 0.014566 0.23679 1.70e−08 7.5875e−14

f13
Mean 1.2306 1.7124 5.69e−06 0.0033074

SD 0.51421 0.50525 1.96e−05 0.018115

f14
Mean 1.9881 1.0089 0.998 0.998

SD 1.7149 0.0056574 1.11e−06 1.6493e−16

f15
Mean 0.00055866 0.0032339 0.0004 0.00063837

SD 0.00016021 0.0033891 0.000043 0.00048664

f16
Mean -1.0316 − 1.0316 − 1.0316 − 1.0316

SD 2.4912e−10 4.3683e−10 1.86e−05 1.468e−09

f17
Mean 0.39789 0.39789 0.397664 0.39795

SD 4.3405e−07 2.5836e−06 1.768e−3 0.00025266

f18
Mean 12.0007 21.9012 3 3.0001

SD 15.5896 16.3696 1.34e−06 0.00029943

f19
Mean − 3.8611 − 3.8012 − 3.85988 -3.3111

SD 0.0027449 0.061781 0.00676 0.39229

f20
Mean − 3.2758 − 3.0059 − 3.10233 − 3.0658

SD 0.077888 0.052379 0.084930 0.11342

f21
Mean − 8.4535 − 9.0035 − 10.15316 − 10.1532

SD 2.943 1.0662 8.99e−05 5.6943e−15

f22
Mean − 8.6265 − 7.9479 − 10.40277 − 10.4028

SD 3.0647 2.8226 8.54e−05 3.7686e−12

f23
Mean − 6.9311 − 5.9503 − 10.53628 − 10.5363

SD 3.1222 3.4744 5.22e−05 9.9068e−15
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Funtion : min f (x) = 0.0624
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Figure 3.  Convergence curve for optimization results of WOA, GWO, HHO and WOAAD.
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where, the function f(x) represents the minimum value, which corresponds to the optimal mass of the cantilever 
beam with a rectangular cross-section. The design variables, xi, represent the height or width of different beam 
segments.

Table 4 presents the performance comparison results of the WOAAD and other optimization algorithms for 
the cantilever beam design problem. For the minimum value function f(x), the WOAAD achieved an optimiza-
tion result of f(x) = 1.3651, which is significantly better than the results of the WOA and SSA. Although it is on 
par with the results of the GWO and HHO, it is important to note that the WOAAD also satisfies the constraint 
conditions for the design variables (x1, x2, x3, x4, x5) = (5.4684, 5.3526, 4.5886, 3.6447, 2.8231).

The tension spring design problem
The objective of the tension spring design  problem66 is to minimize the weight of a tension spring while satisfying 
constraints on coil curvature, shear stress, natural frequency, outer diameter, and restrictions on three design 
variables. The three design variables are the average coil diameter D, wire diameter d, and the effective number 
of coils p. (As in Fig. 6).

The mathematical expression is as follows.

where, the function f(x) represents the minimum weight of the tension spring, where d(x1) is the wire diameter, 
D(x2) is the average coil diameter, and p(x3) is the effective number of coils, corresponding to the design variables.

Table 5 presents the performance comparison results of the WOAAD with other optimization algorithms 
for the tension spring design problem. It is evident that the optimization results of the WOAAD outperform the 
other optimization algorithms considered in the comparison.

The three‑bar truss design problem
The objective of the three-bar truss design  problem66 is to find the optimal volume of a three-bar truss by 
adjusting the cross-sectional areas. This problem involves a nonlinear objective function, three inequality 
constraints, and two decision variables. (As in Fig. 7).

The mathematical expression is as follows.

(51)

Function : min f (x) = (x3 + 2)x2x
2
1
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Figure 3.  (continued)
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Figure 4.  Convergence curve for optimization results of IWOA, EWOA, IMWOA and WOAAD.
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where, the equation, f(x) represents the objective function, seeking to minimize the optimal volume of the three-
bar truss. Variables l, p, and σ represent the deflection, buckling, and stress constraints of the truss components, 
respectively. x1  and x2  represent the lengths of the two side truss members, which are evaluated for the best 
cross-sectional area. The optimization results for the three-bar truss design problem using different algorithms 
are shown in Table 6.

Table 6 presents the performance comparison results of the WOAAD with other optimization algorithms for 
the three-bar truss design problem. In terms of the objective function’s minimum value, the WOAAD obtained 
an optimization result of f(x) = 264.3775, which is significantly better than the results obtained by the WOA and 
SSA. Although it is on par with the results of the GWO and HHO, the WOAAD demonstrates stable performance 
and satisfies the constraint conditions, as indicated by the other optimization parameters (Worst, Best, standard 
deviation, x1, x2) = (265.0797, 264.0048, 0.60851, 0.80111, 0.37417).

The pressure vessel design problem
The pressure vessel design  problem67 aims to minimize the total cost of a pressure vessel, including material 
costs, manufacturing costs, welding costs, and other constraints. (As in Fig. 8).

The mathematical expression is as follows.

where, the function f(x) represents the minimum total cost of the pressure vessel, where TS(× 1) stands for the 
shell thickness, Th(x2) represents the head thickness, R(x3) is the inner radius of the head, and L(x4) is the length 

(52)

Function : min f (x) = (2
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Function : min f (x) = 0.6224x1x3x4 + 1.7781x2x
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Figure 4.  (continued)
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of the cylindrical cross-section. The design variables x1 and x2 must be multiples of 0.0625 inches, while the other 
two variables are continuous.

Table 7 presents the performance comparison results of the WOAAD and other optimization algorithms 
for the pressure vessel design problem. Regarding the minimum function value f(x), the WOAAD achieved an 
optimization result of f(x) = 8807.7454, which is significantly suitable for the pressure vessel problem. Moreover, 
when considering other parameters, the WOAAD demonstrates stable performance and satisfies the constraint 
conditions.

