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Prediction of non emergent 
acute care utilization and cost 
among patients receiving Medicaid
Sadiq Y. Patel 1,2*, Aaron Baum 1,3 & Sanjay Basu 1,4,5

Patients receiving Medicaid often experience social risk factors for poor health and limited access 
to primary care, leading to high utilization of emergency departments and hospitals (acute care) for 
non-emergent conditions. As programs proactively outreach Medicaid patients to offer primary care, 
they rely on risk models historically limited by poor-quality data. Following initiatives to improve data 
quality and collect data on social risk, we tested alternative widely-debated strategies to improve 
Medicaid risk models. Among a sample of 10 million patients receiving Medicaid from 26 states and 
Washington DC, the best-performing model tripled the probability of prospectively identifying at-risk 
patients versus a standard model (sensitivity 11.3% [95% CI 10.5, 12.1%] vs 3.4% [95% CI 3.0, 4.0%]), 
without increasing “false positives” that reduce efficiency of outreach (specificity 99.8% [95% CI 99.6, 
99.9%] vs 99.5% [95% CI 99.4, 99.7%]), and with a ~ tenfold improved coefficient of determination 
when predicting costs  (R2: 0.195–0.412 among population subgroups vs 0.022–0.050). Our best-
performing model also reversed the lower sensitivity of risk prediction for Black versus White patients, 
a bias present in the standard cost-based model. Our results demonstrate a modeling approach to 
substantially improve risk prediction performance and equity for patients receiving Medicaid.

Patients receiving Medicaid disproportionately experience social risk factors for poor health and limited access to 
primary  care1,2, perpetuating health disparities between them and other populations, and resulting in high utiliza-
tion of emergency departments and hospitals (‘acute care’) for non-emergent  conditions3–7. Proactive Medicaid 
programs attempt to contact at-risk patients–typically based on risk models trained to predict high healthcare 
 costs8—and offer patients additional support to access primary  care9. Those programs able to contact patients 
deemed ‘at risk’ before they experience disease complications have successfully improved health outcomes and 
health equity across race/ethnic and income  groups10–13.

Risk modeling for Medicaid has suffered from incomplete and poor quality data, lack of unification of data 
across states, and poor availability of metrics of social determinants of health (SDOH; such as poverty or air 
pollution)14,15. Three major questions have emerged recently from a National Academy of Medicine report 
related to using machine learning to improve community-based outreach to marginalized populations such 
as patients receiving  Medicaid16. First, following recent multi-state efforts to improve the comprehensiveness 
and uniformity of data across over two dozen states, does re-training models across the newly-available unified 
datasets improve risk model performance? The newer data have the critical feature of linking healthcare claims 
(utilization and cost data) across the same individual over time with greater reliability, enabling modeling of 
individual healthcare trajectories, not just brief episodes of  care17. Second, do metrics of SDOH allow us to 
capture complex interactions between social risk factors and healthcare utilization?18,19 Air pollution metrics 
may improve prediction of acute care for chronic lung  diseases20, while metrics of healthy food availability may 
improve the prediction of acute care for  diabetes21. While traditional logistic regression models have been used 
to model risk in Medicaid, newer machine learning models may better capture nonlinear and complex interac-
tions between social determinants of health and healthcare  utilization22. Third, can we reduce race/ethnic bias 
observed in models that are focused on predicting costs?23 Because Black patients in particular have lower access 
to high-cost healthcare centers such as tertiary care specialty centers, they tend to have lower costs than White 
patients with the same severity of  disease24. It has been proposed that alternative modeling methods focusing 
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on combinations of social risks and utilization rather than cost prediction alone may reduce underestimation of 
risk among Black patients, but the hypothesis remains  untested23.

Here, we address these three interrelated questions for risk modeling in Medicaid. Using data from 10 mil-
lion patients from states with recently-improved Medicaid data quality and comprehensiveness, we compared 
different modeling approaches to predict the risk of all-cause and non-emergent acute care utilization and cost.

Methods
Study design and conceptual model
We followed the TRIPOD guidelines for risk prediction models (Supplement Table 1). We compared: (i) con-
ventional Medicaid risk models, which typically include patient demographic data (age, sex, and race/ethnicity), 
healthcare diagnostic and procedural codes, and medications as predictors (ii) models incorporating cumulative 
risk and risk trajectories to capture the progressive nature of chronic conditions that contribute to acute care 
utilization (e.g., progression of uncontrolled hypertension to heart failure); and (iii) models incorporating SDOH 
metrics not conventionally included in risk modeling (e.g., air pollution). Additionally, we evaluated the extent 
to which predictions using such metrics may be improved by newer machine learning methods that incorporate 
non-linearities and interaction terms, particularly as SDOH factors may interact with specific diseases to increase 
the risk of acute care utilization.

Data source
We used the Transformed Medicaid Statistical Information System Analytic Files (TAF) from 2017 to 19 (the 
most recent available years not affected by COVID-19), which included demographic and eligibility data, indi-
vidual-level SDOH metrics, geographic information (county and zip code), and claims for outpatient, inpatient, 
long-term support, medication/pharmacy, and other healthcare services, including both fee-for-service and 
managed care.

To ensure we captured recent improvements in data comprehensiveness and quality, we included data from 
states meeting minimum quality standards defined by Medicaid.gov’s Data Quality  Atlas25, which included 
assessment of each state’s enrollment benchmarks, claim volume, and data completeness (Supplement Section B).

Study population, enrollment and follow-up timelines
We included individuals whose first month of enrollment in Medicaid occurred in 2017–18, to analyze their 
subsequent twelve months of utilization and cost, a period chosen to be directly comparable to prior Medicaid 
risk modeling  studies26–29. Predictors were measured in the six month period after a patient’s first month of enroll-
ment. Outcomes were measured in the six-month period following the predictor measurement period. Also to be 
comparable to previous Medicaid risk modeling  studies26–29, we excluded individuals who were dually-enrolled 
in both Medicare and Medicaid; Medicare covers the majority of medical services for those dually-enrolled, and 
dually-enrolled persons typically have separate proactive care management programs under their Medicare plans 
(whereas our purpose was to assist Medicaid-focused proactive outreach efforts that focus on primary care access 
and social services rather than elder care management; see Supplement Section C).

