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Qualitative analysis and chaotic 
behavior of respiratory syncytial 
virus infection in human 
with fractional operator
Saba Jamil 1, Abdul Bariq 2*, Muhammad Farman 1,3,4, Kottakkaran Sooppy Nisar 5, 
Ali Akgül 3,4,6 & Muhammad Umer Saleem 7

Respiratory syncytial virus (RSV) is the cause of lung infection, nose, throat, and breathing issues in a 
population of constant humans with super-spreading infected dynamics transmission in society. This 
research emphasizes on examining a sustainable fractional derivative-based approach to the dynamics 
of this infectious disease. We proposed a fractional order to establish a set of fractional differential 
equations (FDEs) for the time-fractional order RSV model. The equilibrium analysis confirmed the 
existence and uniqueness of our proposed model solution. Both sensitivity and qualitative analysis 
were employed to study the fractional order. We explored the Ulam–Hyres stability of the model 
through functional analysis theory. To study the influence of the fractional operator and illustrate 
the societal implications of RSV, we employed a two-step Lagrange polynomial represented in the 
generalized form of the Power–Law kernel. Also, the fractional order RSV model is demonstrated 
with chaotic behaviors which shows the trajectory path in a stable region of the compartments. Such 
a study will aid in the understanding of RSV behavior and the development of prevention strategies 
for those who are affected. Our numerical simulations show that fractional order dynamic modeling 
is an excellent and suitable mathematical modeling technique for creating and researching infectious 
disease models.

A common respiratory virus is the single-stranded RNA virus known as respiratory syncytial virus (RSV). 
RSV is a cause of illnesses of the respiratory system, including infections of the middle ear, lungs, and airways. 
The common cold, bronchitis, croup, etc. are all most frequently brought on by it. Certain people are typically 
severely infected by this virus, particularly pretermit infants, elderly people, infants, adults with heart and lung 
conditions, and someone with a highly weakened defense mechanism1,2. The infection may transferred through 
actual interaction with contagious excretions or through droplets released during a person’s cough. It can be 
spread unintentionally by contact with hands that have touched dining utensils or any items that have been 
recently soiled by a sick person’s nasal or throat discharge. In other words, the infection spreads quickly. In the 
United States, about 60% of newborns contract HRSV during their first season, and the virus will largely attack 
children between the ages of two and three3.

Mathematical models can be used to predict the emergence of infectious diseases, as is well known. Finding 
the epidemic’s anticipated outcome in this way is helpful for the objectives of public health initiatives. As a fun-
damental mathematical framework, compartmental models can be used to investigate the intricate dynamics of 
epidemiological systems4. Recently, several important efforts have been made to execute this inquiry program 
for several disorders with integer-order compartmental models, including cholera5, hepatitis B6, zika virus7, 
malaria transmission8, dengue9, and influenza10. A detailed model of HRSV transmission was presented in2, in 
which individuals gradually develop immunity to the infection after being exposed to it repeatedly. In this study, a 
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comparison between the sophisticated model indicated above and a typical SIRS framework was also made. In11, 
the HRSV was modeled using an age-structured mathematical formalism that specifically took into account the 
youngest patients, or children under the age of one, who are most impacted by the disease. A numerical method 
for solving the HRSV seasonal model was presented in12. Sungchasit et al.13 described the global stability (GS) 
analysis of the super spreading RSV disease.

In the literature, fractional differential equations (FDEs), also known as significant DEs, are an extension 
of differential equations that use fractional calculus, a branch of mathematical analysis that looks at alternative 
approaches to creating differentiation operators of non-integer order14,15. Due to their natural connection to 
memory-based systems, FDEs are advantageous in the majority of biological systems16–18. Through fractional 
derivatives, Jan et al.19 build an epidemic model for Rift Valley fever with vaccination. In the paper20, the authors 
examined a dengue infection model with partial immunity and asymptomatic subjects. A compartmental model 
for the dengue fever transmission phenomenon was presented by Jan et al.21,22 and included nonlinear forces 
of infection via a fractional derivative. In23, scientists examined tumor-immune interactions using a fractional 
derivative framework. A unique mathematical model for the transmission of HFMD with reinfection was devel-
oped by researchers in24. In reference25, researchers developed a mathematical model using the Atangana–Baleanu 
operator within fractal fractional-order principles to depict the transmission of pneumonia among a population. 
Several epidemiological models have included FDEs. For more applications see26–30.

In many different systems and processes, FDs are an effective tool for explaining memory and hereditary 
characteristics. The fundamental details of the function are preserved in stacked form via fractional-order dif-
ferential equations. In fractional-order modeling, the order of the derivative is one such additional variable 
we have that is helpful for numerical techniques. The dynamics of disease transmission have been investigated 
using fractional-order modeling. Additionally, the fractional differentiation is not local, while the integer-order 
differentiation is. The simulation of epidemic scenarios is aided by this behavior. Additionally, the fractional 
derivative can expand the system’s stability zone. Due to its ability to incorporate common starting and boundary 
conditions into the derivation and the fact that the derivative of a constant is zero, as opposed to the fractional 
Riemann–Liouville derivative, the Caputo derivative is highly useful when discussing real-world concerns. The 
aforementioned investigations as well as the aid of Caputo FDEs served as inspiration for this study. A fractional 
order SEIrIsR model was developed utilizing Caputo FDEs to characterize the dynamics of RSV.

These are the goals of this work:

•	 Examine the stability and dynamical behavior of the SEIrIsR model.
•	 The Basic Reproduction number and Equilibrium points should be determined.
•	 Application of the Lagrange polynomial technique to obtain a numerical solution.
•	 The fractional order RSV model is demonstrated with chaotic behaviors.

