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Reduced reverse degree‑based 
topological indices of graphyne 
and graphdiyne nanoribbons 
with applications in chemical 
analysis
Shahid Zaman 1*, K. H. Hakami 2, Sadaf Rasheed 1 & Fekadu Tesgera Agama 3*

Graphyne and Graphdiyne Nanoribbons reveal significant prospective with diverse applications. 
In electronics, they propose unique electronic properties for high‑performance nanoscale devices, 
while in catalysis, their excellent surface area and reactivity sort them valuable catalyst supports for 
numerous chemical reactions, contributing to progresses in sustainable energy and environmental 
remediation. The topological indices (TIs) are numerical invariants that provide important information 
about the molecular topology of a given molecular graph. These indices are essential in QSAR/QSPR 
analysis and play a significant role in predicting various physico‑chemical characteristics. In this 
article, we present a formula for computing reduced reverse (RR) degree‑based topological indices 
for graphyne and graphdiyne nanoribbons, including the RR Zagreb indices, RR hyper‑Zagreb indices, 
RR forgotten index, RR atom bond connectivity index, and RR Geometric‑arithmetic index. We also 
execute a graph‑theoretical analysis and comparison to demonstrate the critical significance and 
validate the acquired results. Our findings provide insights into the structural and chemical properties 
of these nanoribbons and contribute to the development of new materials for various applications.

Graphene derivatives such as graphyne and graphdiyne have attracted significant attention in various fields of 
mathematics and science due to their unique electronic, optical, and mechanical properties. Some of the math-
ematical applications of these materials are as follows:

In combinatorics, Graphyne and graphdiyne represented as molecular graphs, which have combinatorial 
properties that can be analyzed using graph theory. The study of these materials involves graph-theoretical con-
cepts such as graph isomorphism, graph coloring, and graph embedding. Since, the numerical invariants known 
as topological indices that provide information about the topology of a molecular graph in this way Graphyne 
and graphdiyne used to study the behavior of various topological indices, such as the Zagreb indices, forgotten 
index, atom bond connectivity index, and geometric-arithmetic index.

In quantum mechanics the graphene derivatives are useful to study the behavior of electrons in a two-dimen-
sional lattice structure. The electronic properties of these materials can be analyzed using quantum mechan-
ics, methods such as density functional theory (DFT) and the tight-binding approximation (TBA) have been 
employed to predict the electronic structure of these materials.

Overall, the mathematical applications of graphene derivatives such as graphyne and graphdiyne are diverse 
and span multiple fields, making these materials important for future research and development. The physical 
properties of both structures are given by the corresponding determined topological  indices1–5.

The compressive energy of metallic element has been discovered to be greatly enhanced and to outweigh 
the addition of metal elements and metallic binding to these carbonaceous materials. These materials have 
nearly uniform metallic atom charges that enable them to bind molecules with much lower sorption  energies6. 
The calculated maximum sorption enthalpy for near-room-temperature element storage (3.6 kcal/mol) closely 
matches the key computed enthalpies for element sorption (ranging from 3.5 to 2.8 kcal/mol). These planar 
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carbon allotropes have potential applications in microelectronics and tunable bandgaps achieved by adjusting 
the number of aliphatically linked bridging units.

Assuming G is a graph, the definitions and notations used, such as d(u) to denote the degree of vertex u, are 
derived from the referenced  book7. Graph invariants might be utilized to evaluate the graphical structures of 
chemical substances using topological indices (TIs). By converting a chemical graph to a numerical number, 
TIs are essentially represented. Wiener makes the suggestion to use Tis in 1947. Initially, he described this index 
( W ) on tress and discussed how it was used to relate the physical characteristics of alcohols, alkanes, and related 
 complexes8.

Cheminformatics is a developing discipline that assists (QSARs) and (QSPRs) are commonly used to predict 
the bioactivities and possessions of chemical  compounds9–11. The bioactivity of organic compounds has been 
predicted using topological indices and physico-chemical  properties12–15.

In a chemical graph, the vertices stand in for atoms or compounds, though the contacts represent their chemi-
cal interactions. Topological indices, which describe the structure of the graph, and numerical graph invariants. 
According  to16, the degree in any vertex is represented with du or d(u) and represent the number of edges that 
intersect that vertex u . Subsequently it is extra cost-effective method of testing compounds than testing them in 
a wet lab, numerous researchers are currently conducting QSPR analyses of different  molecules11,17–22.