Outcomes
We developed models to predict each of four outcomes: disenrollment from Medicaid (see ‘Model Comparisons’ 
section below), having at least one all-cause ED visit or hospitalization, having at least one non-emergent ED 
visit or hospitalization, and total cost of care (2019 USD per person per month, including both medical and 
pharmaceutical spend).

We defined ED visits based on Current Procedural Terminology codes, revenue codes, and place-of-service 
codes. To count “episodes” of care, we linked ED and inpatient claim records for the same patient if dates of 
service were congruent or  contiguous30. We defined non-emergent ED visits as those meeting the New York 
University ED Patch Algorithm definition (detailed extensively in Supplement Section E)31. We defined non-
emergent inpatient admissions as those meeting the Agency for Healthcare Research and Quality definition of 
a Prevention Quality Indicator (also detailed in Supplement Section E)32.

Predictors
Demographics. We included the demographic variables available in TAF: age (in years), sex (male, female), 
and race/ethnicity (White, Black, Hispanic, Asian, Native American, Hawaiian, multiracial). We included race/
ethnicity as a predictor because we wanted to capture the impact of systematic racism on acute care utiliza-
tion; however we conducted a sensitivity analysis without race/ethnicity as a predictor to examine the impact 
of this choice on prediction bias between race/ethnic groups, as detailed  below33,34. We included fixed effects 
for a patient’s state of residence and the year and month of their enrollment to adjust for unmeasured location, 
secular or seasonal factors.

Clinical history. From each medical or pharmaceutical claim line, we included clinical condition (principal 
diagnosis code), type of care (inpatient, outpatient, lab testing), clinician specialty, and medication type. Clini-
cal conditions were defined through the Clinical Classification Software Refined  categories35. Type of care was 
defined through Restructured Berenson-Eggers Type of Service System  codes36. Clinician specialty was defined 
using the Centers for Medicare and Medicaid Services clinician specialty  classification37. Medication type was 
defined by the CMS Prescription Drug Data Collection  codes38.

Cumulative risk and risk trajectories. To capture metrics of cumulative risk and risk  trajectories39, we included 
the number of: episodes for long-term non-acute care, hospitalization days, acute care visits, medication fills, 
and unique medications (defined as unique National Drug Codes); the percentage of acute care visits for 
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non-emergent conditions and medication fills for generic drugs and a medication adherence measure (differ-
ence between the first and last prescription fill for a unique medication divided by total days supply). To measure 
risk trajectories, we included the slope for the number of all cause acute care visits, non-emergent acute care 
visits, and prescription fills.

Area-level SDOH. Using data from the 2019 AHRQ SDOH  Database40, we included a series of area-level 
SDOH measures based on standard conceptual models of how SDOH factors relate to healthcare  utilization41. 
We included measures of social conditions, health care resources, environmental factors, and per capita rates of 
death (list in Supplement Section G). TAF provided both zip and county codes, but we conducted analyses at the 
county level due to extensive literature showing limited added explanatory power of zip code SDOH measures 
for predicting health outcomes for patients on Medicaid, and because Medicaid outreach programs are often 
organized at the county government  level42,43.

Individual-level SDOH. We included the individual-level SDOH variables available in TAF: house size (single, 
2–5, 6 or more), income level (0–100% federal poverty level, 100–200%, and 200% or more), and binary indica-
tors (yes/no) for English speaking, married, US citizen, recipient of supplemental security income, recipient of 
social security disability insurance, recipient of Temporary Assistance for Needy Families, and whether the person 
gained Medicaid eligibility due to disability. Due to variation in missing data for patient characteristics (detailed 
in the Supplement Section H), we included a missing category for each characteristic instead of imputing missing 
data, per recent guidelines concerning informative missingness. In particular, this approach acknowledges that 
the presence of missingness itself may provide valuable information for predicting acute care utilization (e.g., 
persons refusing to answer a US Citizen question may be disproportionately unwilling to register in government-
sponsored community health centers, affecting primary care utilization)44.

We transformed all continuous variables in our model with a standard scaler and all categorical variables 
with one-hot  encoding45.

Model comparisons
Because of high disenrollment rates in  Medicaid46, we conducted a two-stage model (see Supplement Section K 
for details). We randomly split our sample into two parts. In the first stage, using the first part of our sample, we 
modeled each patient’s probability of disenrollment (see Supplement Section L for model specification)47. In the 
second stage, using the second part of our sample, for each member, we first predicted the probability of their 
disenrollment using the model weights of the top-performing model in the first stage. Second, we modeled the 
non-emergent acute care utilization probability, conditional on their predicted disenrollment and other covariates 
(see Supplement Section L for model specification). Rather than narrowly restricting analysis only to people with 
long term continuous coverage, this two-stage procedure permits greater generalizability by explicitly modeling 
the risk of coverage loss and capturing interactions between other covariates and which patients come in and out 
of coverage (n.b., 25% of study participants lost coverage within 12 months, with wide variation across states; 
Supplement Tables 2 and 3).

For the second stage, we compared multiple predictor variable combinations to assess the value of collecting 
and integrating different types of predictors into Medicaid risk models. First, we developed a baseline model 
with demographics and clinical history (referred to as the ‘Baseline comparison model’). Second, we created a 
model incorporating cumulative risk and risk trajectories (the ‘Cumulative risk and trajectories’ model). Third, 
we built two additional models, one including area-level SDOH predictors (‘Area SDOH’) and another incor-
porating both area- and individual-level SDOH predictors (‘Area and individual SDOH’) to evaluate the added 
value of collecting individual-level SDOH measures. Each stage 2 model (i.e., ‘Baseline comparison’ to ‘Area and 
individual SDOH’) included the patient’s probability of disenrollment.

