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Identification of influential weather 
parameters and seasonal drought 
prediction in Bangladesh using 
machine learning algorithm
Md. Abdullah Al Mamun 1, Mou Rani Sarker 2, Md Abdur Rouf Sarkar 3,4*, Sujit Kumar Roy 5, 
Sheikh Arafat Islam Nihad 6, Andrew M. McKenzie 7, Md. Ismail Hossain 1 & 
Md. Shahjahan Kabir 8

Droughts pose a severe environmental risk in countries that rely heavily on agriculture, resulting 
in heightened levels of concern regarding food security and livelihood enhancement. Bangladesh 
is highly susceptible to environmental hazards, with droughts further exacerbating the precarious 
situation for its 170 million inhabitants. Therefore, we are endeavouring to highlight the identification 
of the relative importance of climatic attributes and the estimation of the seasonal intensity and 
frequency of droughts in Bangladesh. With a period of forty years (1981–2020) of weather data, 
sophisticated machine learning (ML) methods were employed to classify 35 agroclimatic regions 
into dry or wet conditions using nine weather parameters, as determined by the Standardized 
Precipitation Evapotranspiration Index (SPEI). Out of 24 ML algorithms, the four best ML methods, 
ranger, bagEarth, support vector machine, and random forest (RF) have been identified for the 
prediction of multi-scale drought indices. The RF classifier and the Boruta algorithms shows that water 
balance, precipitation, maximum and minimum temperature have a higher influence on drought 
intensity and occurrence across Bangladesh. The trend of spatio-temporal analysis indicates, drought 
intensity has decreased over time, but return time has increased. There was significant variation 
in changing the spatial nature of drought intensity. Spatially, the drought intensity shifted from 
the northern to central and southern zones of Bangladesh, which had an adverse impact on crop 
production and the livelihood of rural and urban households. So, this precise study has important 
implications for the understanding of drought prediction and how to best mitigate its impacts. 
Additionally, the study emphasizes the need for better collaboration between relevant stakeholders, 
such as policymakers, researchers, communities, and local actors, to develop effective adaptation 
strategies and increase monitoring of weather conditions for the meticulous management of droughts 
in Bangladesh.

Climate change has had and continues to have catastrophic effects on humanity. Severe weather occurrences, 
particularly heat waves, droughts, cyclones, and heavy rain, are becoming more frequent and intense, leading to 
displacement, famine, and poverty1. Drought, the most frequent climate occurrence worldwide, is characterized 
by a shortage of precipitation which causes long-term water scarcities2–5. Droughts are one of the most expensive 
calamities, affecting millions of people annually and costing an estimated $6 to $8 billion annually6. However, 
the slow-onset nature of drought makes it challenging to analyze and model its spatio-temporal consequences.

Bangladesh is one of the utmost prone to natural catastrophes nations in the biosphere because of its geo-
graphical location7. Drought is a frequent natural disaster in the country. Bangladesh experienced extreme 
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droughts in 1973, 1978, 1979, 1981, 1982, 1992, 1994, 1995, 2000, 2006, and 20098. Scholars recognized that 
drought poses a significant risk to food security6,9,10. Climate change and scarcity of groundwater, combined 
with unpredictable rainfall and high temperatures, negatively impact the yields of various crops, particularly in 
the northwest region of Bangladesh11. Pre-kharif (mid-March to mid-May) and Rabi (mid-November to mid-
March) crops are highly susceptible to drought12. Every year, droughts of varying intensities have caused damage 
to around 2.32 million hectares of land9. In addition to agricultural loss, drought has social and environmental 
consequences such as loss of livelihoods, migration, food price hikes, loss of biodiversity, disease, land degrada-
tion, and so many others1,13. Hence, drought prediction studies are necessary to reduce the adverse impacts of 
drought events on water resources, agriculture, energy production, ecosystems, public safety, and the economy. 
They are critical for sustainable resource management and preparedness in the face of a changing climate14.

Climate change adaptation and coping strategies have remained a global concern for decades. One of the 
key reasons for the failure of disaster risk management in climate-vulnerable countries like Bangladesh is that 
the government always emphasizes response and recovery over monitoring, preparedness, and mitigation. In 
light of this, accurate drought projections are crucial for the sustainable management of agricultural resources. 
The erratic and spatial nature of drought, with varying intensity and frequency10, necessitates identifying rapid, 
consistent, and precise prediction models to quantify drought-related risks.