This paper is structured as follows: section one serves as an introduction, while section two presents fundamental 
fractional order derivatives applicable to solving the epidemic model. The third section delves into the positiv-
ity of the fractional order model, discussing endemic equilibrium, DFE, and sensitivity analysis. In “Qualitative 
analysis of model”, the existence and uniqueness of a system of model solutions are affirmed using the fixed point 
concept. “Ulam–Hyers stability” focuses on investigating the Ulam–Hyers stability of the RSV model. “Numerical 
scheme” explores the impact of fractional parameters by employing numerical techniques to solve the fractional-
order system. Finally, “Simulation and discussion” and “Conclusion” discuss the results and conclusion.

Basic concepts
Before creating the model, we must first study the fundamental definitions that are essential to comprehending 
fractional operators.

Definition 2.1  14Assume that w(t) ∈ H1(0,T), T > 0, and 0 < β ≤ 1 . The following is the definition of a power-
law kernel fractional derivative:

Definition 2.2  14For (1), the corresponding fractional integral operator is given by

Fractional order RSV model
Here, we propose an RSV model with memory-affected fractal fractional order. The RSV epidemic model pre-
sented in13 is a classical derivative that has to be taken into account. The entire population is classified into 
five classes: susceptible S(t), exposed E(t), normally infectious Ir(t) , super infectious Is(t) , and recovered R(t). 
The birth rate is indicated by b while the natural death rate is symbolized by µ . The overall size of the human 
population at a given time is denoted by N. The rate of virus transmission between people, which affects the 
disease’s spread is represented by the symbol β . The interval from infection to the development of symptoms, 

(1)CD
β
t w(t) =

1

Ŵ(1− β)

d

dt

t
∫

0

(t − ξ)−βw(ξ)dξ .

(2)CI
β
t w(t) =

1

Ŵ(β)

t
∫

0

(t − ξ)β−1w(ξ)dξ .
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or the incubation time of the virus within an infected human, is shown by the symbol η . The likelihood that a 
new case of the virus will manifest as a normal infected human, typically characterized by typical transmission 
patterns indicated by p. The additional likelihood that a new case may involve an infected person who is super-
spreading, who has an elevated potential for transmitting the virus to a larger number of individuals indicated 
by (1− p) . The rate at which individuals with normal infections recover from the disease is symbolized by r1 . 
The rate at which individuals with super-spreading infections recover is indicated by r2 . The set of non-linear 
fractional differential equations is

the initial conditions are

Steady state analysis
Here, we will look into the RSV fractional-order system for both endemic and disease-free steady states. Setting 
the fractional derivative CDα

t S , CDα
t E , CDα

t Ir , CDα
t Is and CDα

t R of the fractional system (3) without infection to 
zero allows us to reach the steady-state with no infection. Disease free equilibrium points are

The endemic equilibrium can be expressed as follows by setting the right-hand side of the system (3) to zero 
and assuming that none of the disease states is zero,

where

Utilizing the next-generation technique, we were able to determine the system’s fundamental reproduction 
number, which is represented by R0 . In13 is given as:

where �1 = r1 + pr1 + pr2 + µ+ 2pµ, and �2 = µ(µ+ r1)(µ+ r2)(ηµ+ 1). The aforementioned R0 serves 
as a threshold parameter, if R0 is less than 1, the disease disappears, and if R0 is more than 1, the contagion per-
severes in the community.

Sensitivity analysis
We can check the sensitivity of R0 by computing the partial derivative for the significant variables, that is:

(3)

CDα
t S(t) = bN − βS(t)I(t)− µS(t),

CDα
t E(t) = βS(t)I(t)−

(

1
η

)

pE(t)−
(

1
η

)

(

1− p
)

E(t)− µE(t),

CDα
t Ir(t) =

(

1
η

)

pE(t)− r1Ir(t)− µIr(t),

CDα
t Is(t) =

(

1
η

)

(

1− p
)

E(t)− r2Is(t)− µIs(t),
CDα

t R(t) = r1Ir(t)+ r2Is(t)− µR(t),

S(t) ≥ 0, E(t) ≥ 0, Ir(t) ≥ 0, Is(t) ≥ 0,R(t) ≥ 0.

(4)D0 = (S0, E0, I0r , I
0
s , R

0) =

(

Nb

µ
, 0, 0, 0, 0

)

.

D∗ = (S∗, E∗, I∗r , I
∗
s , R

∗),

S∗ =
((µ+ r1)(µ+ r2)(ηµ+ 1)
(

β(µ+ r1 − pr1 + pr2)
) ,

E∗ =

(

η
(

Nbβ(µ+ r1 − pr1 + pr2)− (µ3 + r1r2µ)(1+ ηµ)− (µ2 + ηµ3)(r1 + r2)
))

β(ηµ+ 1)
(

µ+ r1 − pr1 + pr2
) ,

I∗r =

(

p
(

Nbβ(µ+ r1 − pr1 + pr2)− (µ3 + r1r2µ)(1+ ηµ)− (µ2 + ηµ3)(r1 + r2)
))

β(µ+ r1)(ηµ+ 1)
(

µ+ r1 − pr1 + pr2
) ,

I∗s =

((

p− 1
)(

(µ3 + r1r2µ)(1+ ηµ)+ (µ2 + ηµ3)(r1 + r2)− Nbβ(µ+ r1 − pr1 + pr2)
))

β(µ+ r2)(ηµ+ 1)
(

µ+ r1 − pr1 + pr2
) ,

R∗ =

((

µr2 + r1r2 + µpr1 − µpr2
)(

Nbβ(µ+ r1 − pr1 + pr2)− (µ3 + r1r2µ)(1+ ηµ)− (µ2 + ηµ3)(r1 + r2)
))

βµ(µ+ r1)(µ+ r2)(ηµ+ 1)
(

µ+ r1 − pr1 + pr2
) .