The Computation of degree-based topological indices for porphyrazine and tetrakis porphyrazine are studied 
 in23. On topological properties of boron triangular sheet are characterized  in24. Some other degree based topo-
logical indices are discussed  in25–30. The use of carbon micro-tubes, general bridge graphs, plus chemical graph 
by products is studied  by31,32. The topological characteristics of mental-organic structures were covered  by33.  In34 
the estimated degree based TD for hexagon star network. In addition, QSPR examination may be used to create 
models that predict the characteristics or functions of organic chemical compounds.

In this article, we have presented results for calculating reduced reverse degree-based topological indices (TIs) 
for graphyne and graphdiyne. Notably, our work builds upon the foundation laid  by35 developed a method for 
analyzing TI. It is worth highlighting that our study marks a pioneering effort, as we are the first to calculate TIs 
for nanostructures, a groundbreaking achievement documented  by36. Subsequent to this milestone,  researchers37 
have also extended these calculations to include nanotubes.

Preliminaries
In 1736, Leonhard Euler laid the foundation of graph theory and foreshadowed the idea of topology. In 1947, 
Wiener introduced the concept of topological indices, considering both their practical applications and theo-
retical  significance38.

The Wiener index of a graph G is defined as:

where (u, v) show the order pair of vertices.
Gutman and coauthor introduced the Zagreb index denoted by M1(G) . It is very important topological index 

as defined  in39.

Similarly, the second Zagreb index of a graph G are mathematically represented as:

In 40 the authors Kulli, presented the concept of reverse vertex degree R(v) , demarcated as:

Encouraged by this definition, 41 defined the reduced reverse degree as:

It was developed to investigate the influence of low reverse degree in QSPR analysis. They also established the 
Zagreb index, F-index, ABC index, and we analyzed the relationship between physico-chemical characteristics 
of various COVID-19 drugs and a simplified reverse degree-based version of arithmetic index.

The reduced reverse Zagreb  indices39,42,43, which is defined as:

The reduced reverse hyper-Zagreb indices 41, that is denoted as:

W(G) =
1

2

∑

(u,v)∈V(G)

d(u, v)

M1(G) =
∑

uv∈E(G)
(du + dv).

M2(G) =
∑

uv∈E(G)
(dudv).

R(v) = �(G)− d(v)+ 1.

RR(v) = �(G)− d(v)+ 2.

RRM1(G) =
∑

uv∈E
[RR(u)+ RR(v)]

RRM2(G) =
∑

uv∈E
[RR(u) ∗ RR(v)]
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Furtula and  Gutman19 is defined the reduced reverse forgotten index as:

The reduced reverse atom bond connectivity index 44, described as:

And, the reduced reverse Geometric-arithmetic index 45, is represented as:

Molecular structures of graphyne and graphdiyne:
–C≡C– is inserted among each C–C bond into the 2D hexagonal network of graphene is stationary in nature, 
which makes it a distinct class α-graphene. Thus, the prediction of α-graphene has opened the door to the syn-
thesis of α-graphene, in graphdiyne, each carbon–carbon bond in the graphene lattice is replaced by a diacetylene 
bond. Figures 1 and 2 show the conformation of α-graphyne and α-graphdiyne of measurement α − Gy and 
α − Gd respectively. In spite of the fact that graphdyne belong to the group Graphene, it attitudes out as gradually 
remarkable in the light of its appealing possessions. Arockiaraj et al.46 computed the quality-weighted factors 
for α − Gy and α − Gd since these two grids represent subdivisions of graphene with separately bond divided 
by 2 and 4 particles, respectively.

The fundamental data obligatory for studying chemical graphs are the atoms and their connections, which we 
utilized to develop our model. Additionally, we determined the number of bonds among carbon, hydrogen, and 
nitrogen atoms. As a conclusion, we have built the unitary structure of graphyne and graphdiyne. In 2022, the 
authors  of47 demonstrated a formula for calculating any degree-based topological index for graphene and graph-
diyne nanoribbons, motivated by their work we have computing reduced reverse (RR) degree-based topological 
indices for graphyne and graphdiyne nanoribbons. The structures of graphyne and graphdiyne are taken  from47.