Model fitting algorithms
We applied four model fitting algorithms to both the first and second stage of analysis, based on our conceptual 
model and key debates in the Medicaid research landscape concerning risk modeling: standard regressions, regu-
larized regressions with elastic net regularization, random forest (RF), and extreme gradient boosting (XGBoost). 
We selected standard regressions–logistic regression for the binary acute care utilization outcome measure 
and linear regression for the transformed cost outcome measure–as both are the modeling approaches used by 
common Medicaid risk  models8. Given the large number of predictors in our risk model compared to conven-
tional risk models, we used a regularized regression model, using elastic-net regularization (which combines 
the benefits of ridge and LASSO regression) for feature selection and to minimize the effect of outliers among 
collinear  variables48. Next, we selected RF, a large-scale averaging or ‘bagging’ learning algorithm. Finally, we 
selected extreme gradient boosting, or XGBoost, as a machine learning algorithm to compare to standard and 
regularized logistic regression as well as  RF49–52. We implemented the targeted hyperparameter tuning method 
proposed by Van Rijn and Hutter for feature selection in XGBoost and RF to improve performance in tuning 
(Supplement Section M)53.

We implemented the following strategies to accommodate CMS computing and runtime rules. First, we used 
PySpark, as it processes big data in less time compared to Python. Second, the specific PySpark module available 
in the CMS data center inefficiently executed k-fold validation; thus, we used a simple hold-out validation. Finally, 
we took a random sample of 10 million of the 30.6 million patients. Because we had a population sample for each 
state to help capture state variations known to be important in Medicaid, we believed bias would be minimized. 
The distribution of predictors and outcomes for both samples was identical, as measured by their standardized 
mean differences of < 0.01 (Supplement Section N).
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Comparison to cost-based risk model
To predict cost among patients in the six states that provided cost data, we compared our model’s performance 
to the widely used Chronic Illness and Disability Payment System (CDPS, version 7.0)54,55. We used the same 
modeling approach for predicting cost as described above for predicting acute care utilization. CPDS predicted 
cost using a linear regression model with predictors of patient demographics (age, sex, race/ethnicity), diagnostic 
codes, and  medications54.

Performance measures
We calculated the Matthews Correlation Coefficient (MCC, a metric combining the sensitivity [true positive 
proportion] and specificity [true negative proportion]) as the overall measure for model performance, as it is 
less sensitive than C-statistic to minor model  improvements56. We additionally reported the F1 score, a com-
posite of a model’s precision and recall scores, and C-statistic (or area under the curve, AUC), a ‘discrimination’ 
metric indicating how well the models predicted higher-risk patients, and model accuracy, or the proportion 
of all predictions that were correct. For completeness, we included two additional metrics commonly used by 
clinical epidemiologists: the positive predictive value (PPV), or proportion of those flagged ‘at risk’ who truly 
subsequently experienced the outcome in the follow-up period, and negative predictive value (NPV), or propor-
tion flagged ‘not at risk’ who truly did not subsequently experience the outcome. 95% confidence intervals were 
estimated around each metric via bootstrap (Supplement Section M)57.

Bias and sensitivity
We assessed ethnic/racial bias using the equalized odds method, which quantifies inequalities in sensitivity and 
specificity across groups for prediction of all-cause and non-emergent acute care  visits58. We also compared 
predicted and observed costs per member per month by race/ethnicity to evaluate bias in cost prediction.

We repeated our analysis after removing race/ethnicity from our predictor variables to test the hypothesis that 
underestimation of risk for minorities may increase after race/ethnicity is eliminated from the model, because 
other variables can underpredict risk for minorities due to inadequate capture of the effect of systemic racism 
on healthcare utilization  patterns23. Further, because 40 percent of our sample consisted of White patients, we 
also separately evaluated the impact of downsampling White patients (effectively upsampling minority patients 
relative to White patients) to reduce race/ethnic prediction bias (Supplement).

Given the large volume of children in our sample, we also repeated our analysis with adults only, as we 
recognize that most of the non-emergent ED visits and hospitalizations in our study would be among adults 
(Supplement Section O).

Because class imbalanced data hinders classification performance of  RF49, for the best performing RF model, 
we performed a downsampling procedure, specifically training on a disproportionately lower subset of patients 
with no acute care events (Supplement).

This study was approved by the Western Institutional Review Board. All methods were performed in accord-
ance with the relevant guidelines and regulations. Informed consent for this study was waived by the Western 
Institutional Review Board. The datasets utilized in this study are not publicly accessible. However, they can be 
obtained from the Centers for Medicare and Medicaid Services. Accessing this data entails a comprehensive 
procedure, involving completion of an Institutional Review Board (IRB) process and the procurement of a seat 
on their data portal. Researchers who possess a seat on the data portal can obtain the code necessary to replicate 
our study findings from the Github repository listed at the end of this manuscript. Model construction and 
comparison were performed in PySpark (version 3.2.1).

Results
Data from 26 states and Washington DC, with a total of 30,619,475 unique patients, met comprehensiveness and 
quality metrics for inclusion in the study (Table 1). The majority of patients identified as female (53.3%), were 
under 18 years of age (64.7%), US citizens (83.0%), not married (55.4%), and did not indicate having a disability 
(96.6%). Under half were White (42.3%), and under half were living below the federal poverty line (42.1%). In 
the 12-month period following enrollment, 24.6% of patients lost Medicaid coverage; 21.0% of patients had at 
least one all-cause acute care visit, and 10.6% of all patients (50.5% of those patients with at least one all-cause 
acute care visit) had at least one non-emergent acute care visit (Supplement Tables 2 and 3). Key covariate dis-
tributions did not differ between the full sample and the 10 million person random subsample that we used for 
modeling (Supplement Section N).