(5)R0 =
bβ�1

�2
,
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R0 is extremely responsive to changes in the parameters. In this work, the values b, β , and p are increasing, while 
r1 , r2 , µ , and η are decreasing. To avoid an illness, prevention is preferable to treatment.

Theorem 3.1  The closed set � =

{

(S,E, Ir , Is ,R) ∈ R5
+ : N ≤ b

µ

}

 is a positive invariant set for the proposed frac-
tional-order system (3).

Proof  To prove that the system of Eqs. (3) has a non-negative solution, we have

Thus, the fractional system (3) has non-negative solutions. Lastly By adding all the relations of the system 
(3), the total population with the fractional derivative is given as

Take a Laplace transform to both sides, we get

Take Laplace inverse to both sides and Theorem 7.2 in31, we obtained

Because of this if N(0) ≤ b
µ

 then for t > 0 , N(t) ≤ b
µ

 . Therefore, in the context of fractional derivative, posi-
tive invariance exists for the closed set � . 	�  �

Remarks 3.1  The closed set � is currently representing a set of conditions that are biologically significant in the 
context of RSV transmission modeling. It is emphasizing the relationship between population dynamics, birth 

∂R0

∂b
=

β�1

�2
> 0,

∂R0

∂β
=

b�1

�2
> 0,

∂R0

∂r1
=

−bβp
(

µ(µ+ r1)
2(ηµ+ 1)

) < 0,

∂R0

∂p
=

(bβ(2µ+ r1 + r2))

�2
> 0,

∂R0

∂r2
=

−bβ
(

p+ 1
)

(

µ(µ+ r2)
2(ηµ+ 1)

) < 0,

∂R0

∂µ
=

bβ
(

2p+ 1
)

�2
−

bβ�1

µ(µ+ r1)
2(µ+ r2)(ηµ+ 1)

−
bβ�1

µ2(µ+ r1)(µ+ r2)(ηµ+ 1)
−

bβ�1

µ(µ+ r1)(µ+ r2)
2(ηµ+ 1)

−
bβ�1

µ(µ+ r1)(µ+ r2)(ηµ+ 1)2
< 0,

∂R0

∂η
=

−bβ�1

(µ+ r1)(µ+ r2)(ηµ+ 1)2
< 0.

(6)

CDα
t S(t)

∣

∣

S=0
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CDα
t E(t)

∣

∣

E=0
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t Ir(t)

∣
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(

1
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∣

∣
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=
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1
η
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(
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E(t) ≥ 0,
CDα

t R(t)
∣

∣

R=0
= r1Ir(t)+ r2Is(t) ≥ 0.

CDα
t N(t) = bN − µN

≤ b− µN .

N(s) ≤
b

s(sα + µ)
− N(0)

sα−1

sα + µ
.

(7)

N(t) ≤ N(0)Eα
(

−µtα
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+

t
∫

0

bσα−1Eα,α
(

−µσα
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(
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+

t
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∞
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(−1)jµjσ jα

Ŵ
(
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µ
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(
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and death rates, and the vulnerability of specific age groups. These insights are currently informing strategies 
for managing and controlling RSV transmission within a population.

Theorem 3.2  If R0 < 1, the DFE of the system (3) is LAS otherwise unstable.

Proof  The system’s (3) Jacobian matrix at D0

and

where

It should be emphasized that the suggested model assumes positive values for the parameters. Therefore, the 
eigenvalue �1 < 0 . Indeed the quantity µ is strictly positive. Thus, there are no positive roots of Eq. (9) according 
to Descarte’s rule of signs because there is no sign change if R0 < 1 . In addition, if � is changed to −� in Eq. (9), 
then Eq. (9) has three signs that change if R0 < 1, therefore there are precisely three negative roots to Eq. (9). 
Thus by the condition 

∣

∣arg �i
∣

∣ > απ
2 , i = 1, 2, 3, 4, 5,α ∈ (0, 1] , D0 is locally asymptotically stable. 	�  �

Remarks 3.2  The value of R0 is a critical determinant of RSV transmission dynamics. A value below 1 suggests 
limited transmission, while a value above 1 indicates the potential for significant and sustained spread. This 
insight is essential for understanding the epidemiology of RSV and for designing effective control and preven-
tion strategies.

Qualitative analysis of model
Here, we demonstrate that the system has a unique solution. System (3) is first written as follows:

The aforementioned equations can be solved by applying integral form to both sides.

We demonstrate that the Lipschitz condition and contraction are satisfied by the kernels Pi = 1, 2, 3, 4, 5.

Theorem 4.1  If the following inequality holds, then the kernel P1 fulfills both the Lipschitz condition and contraction:

(8)

J =













−µ 0 −β S0

N −β S0

N

0 − 1
η
p−

�

1
µ

�

�

1− p
�

− µ β S0

N β S0

N

0 1
η
p −r1 − µ 0

0
�

1
µ

�

�

1− p
�

0 −r2 − µ













,

�

�J
�

D0
�

− �I
�

� = 0,

�1 + µ = 0,

(9)�
3 + d1�

2 + d2�+ d3 = 0,

d1 =
1

η
+ r1 + r2 + 3µ2,

d2 =
1

η

(

−
S0

N
β +

(

r1 + r2 + 2µ+
(

r1r2 + 2µ{(r1 + r2)+ 3µ2
)

}η
)

)

,

d3 =
1

η

(

S0

N
β
((

−1+ p
)

r1 − pr2 − µ
)

+ (r1 + µ)(r2 + µ)(1+ µη)

)

.