Reduced reverse degree‑based topological descriptors for the graphyne 
and graphdiyne
In this study, we computed the topological descriptors of graphyne and graphdiyne structures. In Tables 1 and 
2 show the vertex partitons of the graphyne and graphdiyne structures, respectively, according to the degree 
base and reduced reverse degrees of the end vertices. For the sake of simplicity, we assume that u is any vertex 

RRHM1(G) =
∑

uv∈E
[RR(u)+ RR(v)]2

RRHM2(G) =
∑

uv∈E
[RR(u) ∗ RR(v)]2

RRF(G) =
∑

uv∈E
[RR(u)2 + RR(v)2]

RRABC(G) =
∑

uv∈E

[

RR(u)+ RR(v)− 2

RR(u) ∗ RR(v)

]

RRGA(G) =
∑

uv∈E

[

2
√
RR(u) ∗ RR(v)

RR(u)+ RR(v)

]

1 2 p

2

q

Figure 1.  Structure of a α − graphyne(α − Gy).
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of a graph G, d(u) (resp. RR(u) ) is a degree of u (resp. reduced reverse degree of u) and frequency reflects the 
number of vertices of same degree that appears in a given graph.

The graphyne and graphdiyne edge partition based on the endpoint degrees of each edge are displayed in 
Tables 3 and 4. The maximum vertex degree of graphyne and graphdiyne is 3. By using the definition of reduced 
reverse vertex degree RR(v) = �(G)− d(v)+ 2.

Tables 5 and 6 shows the reduced reverse degree-based edge partition of graphyne and graphdiyne structures.
Now, we describe a formula for determining reduced reverse degree-based topological indices for 

α − graphyne(α − Gy):

1 2 P

2

q

Figure 2.  Structure of a α − graphdiyne(α − Gd).

Table 1.  Vertex partition of graphyne (α − Gy).

d(u) RR(u) Frequency

2 3 (12pq+ 6q)

3 2 (4pq− 2p− 2q)

Table 2.  Vertex partition of graphdiyne (α − Gd).

d(u) RR(u) Frequency

2 3 (24pq− 2p+ 8q)

3 2 (4pq− 2p− 2q)

Table 3.  Edge partition of graphyne based on degrees of end vertices of each edge.

(d(u), d(v)) Frequency

(2, 2) (6pq+ 3p+ 9q)

(2, 3) (12pq− 6p− 6q)

Table 4.  Reduced reverse degree-based edge partition of graphyne (α − Gy).

(RR(u),RR(v)) Frequency

(3, 3) (6pq+ 3p+ 9q)

(3, 2) (12pq− 6p− 6q)
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Now, we estimated the reduced reverse degree-based topological indices of α − graphyne(α − Gy).

Reduced reverse 1st Zagreb index for graphyne(α − Gy)

Reduced reverse 2nd Zagreb index for graphyne(α − Gy)

TI(α − Gy) =
∑

uv∈E(α−Gy)

[RR(u),RR(v)]

=
∑

uv∈E3,3

RR(3, 3)+
∑

uv∈E3,2

RR(3, 2)

=
(

6pq+ 3p+ 9q
)

RR(3, 3)+
(

12pq− 6p− 6q
)

RR(3, 2)

TI(α − Gy) = 6pq[RR(3, 3)+ 2RR(3, 2)]+ 3p[RR(3, 3)− 2RR(3, 2)]

+ 3q[3RR(3, 3)− 2RR(3, 2)]

RRM1(G) =
∑

uv∈E
[RR(u)+ RR(v)]

= 6pq[RR(3, 3)+ 2RR(3, 2)]+ 3p[RR(3, 3)− 2RR(3, 2)]

+ 3q[3RR(3, 3)− 2RR(3, 2)]

= 6pq[(3+ 3)+ 2(3+ 2)]+ 3p[(3+ 3)− 2(3+ 2)]

+ 3q[3(3+ 3)− 2(3+ 2)]

= 96pq− 12p+ 24q

RRM2(G) =
∑

uv∈E
[RR(u) ∗ RR(v)]

= 6pq[RR(3, 3)+ 2RR(3, 2)]+ 3p[RR(3, 3)− 2RR(3, 2)]

+ 3q[3RR(3, 3)− 2RR(3, 2)]

= 6pq[(3 ∗ 3)+ 2(3 ∗ 2)]+ 3p[(3 ∗ 3)− 2(3 ∗ 2)]
+ 3q[3(3 ∗ 3)− 2(3 ∗ 2)]

= 126pq− 9p+ 45q

Table 5.  Edge partition of graphdiyne based on degrees of end vertices of each edge.