Several drought indices have been established in recent decades to monitor drought on regional and global 
scales15–21. Among them, the standardized precipitation index (SPI)20–29, standardized precipitation evapotran-
spiration index (SPEI)15,18–21,27,28,30–38, and Palmer drought severity index (PDSI)39,40 were widely used. Recently 
developed SPEI15 has the advantage of determining many types of drought41. The SPEI takes into account both 
the multi-scalar properties and straightforward computation of the SPI and the PDSI’s sensitivity to shifts in 
evaporation demand; hence, broadly acceptable for monitoring and analyzing drought characteristics42.

Sustainable water management requires a reliable data-driven drought prediction model43,44. Traditional 
stochastic techniques, such as the autoregressive integrated moving average (ARIMA) and seasonal autoregres-
sive moving average (SARIMA) models, were the most widely used for predicting droughts45,46. Recent appli-
cations of machine learning (ML) models offer the advantage of being more adaptable and robust for drought 
prediction44,47–52. ML models better capture complicated relationships between variables, handling nonlinearity 
and temporal dependencies. Additionally, ML models can be easily updated with new data, making them suitable 
for dynamically changing environments53,54. Several ML models, such as artificial neural networks (ANN), Fuzzy 
Logic (FL), support vector regression (SVR), random forests (RF), relevance vector machine (RVM), genetic pro-
gramming (GP), and extreme learning machine (ELM) have been used in complex modeling interactions46,55–57. 
However, because of regional variability, no generalized or ideal model is acceptable for all climates situations13; 
rather, there is a risk of misleading model development10,58.

In Bangladesh, very little research has been done using ML methods13,59,60. All research was one or two 
region-specific61, and the development of ML models for drought forecasting on a more disaggregate regional 
scale has yet to unfold. Besides, researchers did not identify the relative importance of climatic attributes for 
drought assessment. The novelty of this study is that it fills these gaps by developing the best ML models for 
SPEI forecasting at multiple time scales and drought intensity mapping for Bangladesh. Specifically, the current 
study predicts SPEIs for 35 meteorological stations using 24 ML models. Then the deployed models’ performance 
was evaluated to select the best drought forecasting features, and finally the spatio-temporal pattern of seasonal 
drought intensity and frequency was estimated for meteorological research stations across Bangladesh.

The weather patterns in Bangladesh are undergoing significant transformations due to its proximity to the 
equator and the rising global temperatures62,63. As a consequence of these changes, the country has been con-
fronted with severe weather fluctuations, including frequent flooding and other calamities. In regions of Bang-
ladesh where drought is a persistent concern, experts have observed an increase in the occurrence of droughts, 
attributable to alterations in temperature and precipitation patterns64. The impact of climate change is anticipated 
to result in more substantial economic losses from droughts65, affecting water resources and contributing to 
water scarcity66. These adverse consequences underscore the need for the development of robust forecasting and 
monitoring models for drought, enabling the timely formulation of strategies to manage drought-related risks67.

Effective drought forecasting is an indispensable component of drought management. Inadequate forecasting 
can lead to suboptimal management practices and potential harm to the environment. Consequently, there is 
a pressing demand for rapid, reliable, and accurate models for drought prediction that can furnish quantitative 
insights into impending drought-related threats. These models leverage the appropriate combination of input 
variables or drought indices to deliver precise drought forecasts68.

By exploring the interplay between climatic variables and machine learning models69, we aim to uncover 
the optimal combination that can provide actionable insights and early warning systems for mitigating the far-
reaching impacts of droughts in the region. This research represents a vital step towards harnessing technology 
and data-driven approaches to address the pressing challenges posed by seasonal droughts, offering the poten-
tial to safeguard agricultural practices in Bangladesh. Our research holds significant implications for science, 
policy, and practice. Scientifically, it showcases the efficacy of machine learning methods in drought prediction 
and underscores the significance of integrating weather parameters in drought analysis. From a policy perspec-
tive, the study underscores the need for enhanced collaboration among stakeholders, including policymakers, 
researchers, communities, and local actors, to formulate effective adaptation strategies. In practical terms, the 
findings highlight the crucial importance of heightened weather condition monitoring in Bangladesh to mitigate 
the adverse effects of droughts on crop production and livelihoods.