(10)










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



CDα
t S(t) = P1(t, S(t)),

CDα
t E(t) = P2(t, E(t)),

CDα
t Ir(t) = P3(t, Ir),

CDα
t Is(t) = P4(t, Is),

CDα
t R(t) = P5(t, R).

(11)



































































S(t)− S(0) = 1
Ŵ(α)

t
�

0

P1(t, S(t))(t − σ)α−1dσ ,

E(t)− E(0) = 1
Ŵ(α)

t
�

0

P2(t, E(t))(t − σ)α−1dσ ,

Ir(t)− Ir(0) =
1

Ŵ(α)

t
�

0

P3(t, Ir(t))(t − σ)α−1dσ ,

Is(t)− Is(0) =
1

Ŵ(α)

t
�

0

P4(t, Is(t))(t − σ)α−1dσ ,

R(t)− R(0) = 1
Ŵ(α)

t
�

0

P5(t, R(t))(t − σ)α−1dσ .
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Proof  We have

Assume that m1 = βk1 + βk2 + µ, where �Ir� ≤ k1, �Is� ≤ k2 are bounded functions.
Therefore

As a result, P1 meets the Lipschitz condition, and P1 is a contraction if 0 ≤ βk1 + βk2 + µ < 1 . Similarly, we 
may demonstrate that Pi , i = 2, 3, 4, 5 fulfil the Lipschitz condition and Pi are contractions for i = 2, 3, 4, 5, if 
0 ≤ mi < 1, where m2 =

(

1
η

)

p+
(

1
η

)

(

1− p
)

+ µ, m3 = r1 + µ, m4 = r2 + µ, m5 = µ are bounded functions. 
Take into account the following recursive forms of system (11):

with the initial circumstances S0(t) = S(0), E0(t) = E(0), Ir0(t) = Ir(0), Is0(t) = Is(0), R0(t) = R(0). Take the 
norm of the first equation of the above system

Lipschitz condition (12) gives us

Similar to this, we get

Hence, we can state that

0 ≤ βk1 + βk2 + µ < 1.

�P1(t, S)− P1(t, S1)� = �−(βIr(t)+ βIs(t))(S(t)− S1(t))− µ(S(t)− S1(t))�

≤ �βIr(t)+ βIs(t)��S(t)− S1(t)� + µ�S(t)− S1(t)�

≤ (β�Ir� + β�Is� + µ)�S(t)− S1(t)�

≤ (βk1 + βk2 + µ)�S(t)− S1(t)�.

(12)�P1(t, S)− P1(t, S1)� ≤ m1�S(t)− S1(t)�.

ϕ1n(t) = Sn(t)− Sn−1(t) =
1

Ŵ(α)

t
∫

0

(P1(σ , Sn−1)− P1(σ , Sn−2))(t − σ)α−1dσ ,

ϕ2n(t) = En(t)− En−1(t) =
1

Ŵ(α)

t
∫

0

(P2(σ , En−1)− P2(σ , En−2))(t − σ)α−1dσ ,

ϕ3n(t) = Irn(t)− Irn−1 (t) =
1

Ŵ(α)

t
∫

0

(

P3(σ , Irn−1 − P3(σ , Irn−2 )
)

(t − σ)α−1dσ ,

ϕ4n(t) = Isn(t)− Isn−1 (t) =
1

Ŵ(α)

t
∫

0

(

P4(σ , Isn−1 )− P4(σ , Isn−2 )
)

(t − σ)α−1dσ ,

ϕ5n(t) = Rn(t)− Rn−1(t) =
1

Ŵ(α)

t
∫

0

(P5(σ , Rn−1)− P5(σ , Rn−2))(t − σ)α−1dσ ,

�ϕ1n(t)� = �Sn(t)− Sn−1(t)�

=

∥

∥

∥

∥

∥

∥

1

Ŵ(α)

t
∫

0

(P1(σ , Sn−1)− P1(σ , Sn−2))(t − σ)α−1dσ

∥

∥

∥

∥

∥

∥

≤
1

Ŵ(α)

t
∫

0

∥

∥(P1(σ , Sn−1)− P1(σ , Sn−2))(t − σ)α−1
∥

∥dσ ,

(13)�ϕ1n(t)� ≤
1

Ŵ(α)
m1

t
∫

0

∥

∥ϕ1(n−1)(t)
∥

∥dσ .

(14)

�ϕ2n(t)� ≤
1

Ŵ(α)
m2

t
∫

0

∥

∥ϕ2(n−1)(t)
∥

∥dσ ,

�ϕ3n(t)� ≤
1

Ŵ(α)
m3

t
∫

0

∥

∥ϕ3(n−1)(t)
∥

∥dσ ,

�ϕ4n(t)� ≤
1

Ŵ(α)
m4

t
∫

0

∥

∥ϕ4(n−1)(t)
∥

∥dσ ,

�ϕ5n(t)� ≤
1

Ŵ(α)
m5

t
∫

0

∥

∥ϕ5(n−1)(t)
∥
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We demonstrate that a solution exists in the following theorem. 	�  �

Theorem 4.2  A system of solutions of the model (3) exists if there is ξ1 such that

Proof  From Eqs. (13) and (14), we have

This means that the system is continuous and has a solution. Currently, we demonstrate how the aforemen-
tioned functions create a model solution (11). Considering that

So

The procedure is repeated to produce

At ξ1, we get

Limiting the current equation as n gets closer to ∞ , we obtain �ϒin(t)� → 0, i = 2, 3, 4, 5. Similarly, we may 
demonstrate that �ϒin(t)� → 0, i = 2, 3, 4, 5. The proof is now complete. 	�  �

We assume that the system has an alternative solution, such as S1(t), E1(t), Ir1(t), Is1(t), and R1(t), then we have

We use the norm of the aforementioned equation

Sn(t) =

n
∑

j=1

ϕ1j(t), En(t) =

n
∑

j=1

ϕ2j(t), Irn(t) =

n
∑

j=1

ϕ3j(t), Isn(t) =

n
∑

j=1

ϕ4j(t), Rn(t) =

n
∑

j=1

ϕ5j(t).