In our first stage analysis, XGBoost was the best performing model for predicting loss of Medicaid coverage 
(see Supplement Tables 4 and 5 for comprehensive metrics across all stage-one models). The standard comparison 
model (logistic regression) had an AUC/C-statistic of 69.4% (95% CI 69.0, 70.1%) versus regularized regression 
of 69.5% (95% CI 69.0, 70.1%), RF of 73.9% (95% CI 73.8, 74.3%), and XGBoost of 74.9% (95% CI 74.4, 75.3%); 
the baseline model had a sensitivity of 11.4% (95% CI 11.0, 12.1%) versus regularized regression of 11.5% (95% 
CI 10.8, 12.0%), RF of 17.0% (95% CI 16.9, 17.5%), and XGBoost of 20.9% (95% CI 20.3, 21.7%); the baseline 
model had a specificity of 98.3% (95% CI 98.2, 98.4%) versus regularized regression of 98.3% (95% CI 98.2, 
98.4%), RF of 98.3% (95% CI 98.2, 98.4%), and XGBoost of 97.5% (95% CI 97.3, 97.6%); and the baseline model 
had a MCC of 21.1% (95% CI 20.3, 22.4%) versus regularized regression of 21.2% (95% CI 20.0, 22.1%), RF of 
29.3% (95% CI 28.9, 29.7%), and XGBoost of 30.9% (95% CI 30.0, 31.9%).

Baseline comparison model for predicting acute care utilization
In our second stage analysis, for predicting non-emergent acute care visits, our baseline comparison model 
included demographics and clinical history. For predicting non-emergent acute care visits, standard logistic 
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Table 1.  Characteristics of patients receiving Medicaid in the study data, 2017–2019 (n = 30,619,475)*^ SSI 
social security income, SSDI social security disability income, TANF temporary assistance for needy families. 
*Data comes from Chronic Conditions Warehouse (CCW) Virtual Research Data Center (VRDC). ^We reported 
column percentages for all patient characteristics. All patient characteristics were provided in the TAF data. States 
were crosswalked to their appropriate Census Region (Supplement for distribution of patient volume by state).

Characteristic group Characteristic N (col %)

Age category

Under 10 8,802,957 (28.7)

10–17 4,468,984 (14.6)

18–29 6,559,486 (21.4)

30–39 4,237,836 (13.8)

40–49 2,803,708 (9.2)

50–64 3,496,766 (11.4)

Missing 249,738 (0.8)

Sex

Female 16,306,566 (53.3)

Male 13,917,712 (45.5)

Missing 395,197 (1.3)

Race/ethnicity

Asian 642,057 (2.1)

Black 5,317,920 (17.4)

Hawaiian 236,092 (0.8)

Hispanic 3,354,321 (11.0)

Multiracial 55,773 (0.2)

Native American 599,455 (2.0)

White 12,963,558 (42.3)

Missing 7,450,299 (24.3)

Census region^

Midwest 8,552,101 (27.9)

Northeast 3,956,579 (12.9)

South 10,394,744 (33.9)

West 7,716,051 (25.2)

Missing 0 (0.0)

Household size

Single 6,599,314 (21.6)

2–5 8,668,539 (28.3)

6 or more 1,148,808 (3.8)

Missing 14,202,814 (46.4)

Federal poverty line

Under 100% 12,891,945 (42.1)

100–200% 3,091,684 (10.1)

200% or more 450,755 (1.5)

Missing 14,185,091 (46.3)

English speaking

Yes 4,300,289 (14)

No 206,961 (0.7)

Missing 26,112,225 (85.3)

Married

Yes 1,673,105 (5.5)

No 16,952,648 (55.4)

Missing 11,993,722 (39.2)

US citizen

Yes 25,427,668 (83.0)

No 1,206,701 (3.9)

Missing 3,985,106 (13.0)

Receipt of SSI

Yes 1,801,836 (5.9)

No 26,539,129 (86.7)

Missing 2,278,510 (7.4)

Receipt of SSDI

Yes 705,383 (2.3)

No 16,719,361 (54.6)

Missing 13,194,731 (43.1)

Receipt of TANF

Yes 3,688,327 (12.0)

No 19,579,550 (63.9)

Missing 7,351,598 (24.0)

Disabled

Yes 1,045,831 (3.4)

No 29,673,644 (96.6)

Missing 0 (0.0)
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regression had similar results to regularized logistic regression, while RF had lower sensitivity and MCC (per-
forming worst among the models). XGBoost had a higher performance than standard logistic regression for 
discrimination (C-statistic, 71.7; 95% CI 71.1–72.7; 1.8 percentage point increase from using XGBoost versus 
standard logistic regression; 95% CI 1.8–2.1); sensitivity (3.6%, 95% CI 3.2–3.4%; 0.2 percentage point increase; 
95% CI 0.2–0.2); specificity (99.9; 95% CI 99.8–100.0; 0.4 percentage point increase; 95% CI 0.3–0.4); and MCC 
(17.1; 95% CI 15.6–18.4; 6.6 percentage point increase; 95% CI 6.1–6.6; Table 2 and Supplement Fig. 1). Parallel 
results were observed when predicting all-cause acute care visits (Table 3 and Supplement Fig. 2).

Table 2.  Comparative effectiveness of models predicting utilization of non-emergent acute care visits*^ 
AUC  area under the ROC curve, MCC Matthews correlation coefficient, NPV negative predictive value, PPV 
positive predictive value, XGBoost extreme gradient boosting. *We sequentially compared multiple alternative 
models to compare the benefits of including different predictor variables and the impact of alternative model 
fitting algorithms. First, we devised a model with demographics and clinical history to mimic standard risk 
models (named ‘baseline comparison model’). Second, we developed a model with cumulative risk and risk 
trajectories variables (named the ‘cumulative risk and trajectories’ model). Finally, we created two additional 
models (including all measures in the ‘cumulative risk and trajectories’ model), one with area-level SDOH 
predictors (named, ‘area SDOH’) and another with both area- and individual-level SDOH predictors (named 
‘area and individual SDOH’). See Supplement Section L for model specification. ^ Predictors were measured in 
the six-month period after a patient’s first month of enrollment in Medicaid from 2017 to 18. The outcome was 
a binary (yes/no) indicator of whether a patient had at least 1 non-emergent acute care visit in the 6-month 
period immediately following the 6-month predictor measurement period. See Supplement Section M for 
machine learning modeling.