The article is organized as follows: "Materials and methods" provides information on the study area, the uti-
lized data, and the empirical settings. "Results" presents the study findings. A detailed discussion of the results 
is found in "Discussion", with a summary of conclusions and recommendations in "Conclusions and policy 
recommendations".
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Materials and methods
Study area
Bangladesh, located in South Asia, stands out for its distinctive geographical and environmental features. Situated 
between latitudes 20°34’ and 26°38’ N and longitudes 88°01’ and 92°41’ E (Fig. 1), it shares borders with India 
to the west, north, and east, and Myanmar (Burma) to the southeast70. To the south, the Bay of Bengal forms a 
natural boundary. This densely populated nation boasts a complex landscape with expansive riverine systems, 
fertile alluvial plains, and the renowned Sundarbans, the world’s largest river delta. Its predominantly low-lying 
terrain renders it susceptible to flooding, storm surges, and monsoon rains, with intermittent droughts affect-
ing certain regions. Featuring a tropical climate, the country experiences average temperatures ranging from 
12.8 to 31.1 °C. The annual rainfall varies from 1700 mm in the northwest to over 5000 mm in the southeastern 
region13, establishing Bangladesh as one of the world’s wettest countries. The climate features distinct wet and 
dry seasons, profoundly impacting agriculture, the economy, and the predominantly agrarian livelihoods of its 
people. Bangladesh’s unique geographical and climatic conditions have made it a focal point for research in areas 
such as climate change, agriculture, water resource management, and disaster preparedness, underlining its criti-
cal importance due to its vulnerability to environmental challenges and the potential for innovative solutions to 
enhance the well-being of its population.

Data use
Climate records at the daily timescale from 35 meteorological stations were collected by the Bangladesh Mete-
orological Department (BMD) over the past 40 years, from 1981 to 2020 (Fig. 1). The climate variables were 
daily rainfall amount (mm), maximum temperature (°C), minimum temperature (°C), mean temperature (°C), 
sunshine hours (h), wind speed (ms−1), and relative humidity (%). In addition, potential evapotranspiration (PET) 
at the monthly timescale was calculated from the aforementioned climate variables. The Food and Agricultural 
Organization (FAO) recommends the Penman–Monteith (PM) equation71 as the single standard technique for 
calculating reference evapotranspiration (ET0), and it has been effectively utilized in Bangladesh. It integrates 
physiological and meteorological attributes and has been widely used around the world because of its intrinsic 
rationality and reliability72. Hence, the PM equation based on the weather parameters was utilized to compute 
the monthly ET0 over the research locations.

Model selection process for data analysis
In this research, twenty-four (24) machine learning models were constructed to predict the Standardized Pre-
cipitation Evapotranspiration Index (SPEI) in various timescales, including 1-, 3-, 6-, and 12-month periods. 
The methodology, as illustrated in Fig. 2, encompassed the subsequent procedural phases:

(a)	 Data collection and preprocessing: The SPEI database was generated by utilizing meteorological variables 
from the SPEI computation model.

(b)	 Feature selection: The optimal features for classifying drought conditions were identified through the 
application of correlation and random forest classifier methods.

(c)	 Model selection and cross-validation: To implement machine learning algorithms, the dataset was ran-
domly divided into training (80%) and testing (20%) sets, and all data points from each research station 
were imported into the R programming environment. Machine learning algorithms were employed on the 
training datasets, the models were validated using the testing datasets, and SPEI predictions were generated 
for various time scales. Each meteorological station’s resulting output values were ranked to determine the 
most suitable machine learning models.

(d)	 Model evaluation: Models were evaluated using appropriate performance metrics, including RMSE, MAE, 
and R2.

(e)	 Model comparison: We compare the performance of different models and select the one that best aligns 
with our research objectives and provides the most accurate results.

(f)	 Validation and robustness testing: The selected model was further validated using different subsets of the 
data to assess its robustness.

(g)	 Model output and visualization: We focus on the presentation and interpretation of the model output 
through a robust visualization process.

Standardized precipitation evapotranspiration index (SPEI)
SPEI is a widely used technique for measuring drought dynamics over multiple time frames15. The SPEI is derived 
from precipitation and temperature data using a simple water balance to measure the effects of surface evapora-
tion caused by increasing global temperatures73. It has an advantage over the SPI, because it combines rainfall 
and temperature into its computations, whereas SPI only uses rainfall22. The calculation of SPEI is based on the 
original SPI calculation procedure and hence uses the same index categorization criteria15.

The initial step in computing the SPEI is to determine the monthly water balance (Di), which is the difference 
between the precipitation (Pi) and potential evapotranspiration (PETi). Afterwards, these values are combined 
at the desired timescales74 as:

(1)Di = Pi − PETi
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Figure 1.   A map illustrating the locations of the examined meteorological stations in Bangladesh. The authors 
used ArcGIS 10.8 (https://​www.​arcgis.​com/​index.​html) to generate the map, employing the administrative 
shapefile of Bangladesh in the process. Shapefile republished from the Bangladesh Agricultural Research 
Council (BARC) database (http://​maps.​barca​pps.​gov.​bd/​index.​php) under a CC BY license, with permission 
from Computer and GIS unit, BARC, original copyright 2014.