1

Ŵ(α)
ξ1mi < 1.

�ϕ1n(t)� ≤�Sn(0)�

[

1

Ŵ(α)
ξm1

]n

,

�ϕ2n(t)� ≤�En(0)�

[

1

Ŵ(α)
ξm2

]n

,

�ϕ3n(t)� ≤
∥

∥Irn(0)
∥

∥

[

1

Ŵ(α)
ξm3

]n

,

�ϕ4n(t)� ≤
∥

∥Isn(0)
∥

∥

[

1

Ŵ(α)
ξm4

]n

,

�ϕ5n(t)� ≤�Rn(0)�

[

1

Ŵ(α)
ξm5

]n

.

S(t)− S(0) = Sn(t)−ϒ1n(t),
E(t)− E(0) = En(t)−ϒ2n(t),
Ir(t)− Ir(0) = Irn(t)−ϒ3n(t),
Is(t)− Is(0) = Isn(t)−ϒ4n(t),
R(t)− R(0) = Rn(t)−ϒ5n(t).

�ϒ1n(t)� =

∥

∥

∥

∥

∥

∥

1

Ŵ(α)

t
∫

0

(P1(σ , S)− P1(σ , Sn−1))dσ

∥

∥

∥

∥

∥

∥

≤
1

Ŵ(α)

∥

∥

∥

∥

∥

∥

t
∫

0

(P1(σ , S)− P1(σ , Sn−1))

∥

∥

∥

∥

∥

∥

dσ

≤
1

Ŵ(α)
m1�S − Sn−1�ξ .

�ϒ1n(t)� ≤

[

1

Ŵ(α)
ξ

]n+1

mn+1
1 b.

�ϒ1n(t)� ≤

[

1

Ŵ(α)
ξ1

]n+1

mn+1
1 b.

S(t)− S1 =
1

Ŵ(α)

t
∫

0

(P1(σ , S)− P1(σ , Sn−1))dσ .
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Lipschitz condition (12) implies that

Thus

Theorem 4.3  If the following circumstance applies, the solution of model (3) is distinct:

Proof  Assuming condition (15) is satisfied

Then �S(t)− S1� = 0. So, we obtain S(t) = S1(t) . Similar equality may be demonstrated for E,  Ir , Is, R. � �

Ulam–Hyers stability
In this section of the paper, we will examine the stability of the system (3) considering the perspective of UH. 
The analysis of approximate solution stability holds significant importance.

Definition 5.1  The considered system is said to be UH stable if ∃ some constants ϒi > 0, i ∈ N5 and for each 
�i > 0 , i ∈ N5 , for

and there exist 
{

S̃, Ẽ, Ĩr , Ĩs , R̃
}

 satisfy the following

�S(t)− S1� =
1

Ŵ(α)

t
∫

0

�(P1(σ , S)− P1(σ , Sn−1))�dσ .

�S(t)− S1� ≤
1

Ŵ(α)
m1ξ�S(t)− S1�.

(15)�S(t)− S1�

(

1−
1

Ŵ(α)
m1ξ

)

≤ 0.

1−
1

Ŵ(α)
m1ξ > 0.

�S(t)− S1�

(

1−
1

Ŵ(α)
m1ξ

)

≤ 0.

∣

∣

∣

∣

∣

∣

S(t)−
1

Ŵ(α)

t
∫

0

(t − σ)1−αP1(σ , S(σ ))dσ

∣

∣

∣

∣

∣

∣

≤ ϒ1,

∣

∣

∣

∣

∣

∣

E(t)−
1

Ŵ(α)

t
∫

0

(t − σ)1−αP2(σ , E(σ ))dσ

∣

∣

∣

∣

∣

∣

≤ ϒ2,

∣

∣

∣

∣

∣

∣

Ir(t)−
1

Ŵ(α)

t
∫

0

(t − σ)1−αP3(σ , Ir(σ ))dσ

∣

∣

∣

∣

∣

∣

≤ ϒ3,

∣

∣

∣

∣

∣

∣

Is(t)−
1

Ŵ(α)

t
∫

0

(t − σ)1−αP4(σ , Is(σ ))dσ

∣

∣

∣

∣

∣

∣

≤ ϒ4,

∣

∣

∣

∣

∣

∣

R(t)−
1

Ŵ(α)

t
∫

0

(t − σ)1−αP5(σ , R(σ ))dσ

∣

∣

∣

∣

∣

∣

≤ ϒ5,
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such that

Assumption 5.1   Let  us assume a Banach space on a real-valued function B(u) and 
u = [0, b]  a n d  u = B(u)× B(u)× B(u)× B(u)× B(u)  p r e s c r i b e  a  n o r m  supt∈u 
∥

∥S̃, Ẽ, Ĩr , Ĩs , R̃
∥

∥ = supt∈u
∣

∣S̃
∣

∣+ supt∈u
∣

∣Ẽ
∣

∣+ supt∈u
∣

∣Ĩr
∣

∣+ supt∈u
∣

∣Ĩs
∣

∣+ supt∈u
∣

∣R̃
∣

∣.