Model and outcome AUC (95% CI)
Accuracy (95% 
CI) MCC (95% CI)

F1 Score (95% 
CI)

Sensitivity (95% 
CI)

Specificity (95% 
CI) NPV (95% CI) PPV (95% CI)

Logistic regression

      Baseline com-
parison model

0.699 (0.690, 
0.709)

0.893 (0.891, 
0.896)

0.105 (0.090, 
0.123)

0.065 (0.056, 
0.074)

0.034 (0.030, 
0.040)

0.995 (0.994, 
0.997)

0.896 (0.895, 
0.900)

0.476 (0.432, 
0.532)

      Cumulative 
risk and trajecto-
ries measures

0.754 (0.748, 
0.761)

0.896 (0.893, 
0.898)

0.171 (0.156, 
0.187)

0.122 (0.110, 
0.133)

0.067 (0.061, 
0.074)

0.994 (0.993, 
0.995)

0.900 (0.897, 
0.901)

0.575 (0.535, 
0.615)

      Area SDOH 0.755 (0.748, 
0.762)

0.895 (0.893, 
0.895)

0.172 (0.156, 
0.186)

0.122 (0.110, 
0.134)

0.068 (0.061, 
0.077)

0.994 (0.993, 
0.995)

0.899 (0.897, 
0.900)

0.575 (0.533, 
0.611)

      Area and indi-
vidual SDOH

0.757 (0.750, 
0.762)

0.895 (0.892, 
0.898)

0.169 (0.154, 
0.184)

0.120 (0.108, 
0.131)

0.067 (0.064, 
0.070)

0.994 (0.993, 
0.995)

0.899 (0.897, 
0.902)

0.568 (0.532, 
0.608)

Regularized logistic regression

      Baseline com-
parison model

0.698 (0.691, 
0.706)

0.894 (0.892, 
0.896)

0.105 (0.089, 
0.118)

0.063 (0.054, 
0.071)

0.034 (0.029, 
0.038)

0.996 (0.995, 
0.997)

0.897 (0.894, 
0.899)

0.477 (0.423, 
0.521)

      Cumulative 
risk and trajecto-
ries measures

0.754 (0.747, 
0.761)

0.896 (0.893, 
0.898)

0.172 (0.158, 
0.188)

0.122 (0.111, 
0.134)

0.068 (0.062, 
0.076)

0.994 (0.993, 
0.995)

0.900 (0.897, 
0.902)

0.576 (0.540, 
0.618)

      Area SDOH 0.754 (0.748, 
0.761)

0.896 (0.893, 
0.897)

0.169 (0.154, 
0.186)

0.122 (0.111, 
0.133)

0.067 (0.062, 
0.074)

0.994 (0.993, 
0.995)

0.900 (0.897, 
0.902)

0.569 (0.533, 
0.610)

      Area and indi-
vidual SDOH

0.755 (0.749, 
0.762)

0.896 (0.893, 
0.899)

0.173 (0.157, 
0.188)

0.122 (0.111, 
0.132)

0.069 (0.062, 
0.075)

0.994 (0.993, 
0.995)

0.900 (0.897, 
0.903)

0.576 (0.538, 
0.613)

Random forests

      Baseline com-
parison model

0.710 (0.703, 
0.718)

0.895 (0.892, 
0.897)

0.101 (0.085, 
0.112)

0.024 (0.018, 
0.029)

0.012 (0.009, 
0.015)

0.999 (0.998, 
1.000)

0.894 (0.892, 
0.897)

0.945 (0.871, 
0.986)

      Cumulative 
risk and trajecto-
ries measures

0.750 (0.740, 
0.754)

0.897 (0.894, 
0.899)

0.169 (0.140, 
0.170)

0.061 (0.058, 
0.076)

0.035 (0.027, 
0.037)

0.999 (0.998, 
1.000)

0.897 (0.894, 
0.900)

0.920 (0.830, 
0.924)

      Area SDOH 0.754 (0.747, 
0.762)

0.897 (0.894, 
0.900)

0.166 (0.150, 
0.177)

0.067 (0.058, 
0.076)

0.036 (0.030, 
0.040)

0.999 (0.998, 
1.000)

0.897 (0.894, 
0.900)

0.881 (0.851, 
0.937)

      Area and indi-
vidual SDOH

0.759 (0.752, 
0.767)

0.898 (0.895, 
0.900)

0.175 (0.159, 
0.186)

0.071 (0.061, 
0.081)

0.038 (0.032, 
0.042)

0.999 (0.998, 
1.000)

0.897 (0.895, 
0.900)

0.924 (0.880, 
0.953)

XGBoost

      Baseline com-
parison model

0.717 (0.711, 
0.727)

0.897 (0.895, 
0.900)

0.171 (0.156, 
0.184)

0.070 (0.061, 
0.079)

0.036 (0.032, 
0.042)

0.999 (0.998, 
1.000)

0.897 (0.895, 
0.900)

0.911 (0.872, 
0.947)

      Cumulative 
risk and trajecto-
ries measures

0.783 (0.777, 
0.788)

0.901 (0.898, 
0.903)

0.234 (0.220, 
0.254)

0.154 (0.142, 
0.167)

0.083 (0.080, 
0.089)

0.997 (0.996, 
0.998)

0.902 (0.899, 
0.904)

0.779 (0.748, 
0.813)

      Area SDOH 0.793 (0.790, 
0.795)

0.903 (0.899, 
0.904)

0.287 (0.273, 
0.300)

0.155 (0.143, 
0.168)

0.107 (0.103, 
0.116)

0.998 (0.997, 
0.999)

0.903 (0.900, 
0.905)

0.810 (0.780, 
0.841)

      Area and indi-
vidual SDOH

0.795 (0.781, 
0.795)

0.904 (0.902, 
0.907)

0.293 (0.279, 
0.306)

0.164 (0.152, 
0.178)

0.113 (0.105, 
0.121)

0.998 (0.996, 
0.999)

0.905 (0.902, 
0.908)