The Gearbox design problem
The objective of the gearbox design  problem65 is to minimize the total weight of the gearbox, which includes 
seven variables: face width y1, module y2, number of teeth on the small gear y3, length of the first shaft between 

Figure 5.  Cantilever beam design problems.

Table 4.  Performance comparison of different algorithms for cantilever beam design problem.

Algorithms x1 x2   x3 x4 x5 f (x)

WOA 6.7223 5.6496 4.8678 2.7854 1.5343 1.7224

GWO 6.0505 5.3133 4.4703 3.5221 2.1857 1.3402

HHO 6.2829 5.2835 4.4123 3.6826 2.0938 1.3415

SSA 6.7314 4.3729 4.4344 2.9367 4.1988 1.8389

WOAAD 5.4684 5.3526 4.5886 3.6447 2.8231 1.3651

Figure 6.  Stretch spring design problems.

Table 5.  Performance comparison of different algorithms for stretch spring design problem.

Algorithms x1   x2   x3 f (x)

WOA 0.059163 0.56462 4.8865 0.014497

GWO 0.053750 0.55220 5.0087 0.015346

HHO 0.050000 0.31226 14.7351 0.013226

SSA 0.054396 0.39918 9.1854 0.013833

WOAAD 0.053306 0.39688 9.2718 0.012712
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bearings y4, length of the second shaft between bearings y5, diameter of the first shaft y6, and diameter of the 
second shaft y7. In this case, there are 11 constraint conditions mainly based on the stress conditions experienced 
by various components in the system. (As in Fig. 9).

The mathematical expression for this problem is as follows.

Figure 7.  Three-bar truss optimization design problems.

Table 6.  Performance comparison of different algorithms for three-pole truss design problem.

Algorithms Worst Best SD x1 x2 f (x)

WOA 267.7761 263.8988 1.2117 0.7975 0.3837 265.1009

GWO 264.2903 271.0781 2.2715 0.8146 0.3410 267.6625

HHO 263.8972 265.0614 0.2509 0.7879 0.4286 264.0875

SSA 263.8973 263.9679 0.0160 0.7873 0.4121 263.9181

WOAAD 265.0797 264.0048 0.60851 0.80111 0.37417 264.3775

Th

R
R

Ts
L

Figure 8.  Pressure vessel design problems.

Table 7.  Performance comparison of different algorithms for three-pole truss design problem.

Algorithms X1 X2 X3 X4 f (x)

WOA 1.34436 0.570476 58.01 45.1957 7947.518

GWO 0.82375 0.411093 42.611 170.4589 5991.1183

HHO 0.96086 0.481215 49.187 105.8834 6395.352

SSA 1.36397 0.63473 65.356 11.4551 7936.1061

WOAAD 1.38743 0.674322 57.8508 46.1296 8807.7454
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where, the function f(x) represents the minimum total cost for minimizing the pressure vessel. The design vari-
ables are defined as follows. x1 is the thickness of the shell; x2 is the inner radius; x3 is the length of the cylindrical 
portion outside the heads. It’s important to note that x1 and x2 must be multiples of 0.0625 inches, while x3 is a 
continuous variable. The optimization problem aims to find the values of these variables that minimize the total 
cost while satisfying the given constraints.

Table 8 presents the performance comparison results of the WOAAD with other optimization algorithms for 
the gearbox design problem. Regarding the minimum function value f(x), the WOAAD obtained an optimization 
result of = 3169.11f(x) = 3169.11, which is significantly suitable for the gearbox design problem. Additionally, from 
the optimization results of other parameters, it is evident that the WOAAD demonstrates stable performance 
while satisfying the given constraints.

(54)
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Figure 9.  Speed reducer design problem.
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Conclusions
This paper introduces a whale optimization algorithm based on atom-like structure differential evolution 
(WOAAD). It incorporates principles from quantum mechanics, defining the global optimum as the nucleus 
center and creating concentric circles around it called electron orbits. The algorithm calculates the local optimum 
within the electron orbit, defining it as the electron orbit’s center. During the spiral update phase, it combines the 
electron orbit center (local optimum) with the original solution using a sine function for coordinated updates. 
In the contraction encircling phase, the nucleus center (global optimum) is retained for prey encircling. In the 
random walk foraging phase, both the electron orbit center (local optimum) and random individuals undergo 
mutation operations, maintaining population diversity while avoiding the randomness of the search. The result-
ing new individuals are crossed with random dimensions, followed by selection operations to retain better 
individuals, thus accelerating the algorithm’s optimization speed and improving precision. Finally, the algorithm 
introduces a scout bee strategy. If a whale fails to find a better solution within a specified limit (L), it undergoes 
random initialization to enhance population diversity.

To evaluate the performance of the WOAAD, experiments are conducted using 23 standard benchmark 
functions, comparing it with other optimization algorithms and other improved WOA. The results demonstrate 
that the WOAAD significantly improves optimization speed and prevents the algorithm from getting stuck in 
local optima. Furthermore, the WOAAD is applied to five engineering design problems: cantilever beam, tension 
spring, three-bar truss, pressure vessel, and gearbox. Experimental results show that the improved algorithm 
exhibits good applicability (Supplementary Information).

In future research, efforts will be made to enhance the WOAAD performance, conduct experiments using 
CEC benchmark functions, address multi-objective optimization problems and high-dimensional function opti-
mization problems, and explore applications of the WOAAD in other industrial domains.

Data availability
The datasets used and/or analysed during the current study available from the corresponding author on 
reasonable request.
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