Theorem 5.1  The considered system is UH stable with the above assumption.

Proof  The system has a unique solution, we have

Using �i = ϒi and 1
Ŵ(α)

= �i , we have

Similarly, for the rest of the classes, we have the following

(16)

S̃(t) =
1

Ŵ(α)

t
∫

0

(t − σ)1−αP1(σ , S̃(σ ))dσ ,

Ẽ(t) =
1

Ŵ(α)

t
∫

0

(t − σ)1−αP2(σ , Ẽ(σ ))dσ ,

Ĩr(t) =
1

Ŵ(α)

t
∫

0

(t − σ)1−αP3(σ , Ĩr(σ ))dσ ,

Ĩs(t) =
1

Ŵ(α)

t
∫

0

(t − σ)1−αP4(σ , Ĩs(σ ))dσ ,

R̃(t) =
1

Ŵ(α)

t
∫

0

(t − σ)1−αP5(σ , R̃(σ ))dσ ,

∣

∣S − S̃
∣

∣ ≤ ϒ1�1,
∣

∣E − Ẽ
∣

∣ ≤ ϒ2�2,
∣

∣Ir − Ĩr
∣

∣ ≤ ϒ3�3,
∣

∣Is − Ĩs
∣

∣ ≤ ϒ4�4,
∣

∣R − R̃
∣

∣ ≤ ϒ5�5.

(17)

∥

∥S − S̃
∥

∥ =
1

Ŵ(α)

t
∫

0

(t − σ)1−α
∥

∥P1(σ , S(σ ))− P1(σ , S̃(σ ))
∥

∥dσ

≤ �1

∥

∥S − S̃
∥

∥.

(18)

∥

∥E − Ẽ
∥

∥ =
1

Ŵ(α)

t
∫

0

(t − σ)1−α
∥

∥P2(σ , E(σ ))− P2(σ , Ẽ(σ ))
∥

∥dσ

≤ �2

∥

∥E − Ẽ
∥

∥.

(19)

∥

∥Ir − Ĩr
∥

∥ =
1

Ŵ(α)

t
∫

0

(t − σ)1−α
∥

∥P3(σ , Ir(σ ))− P3(σ , Ĩr(σ ))
∥

∥dσ

≤ �3

∥

∥Ir − Ĩr
∥

∥.

(20)

∥

∥Is − Ĩs
∥

∥ =
1

Ŵ(α)

t
∫

0

(t − σ)1−α
∥

∥P4(σ , Is(σ ))− P4(σ , Ĩs(σ ))
∥

∥dσ

≤ �4

∥

∥Is − Ĩs
∥

∥.

(21)

∥

∥R − R̃
∥

∥ =
1

Ŵ(α)

t
∫

0

(t − σ)1−α
∥

∥P5(σ , R̃(σ ))− P5(σ , R̃(σ ))
∥

∥dσ

≤ �5

∥

∥R − R̃
∥

∥.

∥

∥S − S̃
∥

∥ ≤ ϒ1�1.
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Thus, we have completed the proof. 	�  �

Numerical scheme
The goal of this section is to create a numerical scheme for (3). To acquire computational results, the scheme has 
been used. Consider the following to illustrate this:

By employing Lagrange’s interpolation polynomial (LIP), we get

∥

∥E − Ẽ
∥

∥ ≤ ϒ2�2,
∥

∥Ir − Ĩr
∥

∥ ≤ ϒ3�3,
∥

∥Is − Ĩs
∥

∥ ≤ ϒ4�4,
∥

∥R − R̃
∥

∥ ≤ ϒ5�5.

(22)



































































S(t) = S(0)+ 1
Ŵ(α)

×
t
�

0

(t − σ)α−1A1(t, S, E, Ir , Is , R)dσ ,

E(t) = E(0)+ 1
Ŵ(α)

×
t
�

0

(t − σ)α−1A2(t, S, E, Ir , Is , R)dσ ,

Ir(t) = Ir(0)+
1

Ŵ(α)
×

t
�

0

(t − σ)α−1A3(t, S, E, Ir , Is, R)dσ ,

Is(t) = Is(0)+
1

Ŵ(α)
×

t
�

0

(t − σ)α−1A4(t, S, E, Ir , Is , R)dσ ,

R(t) = R(0)+ 1
Ŵ(α)

×
t
�

0

(t − σ)α−1A5(t, S, E, Ir , Is, R)dσ .

(23)

Sr+1 =
(�t)α

Ŵ(α + 1)

r
∑

ν=2

A1

(

tν−2, S
ν−2, Eν−2, Iν−2

r , Iν−2
s , Rν−2

)

×
[

(ζ1)
α − (ζ2)

]

+
(�t)α

Ŵ(α + 2)

r
∑

ν=2

[

A1

(

tν−1, S
ν−1, Eν−1, Iν−1

r , Iν−1
s , Rν−1

)

−A1

(

tν−2, S
ν−2, Eν−2, Iν−2

r , Iν−2
s , Rν−2

)

]

×
[

(ζ1)
α(ζ3)− (ζ2)

α(ζ4)
]

,

(24)

Er+1 =
(�t)α

Ŵ(α + 1)

r
∑

ν=2

A2

(

tν−2, S
ν−2, Eν−2, Iν−2

r , Iν−2
s , Rν−2

)

×
[

(ζ1)
α − (ζ2)

]

+
(�t)α

Ŵ(α + 2)

r
∑

ν=2

[

A2

(

tν−1, S
ν−1, Eν−1, Iν−1

r , Iν−1
s , Rν−1

)