https://www.arcgis.com/index.html
http://maps.barcapps.gov.bd/index.php
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where, k = 1, 3, 6, and 12 for SPEI = 1, 3, 6, and 12 is the aggregation timescale, and n is the nth month. Using 
the log-logistic probability distribution, the D-series was fitted. The cumulative distribution function F(x)75 can 
be expressed as follows:

where, the parameters of scale, shape, and location are written as α, β, and γ, respectively. The SPEI value is 
derived from the standard value provided:

where P indicates the likelihood of exceeding a certain D value, and F(D) represents the cumulative distribution 
of D. When P is greater than 0.5, it is replaced with the non-exceed likelihood (F(D) = 1 − P) and the direction 

(2)Dk
n =

k−1
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i=0

(Pn−i − PETn−i), n ≥ k

(3)F(x) =

[

1+

(

α

x − γ

)β
]−1

k

(4)SPEI = W −
c0 + c1W + c2W

2

1+ d1W + d2W2 + d3W3

(5)W =

√

−2ln(P)forP ≤ 0.5

Figure 2.   Conceptual framework of prediction of SPEI by ML algorithms for the study.
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of the derived SPEI is inverted. The constants are c0 = 2.5155, c1 = 0.8028, c2 = 0.0103, d1 = 1.4328, d2 = 0.1892 and 
d3 = 0.001343.

In this study, we estimated SPEI at time scales of one month (SPEI1), three months (SPEI3), six months 
(SPEI6), and a year (SPEI12). These estimates were used to measure the impact of precipitation deficits in 
the short term on agricultural drought. According to the SPEI classification criteria, the value of SPEI ≥ 0 
indicates no drought, − 1.0 < SPEI < 0 indicates mild drought, − 1.5 < SPEI ≤  − 1.0 indicates moderate 
drought, − 2.0 < SPEI ≤  − 1.5 indicates severe drought and SPEI ≤  − 2.0 indicates extreme drought76. The greater 
the value of the SPEI in the negative, the more severe the drought.

We also estimated the severity of drought. A drought event’s duration (m) equals the number of months 
between its start (included) and end month (not included). The absolute value of the total of all SPEI values 
during a drought event is known as severity (Se). A drought event’s intensity (DIe) is defined as severity divided 
by duration77. The greater the DIe number, the more severe the drought. The formulae are as follows:

where, e, j, Indexj, m, Se, and DIe are the drought event, month, SPEI value in month j, duration, severity, and 
intensity of a drought event e, respectively.

Best feature selection criteria
Feature selection is a widely used process of selecting the best features that can significantly influence the pre-
dicted outcomes, increasing model performance and accuracy, and reducing running time78,79. We considered 
two different feature selection approaches, random forest (RF), and the Boruta algorithm, to identify the most 
significant weather variables that affect SPEIs. The Boruta and Caret packages were used for feature selection in 
RStudio software. A brief overview of these two techniques is provided here:

Random forest.  RF employed Mean Decrease Accuracy (MDA) and Mean Decrease Gini (MDG) to select 
variables80. When a variable is left out of the model, the MDA value represents how much precision is compro-
mised. The more accuracy lost the more importance of the variable for successful classification. The MDG meas-
ures the contribution of each variable to the homogeneity of the random forest’s nodes and leaves. The greater the 
MDG score, the greater the significance of the variable in the model81. Additionally, we used dichotomy method 
as a rapid variable screening technique. Time series of SPEI and other related weather variables were used to find 
a proficient and robust estimation of the best classifier. As a rule, the majority of scholars employed permuting 
out-of-bag (OOB henceforth) error or impurity to evaluate the significance of a single variable82–84, whereas we 
employed both. The OOB error is a bootstrap aggregation-based approach for assessing the prediction error of 
random forests, boosted decision trees, and other machine learning models85.

Boruta algorithm.  The Boruta algorithm was introduced by Kursa and Rudnicki86. This technique attempts to 
reduce misleading outcomes due to correlations and random fluctuations by introducing more randomization 
and collecting results from the entire set of randomized samples. The relative importance of the climatic vari-
ables was identified for the estimate approach by following the steps outlined in Ebrahimi-Khusfi87, and Kursa 
and Rudnicki86.

Machine learning algorithms
We considered analyzing 24 distinct machine learning algorithms from various ML fields to determine the 
correlation between drought prediction and the weather attributes. The prediction of multiscale SPEI1, SPEI3, 
SPEI6, and SPEI12 considered tree-based algorithms, regression, and classification models. We used multiple 
predictive modeling techniques employing a variable selection algorithm. These methods included linear least 
squares models and penalized linear, additive, and recursive partitioning models, all implemented with R pro-
gramming code for variable selection and prediction (Table 1).