(d(u), d(v)) Frequency

(2, 2) (18pq+ p+ 11q)

(2, 3) (12pq− 6p− 6q)

Table 6.  Reduced reverse degree-based edge partition of graphdiyne (α − Gd).

(RR(u),RR(v)) Frequency

(3, 3) (18pq+ p+ 11q)

(3, 2) (12pq− 6p− 6q)
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Reduced reverse 1st hyper‑Zagreb index for graphyne(α − Gy)

Reduced reverse 2nd hyper‑Zagreb index for graphyne(α − Gy)

Reduced reverse forgotten index for graphyne(α − Gy)

Reduced reverse atom bond connectivity (ABC) index for graphyne(α − Gy)

RRHM1(G) =
∑

uv∈E
[RR(u)+ RR(v)]2

= 6pq[RR(3, 3)+ 2RR(3, 2)]+ 3p[RR(3, 3)− 2RR(3, 2)]

+ 3q[3RR(3, 3)− 2RR(3, 2)]

= 6pq
[

(3+ 3)2 + 2(3+ 2)2
]

+ 3p
[

(3+ 3)2 − 2(3+ 2)2
]

+ 3q
[

3(3+ 3)2 − 2(3+ 2)2
]

= 516pq− 42p+ 174q

RRHM2(G) =
∑

uv∈E
[RR(u) ∗ RR(v)]2

= 6pq[RR(3, 3)+ 2RR(3, 2)]+ 3p[RR(3, 3)− 2RR(3, 2)]

+ 3q[3RR(3, 3)− 2RR(3, 2)]

= 6pq
[

(3 ∗ 3)2 + 2(3 ∗ 2)2
]

+ 3p
[

(3 ∗ 3)2 − 2(3 ∗ 2)2
]

+ 3q
[

3(3 ∗ 3)2 − 2(3 ∗ 2)2
]

= 918pq+ 27p+ 513q

RRF(G) =
∑

uv∈E

[

RR(u)2 + RR(v)2
]

= 6pq[RR(3, 3)+ 2RR(3, 2)]+ 3p[RR(3, 3)− 2RR(3, 2)]

+ 3q[3RR(3, 3)− 2RR(3, 2)]

= 6pq
[(

32 + 32
)

+ 2
(

32 + 22
)]

+ 3p
[(

32 + 32
)

− 2
(

32 + 22
)]

+ 3q
[

3
(

32 + 32
)

− 2
(

32 + 22
)]

= 264pq− 24p+ 84q

RRABC(G) =
∑

uv∈E

[

RR(u)+ RR(v)− 2

RR(u) ∗ RR(v)

]

= 6pq[RR(3, 3)+ 2RR(3, 2)]+ 3p[RR(3, 3)− 2RR(3, 2)]

+ 3q[3RR(3, 3)− 2RR(3, 2)]

= 6pq

[(

3+ 3− 2

3 ∗ 3

)

+ 2

(

3+ 2− 2

3 ∗ 2

)]

+ 3p

[(

3+ 3− 2

3 ∗ 3

)

− 2

(

3+ 2− 2

3 ∗ 2

)]

+ 3q

[

3

(

3+ 3− 2

3 ∗ 3

)

− 2

(

3+ 2− 2

3 ∗ 2

)]

=
26

3
pq−

5

3
p+ q
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Reduced reverse geometric‑arithmetic index for graphyne(α − Gy)

Now, we introduce a method to compute reduced reverse degree-based topological indices for 
α − graphdiyne(α − Gd):

Also, we estimated the reduced reverse degree-based topological indices of α − graphdiyne(α − Gd).