−A2

(

tν−2, S
ν−2, Eν−2, Iν−2

r , Iν−2
s , Rν−2

)

]

×
[

(ζ1)
α(ζ3)− (ζ2)

α(ζ4)
]

,

(25)

Ir+1
r =

(�t)α

Ŵ(α + 1)

r
∑

ν=2

A3

(

tν−2, S
ν−2, Eν−2, Iν−2

r , Iν−2
s , Rν−2

)

×
[

(ζ1)
α − (ζ2)

]

+
(�t)α

Ŵ(α + 2)

r
∑

ν=2

[

A3

(

tν−1, S
ν−1, Eν−1, Iν−1

r , Iν−1
s , Rν−1

)

−A3

(

tν−2, S
ν−2, Eν−2, Iν−2

r , Iν−2
s , Rν−2

)

]

×
[

(ζ1)
α(ζ3)− (ζ2)

α(ζ4)
]

,

(26)

Ir+1
s =

(�t)α

Ŵ(α + 1)

r
∑

ν=2

A4

(

tν−2, S
ν−2, Eν−2, Iν−2

r , Iν−2
s , Rν−2

)

×
[

(ζ1)
α − (ζ2)

]

+
(�t)α

Ŵ(α + 2)

r
∑

ν=2

[

A4

(

tν−1, S
ν−1, Eν−1, Iν−1

r , Iν−1
s , Rν−1

)

−A4

(

tν−2, S
ν−2, Eν−2, Iν−2

r , Iν−2
s , Rν−2

)

]

×
[

(ζ1)
α(ζ3)− (ζ1)

α(ζ4)
]

,
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where
ζ1 = r − ν + 1,    ζ2 = r − ν,  ζ3 = r − ν + 3+ 2α,   and ζ4 = r − ν + 3+ 3α. We included data from sys-

tematic literature reviews13. The following algorithm also presents the previously discussed methodology. It also 
mentions the output variables, initial conditions, set of parameters, and resulting equations.

clc;clear;close all;
%inputs
h=0.01; t(1)=0.1; tfinal=100; t=t(1):h:tfinal; N=cell((tfinal-t(1))/h); % Inputs
x(1)=0.05; y(1)=0.009; z(1)=0.5; p(1)=0.0004; q(1)=0; % Initial Conditions
alpha1=1; alpha2=0.95; alpha3=0.90; alpha4=0.85; %Fractional order
b=1/365*75.65; m=p=0.001 and 0.0004; (1-m)=0.1; \mu=1/365*75.65;\beta=0.1;
\eta=0.15; r_1=0.01; r_2=0.1; % Parameters in the model
% The Model (3) in the research paper
% S=x; E=y; I_r=z;I_s=p; R=q
f1=@(t,x,y,z,p,q)b*N - beta*x*(z+p) - mu*x;
f2=@(t,x,y,z,p,q) beta*x*(z+p) - m*y*1/eta-(1-m)*y*1/eta - mu*y;
f3=@(t,x,y,z,p,q)m*y*1/eta-r_1*z-mu*z;
f4=@(t,x,y,z,p,q)(1-m)*y*1/eta-r_2*p-mu*p
f5=@(t,x,y,z,p,q)r_1*z+r_2*p-mu*r
%Algoritthm of the caputo fractional
for n=1:N

j=2:n;
% Equations 23-27

t(n+1)=t(n)+h;
end
plot(t,x,’.’,’color’,’r’,’LineWidth’,1.5)%Plot a figures

Simulation and discussion
Here, we show how the transmission of RSV is impacted by fractional order. For a better understanding of the 
RSV infection phenomenon, we conducted several simulations. For numerical simulation, Table 1 contains the 
initial values of the compartments and the values of the model parameters.

To demonstrate how memory affects the dynamics of RSV, we consider various values of the memory index 
(α = 0.85, 0.90, 0.95, 1.00) in Figs. 1, 2, 3, 4 and 5. Figure 1 indicates that the susceptible population S(t) grows 
uniformly whenever the non-integer order α decreases. This phenomenon reflects how variations in memory 
index α influence immunity duration. A lower α value indicates stronger memory effects, causing individuals 
to retain immunity for an extended time after infection or vaccination. Figure 3 shows that, there is a sharp 
leap in the population of super spreading infected people in the early days when fractional order α decreases. 

(27)

Rr+1 =
(�t)α

Ŵ(α + 1)

r
∑

ν=2

A5

(

tν−2, S
ν−2,Eν−2, Iν−2

r , Iν−2
s , Rν−2

)

×
[

(ζ1)
α − (ζ2)

]

+
(�t)α

Ŵ(α + 2)

r
∑

ν=2

[

A5

(

tν−1, S
ν−1, Eν−1, Iν−1

r , Iν−1
s , Rν−1

)

−A5

(

tν−2, S
ν−2, Eν−2, Iν−2

r , Iν−2
s , Rν−2

)

]

×
[

(ζ1)
α(ζ3)− (ζ1)

α(ζ4)
]

,

Table 1.   Parameters values and initial values of the compartments.