The study measured the performance of each ML algorithm independently. ML algorithms employ various 
statistical, probabilistic, and optimization methods to extract useful patterns from large and complex datasets 
that are unstructured and derived from past experiences61. Time series data is characterized by a sequential order, 
where each observation is influenced by the preceding observations. Applying traditional cross-validation tech-
niques to time series data can introduce a significant source of bias since it violates the temporal structure of the 
data. To obtain robust and reliable estimates of a model’s performance, assess its generalization capabilities, and 
make informed decisions in model selection, using tenfold cross-validation with five repetitions, the algorithms 
were trained and compared. It helps reduce the impact of random variations, provides more stable performance 
metrics, and aligns with established practices in the field of machine learning and data analysis. All predictive 
models were trained utilizing the Caret package’s interface for the train function88. The train function generates 
the parameter tuning by determining the values that maximize root-mean-square error (RMSE) accuracy. The 
data were divided into training (80%) and test (20%) sets. The ML function determines the optimal subset of 
predictors for the best accurate model. Finally, the study rated lists of predictors from each training approach 
for the final models.
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Model evaluation metrics
Model validation is a necessary step of ML modeling for evaluating the accuracy and reliability of models. 
Scholars employed various statistical metrics for this purpose89–91. We used RMSE, MAE, and R2 to evaluate the 
performance of the constructed models. The statistical evaluation metrics are the following for all parameters:

where, Yobs and Ypred indicates the actual and predicted dependent variable, respectively, with N denoting the 
number of observations. As a general rule, models with a lower RMSE, MAE, and a larger R2 during testing were 
deemed more accurate for accuracy of good prediction model.

Partial dependence plots (PDPs) method
The model-independent method is based on determining the "flatness" of the PDPs of each feature. PDPs assist 
in visualizing the influence of low cardinality feature space subsets on the estimated prediction surface, such as 
main effects and two/three-ways interaction effects. The PDPs provides model-independent interpretations and 
can be developed via a supervised machine learning approach. We train a projection pursuit regression (PPR) 
model and use the pdp package to generate PDPs for each feature92. The PDPs can be misled in the presence 
of substantial interactions93. To solve this issue, Goldstein et al.93 developed individual conditional expectation 
(ICE) charts, which are available in the R programming package ‘ICEbox’. The ICE plots display the estimated 
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Yobs − Ypred
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√
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Table 1.   List of 24 machine learning methods and their characterizations.

Sl. no Method Description Type R packages Reference

1 rpart CART​ Regression, classification Rpart Breiman and Freedman122, Breiman and 
Ihaka123, Therneau et al.124

2 knn k-nearest neighbors Regression, classification Kknn Uddin et al.125

3 svm Support vector machines with radial basis 
function kernel Regression, classification Kernlab Noble126

4 rf Random forest Regression, classification randomForest Breiman80

5 treebag Bagged CART​ Regression, classification ipred, plyr, e1071 Breiman80, Kober et al.127

6 gbm Stochastic gradient boosting Regression, classification gbm, plyr Freedman128, Guelman129, Ridgeway130

7 glm Generalized linear model Regression, classification MASS Annette J. Dobson131

8 ctree Conditional inference tree Regression, classification Party Hothorn et al.132

9 ridge Ridge regression Regression Elasticnet Seegrist133, Zou and Hastie 134

10 lars2 Least angle regression Regression Lars Efron et al.135

11 bagEarth Bagged MARS Regression, classification Earth Max Kuhn et al.88

12 bayesglm Bayesian generalized linear model Regression, classification Arm Dey et al.136

13 blackboost Boosted tree Regression, classification Party, mboost, plyr, partykit Chen137

14 cforest Conditional inference random forest Regression, classification Party Levshina138

15 ctree2 Conditional inference tree Regression, classification Party Hothorn et al.132, Sarda-Espinosa et al.139

16 lmStepAIC Linear regression with stepwise selection Regression MASS Olusegun et al.140

17 earth Multivariate adaptive regression spline (MARS) Regression, classification Earth Friedman and Roosen141, Milborrow et al.142

18 gcvEarth
MARS generalized cross validation (GCV) 
penalty per
knot

Regression, classification Earth Milborrow et al.142

19 pcaNNet Neural networks with a principal component 
step Regression, Classification Nnet Ripley143

20 ppr Projection pursuit regression Regression Stats Farikha et al.144

21 ranger Random forest Regression, classification e1071, ranger, dplyr Wright et al.145

22 qrf Quantile random forest Regression quantregForest Li and Peng146

23 rqnc Non-convex penalized quantile regression Regression rqPen Bello et al.147, Ma et al.148

24 rqlasso Quantile regression with LASSO penalty Regression rqPen Ciner et al.149
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association between the response and a predictor of relevance for each observation. Consequently, the PDP for 
an activity predictor may be computed by averaging the proper ICE curves’ overall data.