Reduced reverse 1st Zagreb index for graphdiyne(α − Gd)

Reduced reverse 2nd Zagreb index for graphdiyne(α − Gd)

RRGA(G) =
∑

uv∈E

[

2
√
RR(u) ∗ RR(v)

RR(u)+ RR(v)

]

= 6pq[RR(3, 3)+ 2RR(3, 2)]+ 3p[RR(3, 3)− 2RR(3, 2)]

+ 3q[3RR(3, 3)− 2RR(3, 2)]

= 6pq

[(

2
√
3 ∗ 3

3+ 3

)

+ 2

(

2
√
3 ∗ 2

3+ 2

)]

+ 3p

[(

2
√
3 ∗ 3

3+ 3

)

− 2

(

2
√
3 ∗ 2

3+ 2

)]

+ 3q

[

3

(

2
√
3 ∗ 3

3+ 3

)

− 2

(

2
√
3 ∗ 2

3+ 2

)]

= 6pq

(

5+ 4
√
6

5

)

+ 3p

(

5− 4
√
6

5

)

+ 3q

(

15− 4
√
6

5

)

TI(α − Gd) =
∑

uv∈E(α−Gd)

[RR(u),RR(v)]

=
∑

uv∈E3,3

RR(3, 3)+
∑

uv∈E3,2

RR(3, 2)

=
(

18pq+ p+ 11q
)

RR(3, 3)+
(

12pq− 6p− 6q
)

RR(3, 2)

TI
(

α − Gy
)

= 6pq[3RR(3, 3)+ 2RR(3, 2)]+ p[RR(3, 3)− 6RR(3, 2)]

+ q[11RR(3, 3)− 6RR(3, 2)]

RRM1(G) =
∑

uv∈E
[RR(u)+ RR(v)]

= 6pq[3RR(3, 3)+ 2RR(3, 2)]+ p[RR(3, 3)− 6RR(3, 2)]

+ q[11RR(3, 3)− 6RR(3, 2)]

= 6pq[3(3+ 3)+ 2(3+ 2)]+ p[(3+ 3)− 6(3+ 2)]

+ q[11(3+ 3)− 6(3+ 2)]

= 168pq− 24p+ 36q

= 168pq− 24p+ 36q

RRM2(G) =
∑

uv∈E
[RR(u) ∗ RR(v)]

= 6pq[3RR(3, 3)+ 2RR(3, 2)]+ p[RR(3, 3)− 6RR(3, 2)]

+ q[11RR(3, 3)− 6RR(3, 2)]

= 6pq[3(3 ∗ 3)+ 2(3 ∗ 2)]+ p[(3 ∗ 3)− 6(3 ∗ 2)]
+ q[11(3 ∗ 3)− 6(3 ∗ 2)]

= 234pq− 27p+ 63q
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Reduced reverse 1st hyper‑Zagreb index for graphdiyne(α − Gd)

Reduced reverse 2nd hyper‑Zagreb index for graphdiyne(α − Gd)

Reduced reverse forgotten index for graphdiyne(α − Gd)

Reduced reverse atom bond connectivity (ABC) index for graphdiyne(α − Gd)

RRHM1(G) =
∑

uv∈E
[RR(u)+ RR(v)]2

= 6pq[3RR(3, 3)+ 2RR(3, 2)]+ p[RR(3, 3)− 6RR(3, 2)]

+ q[11RR(3, 3)− 6RR(3, 2)]

= 6pq
[

3(3+ 3)2 + 2(3+ 2)2
]

+ p
[

(3+ 3)2 − 6(3+ 2)2
]

+ q
[

11(3+ 3)2 − 6(3+ 2)2
]

= 948pq− 114p+ 246q

RRHM2(G) =
∑

uv∈E
[RR(u) ∗ RR(v)]2

= 6pq[3RR(3, 3)+ 2RR(3, 2)]+ p[RR(3, 3)− 6RR(3, 2)]

+ q[11RR(3, 3)− 6RR(3, 2)]

= 6pq
[

3(3 ∗ 3)2 + 2(3 ∗ 2)2
]

+ p
[

(3 ∗ 3)2 − 6(3 ∗ 2)2
]

+ q
[

11(3 ∗ 3)2 − 6(3 ∗ 2)2
]

= 1890pq− 135p+ 675q

RRF(G) =
∑

uv∈E

[

RR(u)2 + RR(v)2
]

= 6pq[3RR(3, 3)+ 2RR(3, 2)]+ p[RR(3, 3)− 6RR(3, 2)]

+ q[11RR(3, 3)− 6RR(3, 2)]

= 6pq
[

3
(

32 + 32
)

+ 2
(

32 + 22
)]

+ p
[(

32 + 32
)

− 6
(

32 + 22
)]

+ q
[

11
(

32 + 32
)

− 6
(

32 + 22
)]

= 480pq− 60p+ 120q

RRABC(G) =
∑

uv∈E

[

RR(u)+ RR(v)− 2

RR(u) ∗ RR(v)

]