Parameter Values Parameter Values Source

b 1

365×75.65
p 0.001 and 0.0004 13

µ 1

365×75.65
S(0) 0.05 13

β 0.1 E(0) 0.009 13

η 0.15 Ir (0) 0.5 13

r1 0.01 Is 0.0004 13

r2 0.1 R 0 13
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This finding underscores the role of highly infectious individuals in initiating and driving early outbreaks. A 
decrease in memory index α could intensify the impact of memory-driven interactions, making highly infectious 
individuals more potent transmitters. This insight is crucial for anticipating and managing the initial surge of 
infection. Furthermore, as can be seen from Fig. 5 the recovered population R(t) decreases by decreasing memory 
index α . A lower memory index α value implies a shorter duration of immunity post-recovery. This aligns with 
the idea that reduced α values emphasize stronger memory effects, resulting in faster waning of immunity. The 
observation emphasizes the potential for reinfections and the importance of immunity maintenance strategies. 
It is clear that the memory index has a significant impact on the dynamics of RSV and lowers the number of 
infected people. These observations reinforce the importance of memory effects, immunity, and initial transmis-
sion dynamics in the context of RSV infection. They offer insights that can influence public health strategies, 
vaccination programs, and the understanding of population-level immunity. The findings contribute to a more 
comprehensive understanding of the biological mechanisms underlying RSV behavior and its interactions with 
the human immune system, ultimately aiding in more effective disease management and control. Figs. 1, 2, 3, 4 
and 5 depict the effects of input parameters p on the dynamics of RSV transmission, where the impact of infec-
tion progression rate has been established. Figure 6 shows the chaotic behavior of our system (3) with different 
settings for the memory index α , the trajectories of the system converge to the equilibrium point. In Fig. 6a, we 
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Figure 1.   Simulation of S(t). (a) p = 0.001 , (b) p = 0.0004 under the Caputo model.
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Figure 2.   Simulation of E(t). (a) p = 0.001 , (b) p = 0.0004 under the Caputo model.
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observe that the more individuals are susceptible the more transitioning to an exposed individuals whereas less 
the number of susceptible individuals the less the transitioning to an exposed individuals. In Fig. 6b, we observe 
that the more individuals are susceptible the more they get infected with RSV infection whereas less the number 
of susceptible individuals the less the number of individuals infected with RSV infection. Figure 6c describes 
that the number of recovered individuals decrease as the normal infected individuals increase. We noted that 
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Figure 3.   Simulation of Ir(t) . (a) p = 0.001 , (b) p = 0.0004 under the Caputo model.
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Figure 4.   Simulation of Is(t) . (a) p = 0.001 , (b) p = 0.0004 under the Caputo model.
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treatment effectiveness, immune response variations, and the overall progression of the infection collectively 
influence this chaotic transition. We observed that the memory index α can also be used as a chaotic control 
parameter. The chaotic behavior of the system is significantly relied upon in numerous scientific and engineering 
applications. It is generally known that there is a significant propensity to imagine and represent the behavior 
of chaotic systems. The proposed mathematical model is made feasible and scalable by the chaotic modeling, 
which can then be used to study novel chaos systems. We demonstrated how α might have made a significant 
contribution and could be used as a useful parameter for preventative measures.

Conclusion
The most frequent cause of lower respiratory tract infections in newborns and children globally is respiratory 
syncytial virus (RSV). In this work, we have presented a fractional-order mathematical model for the respiratory 
syncytial virus (RSV) transmission in the presence of a super-spreader. Using the Caputo derivative, we provided 
the suggested model. The results demonstrate that the suggested model has bounded and positive solutions. The 
sensitivity analysis indicates that the value R0 correlates directly with the birth rate of susceptible individuals 
(µ) , the virus transmission rate between humans (β) , and the likelihood of a new case being a normally infected 
human (p). These factors are adjustable through the efficient implementation of vaccination campaigns. Using 
the fixed-point theorem, we investigated the existence and uniqueness of the system’s solutions. Furthermore, 
we established UHS results for our system of viral infection RSV. We presented a two-step Lagrange polynomial 
numerical technique for addressing the Caputo fractional derivative to understand the dynamics of RSV. With 
varying input parameters, the chaotic graphs have been displayed. It has been demonstrated that the chaotic 
behavior of the proposed model is affected by fractional order α . Adding the memory index α is expected to 
improve the system and could have been employed as a controlling parameter. Every fractional order model, 
in our opinion, has more information than the integer orders. For example, the integer order model will only 
have one solution, but the fractional order in an interval will have an infinite number of solutions. The beauty 
of these operators is that they can find new information for orders other than one while still approaching the 
integer order solution for orders that are close to one. In conclusion, the utilization of data-driven approaches 
in Respiratory Syncytial Virus (RSV) modeling proves pivotal in understanding the complexities of disease 
transmission and management.

In our future work, we plan to implement optimal control analysis on this model to reduce infection rates 
and increase the number of healthy individuals. The biological phenomenon can be described using real data by 
extending our model to a new generalized fractional derivative. Additionally, we will also apply the fractional 
operators to stochastic models.

0 2 4 6 8 10 12 14 16 18 20
t

0.66

0.68

0.7

0.72

0.74

0.76

0.78

0.8

0.82

0.84

0.86

R
(t)

Proposed Method

=1.0
=0.95
=0.90
=0.85

(a)

0 2 4 6 8 10 12 14 16 18 20
t

0.66

0.68

0.7

0.72

0.74

0.76

0.78

0.8

0.82

0.84

0.86

R
(t)

Proposed Method

=1.0
=0.95
=0.90
=0.85

(b)
Figure 5.   Simulation of R(t). (a) p = 0.001 , (b) p = 0.0004 under the Caputo model.
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Figure 6.   Simulation of chaotic behavior of compartments. (a) Behavior of S(t) and E(t). (b) Behavior of S(t) 
and Ir(t) . (c) Behavior of S(t) and Is(t) . (d) Behavior of S(t) and R(t). (e) Behavior of Ir(t) and Is(t) . (f) Behavior 
of Ir(t) and R(t).
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