Results
Correlation analysis
In this study, the meteorological indices, standardized precipitation evapotranspiration index at multiple time 
scales (SPEI1, SPEI3, SPEI6, and SPEI12), were chosen to assess the drought conditions of Bangladesh. The 
study aimed to explore their associations with nine distinct weather parameters: precipitation (PRCP), mini-
mum temperature (TMIN), maximum temperature (TMAX), average temperature (TMEAN), total sunshine 
(TSUN), relative humidity (RH), wind speed (WS), evapotranspiration (ET), and water balance (WB) (Fig. 3). 
Regarding SPEI1, the correlation coefficients revealed statistically significant (p < 0.05) and positive associations 
with rainfall (0.390), relative humidity (0.215), and water balance (0.422). Conversely, there were statistically 
significant negative correlations with maximum temperature (−0.168), mean temperature (−0.070), total sun-
shine hour (−0.265), wind speed (−0.129), and evapotranspiration (−0.258). The correlation results revealed that 
meteorological indices at the 3-month time scale (SPEI3) exhibited a nearly identical relationship like SPEI1 
with meteorological variables. Specifically, rainfall, minimum temperature, relative humidity, and water balance 
displayed significant positive associations with SPEI3, with correlation coefficients of 0.316, 0.058, 0.233, and 
0.338, respectively. On the other hand, there were statistically significant negative correlations with maximum 
temperature (−0.090), total sunshine hour (−0.189), wind speed (−0.105), and evapotranspiration (−0.185).

Also, for both SPEI6 and SPEI12, the correlation analysis reveals significant (p < 0.05) positive associations 
with rainfall (0.238 and 0.153), relative humidity (0.178 and 0.095), and water balance (0.261 and 0.163) (Fig. 3). 
In the case of SPEI6 and SPEI12, it’s noteworthy that a negative and statistically significant relationship was 
observed with certain meteorological parameters. Specifically, maximum temperature exhibited negative correla-
tions of −0.113 for SPEI6 and −0.034 for SPEI12. Likewise, total sunshine hour displayed negative correlations 
of −0.130 for SPEI6 and −0.045 for SPEI12. Additionally, wind speed showed negative correlations of −0.111 for 
SPEI6 and −0.067 for SPEI12. Furthermore, evapotranspiration had particularly significant negative correlations, 
with values of −0.195 for SPEI6 and −0.081 for SPEI12. These results indicate that as SPEI6 and SPEI12 values 
decreased, these meteorological parameters tended to increase, and the relationships were statistically significant.

Identification of best climatic attributes for different SPEIs
Based on the results depicted in Fig. 4, the critical variables for the SPEI1 time scale were identified as WB, 
PRCP, TMIN, and ET. For the SPEI3, SPEI6, and SPEI12 time scales, the most significant variables were WB, 
PRCP, TMAX, and TMIN. Consequently, WB, PRCP, TMAX, and TMIN emerged as the predominant factors 
influencing the construction of drought prediction models using machine learning.

The random forest classifier algorithms tuned using cross-validation ten folds and five repeats were sum-
marized, and the performance of the RF classifier was presented in Table 2. The best three contributors for the 
SPEI1 model were WB, PRCP, and TMIN with the highest percentage values, and the overall OOB error rate 
for SPEI1 model was 17.77%. However, the worse contributor was identified as WS, RH, and TSUN, getting 
the lowest percentage among the variable for SPEI1. We found that the SPEI3 model had the same contributors 

Figure 3.   Correlation coefficients among the weather parameters and SPEI’s values.
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as the SPEI1 model. The best predictor for SPEI6 was WB, followed by TMIN, PRCP, and TMAX. The worse 
contributor was WS, which had the lowest percentage value of MDA and MDG, but the OOB error rate was 
23.05%. The annual time scale (SPEI12) also has a vital role in identifying and predicting drought. The best 
and most significant contributors for SPEI12 were WB, TMIN, and TMAX, and the OOB error rate was low at 
6.59%. Thus, the findings indicated that WB, PRCP, TMAX, and TMIN were the most significant contributors 
to drought model prediction across different time scales of Bangladesh.