0.811 (0.775, 
0.836)
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Table 3.  Comparative effectiveness of models predicting utilization of all-cause acute care visits. AUC  area 
under the ROC curve, MCC Matthews correlation coefficient, NPV negative predictive value, PPV positive 
predictive value, XGBoost extreme gradient boosting. *We sequentially compared multiple alternative models 
to compare the benefits of including different predictor variables and the impact of alternative model fitting 
algorithms. First, we devised a model with demographics and clinical history to mimic standard risk models 
(named ‘baseline comparison model’). Second, we developed a model with cumulative risk and risk trajectories 
variables (named the ‘cumulative risk and trajectories’ model). Finally, we created two additional models 
(including all measures in the ‘cumulative risk and trajectories’ model), one with area-level SDOH predictors 
(named, ‘area SDOH’) and another with both area- and individual-level SDOH predictors (named ‘area and 
individual SDOH’). See Supplement Section L for model specification. ^ Predictors were measured in the 
six-month period after a patient’s first month of enrollment in Medicaid from 2017 to 18. The outcome was a 
binary (yes/no) indicator of whether a patient had at least 1 all-cause acute care visit in the 6-month period 
immediately following the 6-month predictor measurement period. See Supplement Section M for machine 
learning modeling.

Model and 
outcome AUC (95% CI)

Accuracy (95% 
CI) MCC (95% CI)

F1 Score (95% 
CI)

Sensitivity (95% 
CI)

Specificity (95% 
CI) NPV (95% CI) PPV (95% CI)

Logistic regression

      Baseline 
comparison 
model

0.700 (0.693, 
0.706)

0.800 (0.797, 
0.804)

0.211 (0.202, 
0.224)

0.212 (0.202, 
0.221)

0.127 (0.121, 
0.134)

0.979 (0.978, 
0.980)

0.808 (0.805, 
0.812)

0.612 (0.597, 
0.637)

      Cumula-
tive risk and 
trajectories 
measures

0.755 (0.749, 
0.760)

0.811 (0.808, 
0.814)

0.294 (0.283, 
0.305)

0.315 (0.304, 
0.325)

0.206 (0.198, 
0.214)

0.972 (0.971, 
0.974)

0.821 (0.818, 
0.825)

0.663 (0.646, 
0.678)

      Area SDOH 0.756 (0.751, 
0.761)

0.812 (0.808, 
0.814)

0.295 (0.283, 
0.304)

0.315 (0.305, 
0.236)

0.207 (0.199, 
0.215)

0.972 (0.971, 
0.973)

0.822 (0.818, 
0.825)

0.662 (0.645, 
0.677)

      Area and 
individual 
SDOH

0.757 (0.752, 
0.762)

0.812 (0.809, 
0.815)

0.295 (0.284, 
0.306)

0.317 (0.307, 
0.327)

0.209 (0.201, 
0.217)

0.971 (0.970, 
0.973)

0.822 (0.820, 
0.826)

0.660 (0.644, 
0.676)

Regularized logistic regression

      Baseline 
comparison 
model

0.700 (0.695, 
0.707)

0.800 (0.797, 
0.803)

0.213 (0.202, 
0.224)

0.212 (0.203, 
0.221)

0.128 
(0.122,0.135)

0.979 (0.977, 
0.980)

0.808 (0.805, 
0.812)

0.616 (0.595, 
0.634)

      Cumula-
tive risk and 
trajectories 
measures

0.756 (0.750, 
0.761)

0.811 (0.808 
,0.815)

0.295 (0.283, 
0.305)

0.315 (0.304, 
0.324)

0.207 (0.199, 
0.214)

0.972 (0.970, 
0.974)

0.822 (0.819, 
0.825)

0.662 (0.646, 
0.679)

      Area SDOH 0.755 (0.751, 
0.761)

0.811 (0.807, 
0.814)

0.294 (0.284, 
0.304)

0.315 (0.305, 
0.325)

0.207 (0.200, 
0.215)

0.972 (0.970, 
0.973)

0.821 (0.818, 
0.824)

0.663 (0.645, 
0.677)

      Area and 
individual 
SDOH

0.756 (0.751, 
0.762)

0.811 (0.808, 
0.814)

0.293 (0.283, 
0.305)

0.316 (0.306, 
0.325)

0.207 (0.200, 
0.216)

0.971 (0.970, 
0.973)

0.822 (0.818, 
0.825)

0.659 (0.644, 
0.676)

Random forests

      Baseline 
comparison 
model

0.711 (0.706, 
0.717)

0.803 (0.800, 
0.807)

0.223 (0.216, 
0.236)

0.141 (0.134, 
0.152)

0.077 (0.073, 
0.083)

0.997 (0.996, 
0.998)

0.802 (0.798, 
0.806)

0.874 (0.861, 
0.903)

      Cumula-
tive risk and 
trajectories 
measures

0.746 (0.745, 
0.758)

0.817 (0.815, 
0.822)

0.313 (0.312, 
0.333)

0.273 (0.269, 
0.289)

0.164 (0.160, 
0.174)

0.990 (0.989, 
0.993)

0.817 (0.814, 
0.820)

0.820 (0.819, 
0.858)

      Area SDOH 0.757 (0.750, 
0.761)

0.820 (0.816, 
0.822)

0.331 (0.317, 
0.337)

0.286 (0.274, 
0.295)

0.172 (0.165, 
0.179)

0.992 (0.990, 
0.993)

0.819 (0.815, 
0.821)

0.853 (0.824, 
0.854)

      Area and 
individual 
SDOH

0.756 (0.753, 
0.760)

0.814 (0.813, 
0.821)

0.331 (0.326, 
0.335)

0.275 (0.272, 
0.295)

0.166 (0.164, 
0.177)

0.986 (0.984, 
0.993)

0.817 (0.816, 
0.819)

0.852 (0.846, 
0.858)

XGBoost

      Baseline 
comparison 
model

0.717 (0.711, 
0.723)

0.821 (0.817, 
0.824)

0.338 (0.328, 
0.348)