= 6pq[3RR(3, 3)+ 2RR(3, 2)]+ p[RR(3, 3)− 6RR(3, 2)]

+ q[11RR(3, 3)− 6RR(3, 2)]

= 6pq

[

3

(

3+ 3− 2

3 ∗ 3

)

+ 2

(

3+ 2− 2

3 ∗ 2

)]

+ p

[(

3+ 3− 2

3 ∗ 3

)

− 6

(

3+ 2− 2

3 ∗ 2

)]

+ q

[

11

(

3+ 3− 2

3 ∗ 3

)

− 6

(

3+ 2− 2

3 ∗ 2

)]

= 14pq−
23

9
p+

17

9
q
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Reduced reverse Geometric‑arithmetic index for graphdiyne(α − Gd)

Numerical and graphical discussion for computed results
For graphyne and grapdiyne, we have calculated the topological indices, which depends on the sharp weight. The 
closed formulas for reduced reverse degree based TI’s, are provided. The comparison of these topological indices 
for graphyne and graphdiyne nanoribbons provide insights into their structural and chemical characteristics. 
In Tables 7 and 8, all the TI’s reflects the connectivity of atoms for the considered graphs. The more value of the 
TI shows the strong connectivity and the less value shows the weak connectivity. For all considered topological 
indices the value of RRHM2(G) is higher than the other topological indices. This shows that RRHM2(G) gives 
more connectivity for both graphs than other topological indices as shown in Tables 7 and 8.

Conclusion
In this article, we have calculated the frequency of reduced reverse degree-based edge partitions corresponding 
to (α − Gy) and (α − Gd) , two different graphyne and graphdiyne atomic structures. Using these edge partitions, 
we have determined reduced reverse degree-based topological indices, including reduced reverse Zagreb indices, 
reduced reverse hyper-Zagreb indices, reduced reverse forgotten index, reduced reverse Geometric-arithmetic 
index (GA), and reduced reverse atom bond connectivity index (ABC), for (α − Gy) and (α − Gd), respectively. 
Finally, we have compared our obtained results in Figs. 3 and 4.

In future studies, we plan to apply these descriptors to different metal–organic framework advancements and 
observe the physical–chemical characteristics of various physical formations, such as silicone structures, hex-
agonal chains, polymers, sugars, and fullerenes. Additionally, exploring other potential applications of reduced 
reverse degree-based TIs in different scientific fields can be a promising avenue for future research.

RRGA(G) =
∑

uv∈E

[

2
√
RR(u) ∗ RR(v)

RR(u)+ RR(v)

]

= 6pq[3RR(3, 3)+ 2RR(3, 2)]+ p[RR(3, 3)− 6RR(3, 2)]

+ q[11RR(3, 3)− 6RR(3, 2)]

= 6pq

[

3

(

2
√
3 ∗ 3

3+ 3

)

+ 2

(

2
√
3 ∗ 2

3+ 2

)]

+ p

[(

2
√
3 ∗ 3

3+ 3

)

− 6

(

2
√
3 ∗ 2

3+ 2

)]

+ q

[

11

(

2
√
3 ∗ 3

3+ 3

)

− 6

(

2
√
3 ∗ 2

3+ 2

)]

= 6pq

(

15+ 4
√
6

5

)

+ p

(

5− 12
√
6

5

)

+ q

(

55− 12
√
6

5

)

Table 7.  Numerical behavior of topological indices for Graphyne (α − Gy).

N RRM1(G) RRM2(G) RRHM1(G) RRHM2(G) RRF(G) RRABC(G) RRGA(G)

1 108 162 648 1458 324 8 18

2 408 576 2328 4752 1176 33.33 71.53

3 900 1242 5040 9882 2556 76 160.55

4 1584 2160 8784 16,848 4464 136 285.09

5 2460 3330 13,560 25,650 6900 213.33 445.15

Table 8.  Numerical behavior of topological indices for Graphdiyne (α − Gd).

N RRM1(G) RRM2(G) RRHM1(G) RRHM2(G) RRF(G) RRABC(G) RRGA(G)

1 180 270 1080 2430 540 13.33 30

2 696 1008 4056 8640 2040 54.67 119.51

3 1548 2214 8928 18,630 4500 124 268.54

4 2736 3888 15,696 32,400 7920 221.33 477.09

5 4260 6030 24,360 49,950 12,300 346.67 745.15
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