Performance evaluation of ML models for different SPEIs during the training phase
To assess the precision and performance of the model, we utilized metrics including mean absolute error (MAE), 
root mean square error (RMSE), and the coefficient of determination (R2). In our interpretation, a well-per-
forming model is characterized by lower MAE and RMSE values and a higher R2 value. For predicting SPEI1 
(Standardized precipitation evapotranspiration index at a 1-month time scale), the ranger model stood out as the 
most accurate, boasting an impressive R2 value of 0.689, indicating its substantial explanatory power (Fig. A1a). 
Additionally, it displayed relatively lower RMSE (0.547) and MAE (0.417) values, reflecting close alignment 
with actual data. The rf, svm, and cforest models also performed well, securing the second, third, and fourth 
positions, respectively, in SPEI1 prediction accuracy. Conversely, the CART and lars2 models exhibited lower 
accuracy in predicting SPEI1.

According to Fig. A1b, evaluating the performance of machine learning models for predicting the 3-month 
time scale drought (SPEI3), the ranger model emerged as the top performer with an R2 of 0.602, RSME = 0.600, 
and MAE = 0.454, indicating robust predictive capabilities. The rf model closely followed, achieving an R2 of 

Figure 4.   Best feature combination of predictor variables based on the Boruta algorithm.

Table 2.   Performance of RF classifier model with different SPEI time scales derived from different feature 
combinations. MDA mean decrease accuracy, MDG mean decrease Gini, OOB out-of-bag estimate of error 
rate.

Attributes

SPEI1 SPEI3 SPEI6 SPEI12

MDA (%) MDG (%)
OOB error 
rate (%) MDA (%) MDG (%)

OOB error 
rate (%) MDA (%) MDG (%)

OOB error 
rate (%) MDA (%) MDG (%)

OOB error 
rate (%)

PRCP 13.65 15.24

17.77

13.76 15.63

19.19

10.84 14.44

23.05

9.90 17.02

6.59

TMIN 12.67 10.85 11.90 10.32 12.58 11.70 13.40 9.19

TMAX 9.15 9.10 11.46 9.62 10.75 9.70 12.97 9.55

TMEAN 10.03 9.64 10.72 9.43 10.39 10.13 9.33 6.91

TSUN 7.53 7.35 7.38 7.80 10.00 8.80 10.61 8.42

RH 8.86 6.88 7.57 8.09 8.75 9.43 10.07 10.45

WS 9.01 6.29 7.13 6.57 5.98 7.39 9.44 7.56

ET 11.04 9.58 10.28 8.50 9.76 8.71 7.36 8.72

WB 18.06 25.07 19.81 24.03 20.94 19.70 16.91 22.18
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0.602, RSME = 0.601, and MAE = 0.456. The qrf and cforest models secured the third and fourth positions with 
R2 values of 0.598 and 0.593, respectively. In contrast, the lars2 and rqlasso models exhibited lower accuracy in 
predicting SPEI3. The analysis was extended to predict SPEI6, which represents a 6-month drought index. In this 
case, the ranger model continued to exhibit strong performance, with the highest R2 value of 0.512, and the lowest 
RSME (0.661) and MAE (0.522). The rf, svm, and cforest models closely followed. Once again, the CART and 
lars2 models were less accurate in predicting SPEI6 (Fig. A1c). For the 12-month time scale drought (SPEI12), 
the qrf model emerged as the top performer with the highest R2 value of 0.871, signifying its exceptional predic-
tive accuracy of drought condition. The ranger, rf, and cforest models also demonstrated robust performance, 
while the CART and lars2 models exhibited comparatively lower accuracy in forecasting SPEI12 (Fig. A1d).

The Taylor diagram, a widely used pictorial tool, serves to evaluate the performance of ML models13,83. This 
diagram visualized the spatial pattern of calculated (reference field) against predicted (test field) multi-time 
scale SPEI values94. Fig. A2 depicts the Taylor’s diagram, incorporating metrices such as RMSE, correlation 
coefficient, and standard deviation for SPEI1, SPEI3, SPEI6, and SPEI12. It was observed from the figure that all 
ML models exhibited a standard deviation of less than one across each SPEI time scale. Similarly, the correla-
tion results varied from 0.40 to 0.80 for SPEI1, SPEI3, and SPEI6, while ranging from 0.40 to 0.95 for SPEI12. 
Additionally, centered RMSE was more scattered in SPEI12 compared to other time scales. Notably, the ranger 
model consistently outperformed than other models across all time scales.