0.295 (0.286, 
0.306)

0.179 (0.172, 
0.187)

0.992 (0.991, 
0.993)

0.819 (0.816, 
0.823)

0.849 (0.835, 
0.863)

      Cumula-
tive risk and 
trajectories 
measures

0.776 (0.770, 
0.781)

0.822 (0.818, 
0.824)

0.349 (0.339, 
0.359)

0.368 (0.358, 
0.378)

0.247 (0.239, 
0.255)

0.974 (0.973, 
0.975)

0.830 (0.826, 
0.833)

0.720 (0.706, 
0.734)

      Area SDOH 0.807 (0.800, 
0.809)

0.838 (0.835, 
0.841)

0.419 (0.418, 
0.437)

0.432 (0.422, 
0.442)

0.287 (0.285, 
0.302)

0.982 (0.981, 
0.984)

0.841 (0.836, 
0.843)

0.810 (0.807, 
0.834)

      Area and 
individual 
SDOH

0.805 (0.798, 
0.806)

0.834 (0.831, 
0.837)

0.415 (0.411, 
0.429) 0.429 (0.419, .439) 0.288 (0.270, 

0.286)
0.981 (0.979, 
0.982)

0.837 (0.832, 
0.839)

0.807 (0.804, 
0.829)
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Improvement from including cumulative risk and trajectories predictors
Adding cumulative risk and risk trajectories to the models improved their discrimination, sensitivity and MCC 
without reducing specificity. For predicting non-emergent acute care, including cumulative risk and risk trajec-
tory predictors in the highest-performing model (XGBoost) resulted in a gain in discriminative ability (C-statis-
tic, 6.6 percentage point increase; 95% CI 6.1–6.6); sensitivity (4.7 percentage point increase; 95% CI 4.6–4.9); and 
MCC (6.7 percentage point increase; 95% CI 6.7–7.0; Table 2 and Supplement Fig. 1). There was a small decrease 
in specificity (0.2 percentage point decrease; 95% CI 0.2–0.2). Parallel results were observed when predicting 
all-cause acute care visits (Table 3 and Supplement Fig. 2).

Improvement from including area- and individual-level SDOH predictors
There was no net improvement after including area or individual SDOH predictors for both logistic, regular-
ized logistic regression or RF models, but there was a significant improvement for XGBoost models. XGBoost 
produced a net improvement after including area SDOH predictors for discriminative ability (C-statistic, 1.0 
percentage point increase; 95% CI 0.7–1.3); sensitivity (2.4 percentage point increase; 95% CI 2.3–2.7); and MCC 
(5.3 percentage point increase; 95% CI 4.6–5.3; Table 2 and Supplement Fig. 1). There was no significant change 
for specificity. Additionally, there was no further significant change after including individual SDOH predictors 
beyond including area-level SDOH predictors. Parallel results were observed when predicting all-cause acute 
care visits (Table 3 and Supplement Fig. 2).

Improvement from using XGBoost
Focusing on the best performing model by MCC overall–the model with all clinical predictors, cumulative risk 
and risk trajectories measures, and area-level SDOH indicators–we measured the net improvement from using 
XGBoost compared to logistic regression (standard or regularized), as logistic regression performed better 
than RF and is the current standard modeling approach. For predicting non-emergent acute care visits (Table 2 
and Supplement Fig. 1), XGBoost had a net improvement versus logistic regression for discriminative ability 
(C-statistic, 3.8 percentage point increase over standard; 95% CI 3.3–4.2; 3.9 percentage point over regularized; 
95% CI 3.4–4.2); sensitivity (3.9 percentage point increase over standard; 95% CI 3.9–4.2; 4.0 percentage point 
over regularized; 95% CI 4.0–4.1); specificity (0.4 percentage point increase over standard; 95% CI 0.4–0.4; 0.4 
percentage point over regularized; 95% CI 0.4–0.4); and MCC (11.5 percentage point increase over standard; 
95% CI 11.4–11.7; 11.8 percentage point over regularized; 95% CI 11.4–11.9). Parallel results were observed 
when predicting all-cause acute care visits (Table 3 and Supplement Fig. 2).

Performance of the best performing model
The best performing model by MCC overall was XGboost with cumulative risk and risk trajectory measures 
and area-level SDOH measures. The model had an overall performance for predicting non-emergent acute care 
visits (Supplemental Table 6) and tripled the probability of prospectively identifying at-risk patients versus the 
standard logistic regression without risk trajectory or SDOH measures (sensitivity 11.3% [95% CI 10.5, 12.1%] 
vs 3.4% [95% CI 3.0, 4.0%]), without increasing “false positives” (specificity 99.8% [95% CI 99.6, 99.9%] vs 99.5% 
[95% CI 99.4, 99.7%]).

Variable importance
Variables of highest importance for the best-performing model by MCC (XGBoost) were estimated by the Gini 
index, are shown in Supplement Fig. 3. Complex medical disorders (e.g., sequelae of cerebral infarction), having 
a higher probability of losing Medicaid, participating in behavioral health services, and several SDOH variables 
(e.g., poor air quality days) were key variables for predicting acute-care visits. Poor air quality and respiratory 
conditions commonly interacted, as did behavioral and specific somatic conditions such as cardiac and gastro-
intestinal conditions (Supplement Tables 8 and 9).

Comparison of cost-based models
The six states reporting cost data had a total sample size of 2,627,775 unique individuals. In this sample, the 
CDPS  R2 statistic varied from 0.022 to 0.050 across adults, children, and people with disabilities, while the best 
performing model (XGBoost with cumulative risk and risk trajectories and area-level SDOH metrics) outper-
formed CDPS in terms of the coefficient of determination by roughly tenfold  (R2 statistic ranged 0.265–0.412 
across the different population groups; Supplement Table 9).

CDPS underpredicted cost per member per month for Black patients and overestimated for White patients, 
with differences ranging from $11–$46 (p < 0.001), whereas the best performing XGBoost cost-predicting model 
narrowed these differences ($5–$25, p < 0.001; Supplement Table 10). Results for Hispanic and other minority 
groups were inconsistent, with a range of over- and under-prediction across subgroups for all models (Supple-
ment Table 10).

Bias and sensitivity
For the best performing model of non-emergent acute care utilization by MCC, there was higher sensitivity 
for Black patients than White patients, but lower sensitivity for Hispanic and other minority patients than 
White patients (White: 0.089; 95% CI 0.088–0.090; Black: 0.097; 95% CI 0.096–0.099; Hispanic: 0.065; 95% CI 
0.064–0.068; other: 0.063; 95% CI 0.059–0.066). There were minimal differences in specificity by race/ethnicity 
(Supplement Table 10).
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When removing race/ethnicity as a predictor variable, the model sensitivity reduced for Black patients, 
although there was still overall a higher sensitivity for Black patients compared to White patients when modeling 
utilization and incorporating our XGBoost modeling approach incorporating risk trajectories and SDOH vari-
ables (Supplement Table 11), with no effect on specificity. After downsampling White patients, similar patterns 
persisted although smaller in magnitude; however, the White-Hispanic and White-other minority group differ-
ence in sensitivity reduced (Supplement Table 12).

When removing children from the dataset to focus only on adults, we observed similar performance for 
predicting non-emergent acute care visits as when including both children and adults (Supplement Table 13).

After performing a downsampling procedure for best performing RF model, the model MCC, sensitivity, 
and F1-score increased, enabling RF to outperform logistic regression, but not XGBoost; however, there was 
decreased specificity of the RF model (Supplement Table 14).

Discussion
In applying a series of newer modeling techniques to a 10 million person sample of Medicaid patients across 
multiple states that have made substantial efforts to improve their data comprehensiveness and quality, we 
achieved the largest and most generalizable Medicaid risk model comparison to date (as the previously largest 
analysis was limited to N = 3.9 million people, with no accounting of race/ethnicity, across seven states, versus our 
analysis of 10 million people with 42% non-White across 26 states and Washington DC that is helpful given state-
specific variations in Medicaid administration)26,59, and achieved higher performance than any other Medicaid 
risk model in the field (with our best-performing model having an AUC/C-statistic of 79.5% for non-emergent 
acute care [95% CI 78.1, 79.5%], versus the 67.7% highest AUC/C-statistic reported in the literature [no 95% 
CI reported, and the other metrics we reported here were also not previously reported])60. For predicting non-
emergent acute visits, the best-performing model tripled the probability of prospectively identifying at-risk 
patients versus a standard model, without increasing “false positives” that could reduce the efficiency of Med-
icaid outreach programs limited by time, funding and personnel. When predicting costs, our best-performing 
model also outperformed the most common model used by Medicaid to date (CDPS) by ~ tenfold in terms of 
the coefficient of determination.

Incorporating cumulative risk and risk trajectories based on improvements to Medicaid data substantially 
improved model performance, as did the incorporation of SDOH metrics–although the latter only improved 
models that used a specific type of machine learning model to capture complex nonlinearities and interaction 
terms not included in standard logistic regressions currently used by Medicaid state agencies and health plans. 
Contrary to our expectations, inclusion of individual-level SDOH metrics did not further improve performance 
of our models beyond area-level SDOH metrics–potentially due to missingness in TAF datasets of key individual-
level SDOH metrics most associated with acute care utilization, such as food and housing  insecurity61. These 
findings can inform ongoing efforts to collect more relevant SDOH data. Importantly, our XGBoost machine 
learning model also captured complex interactions of behavioral health and somatic health conditions, which 
are known in the literature to increase non-emergent acute  care62, but are not currently included in common 
Medicaid risk prediction models.

We found that our modeling approach reversed the lower sensitivity of risk prediction for Black versus White 
patients, a bias present in the standard cost-based model, though it did not fully resolve other minority-White 
prediction biases. This finding persisted even after removing race/ethnicity as a predictor variable, suggesting 
that other predictors in the model (e.g., SDOH variables) and the modeling approach itself addressed bias in 
predicting risk for Black patients. One persistent challenge in developing risk models is that claims data typi-
cally reflect higher healthcare access among White  patients63. Our modeling approach is one strategy to mitigate 
this challenge, offering a possible approach to more equitable application of machine learning to Medicaid risk 
 modeling64.

Our analysis has several limitations. First, we excluded 23 states with insufficient data comprehensiveness 
or quality, though our study is more inclusive compared to previous  studies9. Second, we utilized claims-based 
algorithms to categorize acute care visits as non-emergent, which may overlook contextual factors that influence 
such  utilization65. Third, we used data from 2017 to 2019 instead of 2020 due to COVID-19. Recalibration to 
address utilization pattern variations due to COVID-19 may be useful whenever newer data are released. Fourth, 
our model excluded dually-eligible Medicare and Medicaid patients, as their claims are primarily in Medicare 
data and they typically have Medicare-oriented outreach programs without Medicaid-specific components (e.g., 
pediatrics, maternity).

In the future, as more researchers utilize the newly-available Medicaid data, a collaborative federated learn-
ing network may facilitate improved model sharing and comparisons for Medicaid. Future research may also 
focus on developing and validating cohort-specific (e.g., maternity, pediatric) models and state-specific models 
to compare group and geography-specific modeling performance.

Our current findings nevertheless demonstrate the opportunity to improve models to support proactive 
outreach programs for patients receiving Medicaid, for whom data and services have traditionally lagged behind 
Medicare and commercial insurance markets and whose differential access to quality care has perpetuated health 
disparities across race/ethnic and income groups across the United States.

Data availability
The datasets utilized in this study are not publicly accessible. However, they can be obtained from the United 
States federal agency, the Centers of Medicare and Medicaid. Accessing this data entails a comprehensive pro-
cedure, involving completion of an Institutional Review Board (IRB) process and the procurement of a seat on 
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their data portal. Researchers can find code necessary to replicate and extend our study findings on GitHub: 
https:// github. com/ sadiq ypate l/. Medic aid_ Risk_ Model.
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