Observed and predicted performance of ML models for countrywide datasets
The scatter plot illustrating the performance of observed and predicted SPEIs is presented in Fig. A3a–d. For 
SPEI1 (Fig. A3a), actual vs predicted R2 values ranged from 0.26 to 0.69, with 46% (11 models) displaying R2 
values equal to or exceeding 60%. Notably, models such as ranger, rf, qrf, and cforest demonstrated high accu-
racy during validation. In the case of SPEI3, 21% (5 models) exhibited an R2 value surpassing 0.60, with ranger, 
rf, qrf, cforest, and svm models showcasing exemplary prediction performance (Fig. A3b). Approximately 17% 
of SPEI6 models achieved an R2 value greater than 0.49, with ranger, svm, rf, and qrf models standing out 
(Fig. A3c). The R2 square values for SPEI12 ranged from 0.29 to 0.87, and during validation, qrf, ranger, and rf 
models exhibited R2 values exceeding 80%, indicating highly accurate prediction performance (Fig. A3d). In 
conclusion, the drought prediction performance of ML models varied across different time scales, with ranger, 
rf, and qrf models demonstrating consistency.

Another approach to identify the best model with fewer outlier issues is presented in Fig. A4a–d, providing 
an overview of the actual and predicted scenario of ML models, including outlier considerations. All models, 
across various time scales, showcased optimal performance when addressing the outlier problem. Empirical data 
supported the superiority of ranger, rf, and qrf models for precise drought prediction in Bangladesh. In contrast, 
CART, lars2, pcaNNet, ImStepAIC, and some other models struggled to overcome outlier values, negatively 
impacting their performance compared to the actual values of SPEI1, SPEI3, SPEI6, and SPEI12.

Ranking the best predictive model for different regions at multiple timescales of SPEIs
Given the geographical positioning and climatic unpredictable changes across the country, a one-size-fits-all 
model would not be suitable for predicting drought in all locations. Here, we demonstrated a regional drought 
forecast for 35 meteorological stations using 24 ML models at various SPEI periods (Fig. 5a–d). The performance 
of each model was graded using higher R2 and lower MAE and RMSE values, illustrated through a heatmap. The 
results revealed that the best model differed across geographical locations and timespan. In the northern region of 
Bangladesh, for instance, at Rajshahi station in SPEI1 and SPEI12, the ranger model performed the best (ranked 
first). Similarly, the bagEarth and svm models had the highest performance in SPEI3 and SPEI6, respectively. In 
the southern region of Khulna, the ranger, bagEarth, earth, and ppr models performed most well at SPEI1, SPEI3, 
SPEI6, and SPEI12, respectively. Regarding regional representation, the ranger model demonstrated superior 
performance in 79% and 63% of regions (out of 35 stations) for SPEI1 and SPEI3, respectively. Conversely, for 
SPEI6 and SPEI12, the bagEarth and ppr models excelled, leading in 63% and 58% of regions, respectively (Fig. 6). 
However, the heatmaps of SPEI1 and SPEI3 were identical, and the usual R2 values for SPEI12 were fairly high. 
Refer to Figs. 5a–d and 6 for detailed information on the best model for each region.

Evaluation of best predictive models for the specific region
We used scatter plots of fitted vs. observed values and R2 values to evaluate the best model for use across 
all regions and different time periods of SPEIs (Fig. 7). For SPEI1, the R2 values ranged from 0.57 to 0.93, indicat-
ing a positive correlation between the ML model and the observed data, with the model explaining 57–93 percent 
of the variance in the fitted data. Similarly, for SPEI3 and SPEI6, the R2 values ranged from 0.52 to 0.92 and 0.57 
to 0.95 respectively, signifying a positive correlation between the ML models and the observed data, with the 
model’s explaining 52–92 percent and 57–95 percent of the variance in the fitted data, respectively. Lastly, the 
high R2 value for SPEI12 suggested a better fit for the model. Thus, confirming the validity of the models selected 
for drought prediction in Bangladesh across different time scales and regions.

To examine the accuracy in SPEI prediction, boxplots of 25%, 50%, and 75% quantile values for both observed 
and projected SPEI are shown in Fig. 8. The figure illustrates that the identified best models adequately simulated 
the variability in SPEI1, SPEI3, SPEI6, and SPEI12 values across different regions. While many predicted SPEI 
values exhibited minimum fluctuation, except the observed values displayed a wide range when SPEI fell below 
-2 or exceeded 2 in a few cases. However, the identified best model showed better accuracy in simulating the 
variability and quantile of SPEIs compared to others. All prediction models exhibited enhanced performance in 
modeling SPEI quantiles across various SPEI scales, particularly at higher orders.
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Partial dependence plot for fitted projection
We employed a multivariate regression model to assess the significance of weather variables, and their relative 
effect on predicting SPEIs. In our analysis, ICE curves (depicted in black) and their mean (illustrated as the 
red line) were employed to visualize the relationships between individual weather attributes and the predicted 
SPEIs. This approach allowed us to identify critical climatic threshold values (Fig. 9). The findings revealed that 
Bangladesh experienced a range of drought moderate to severity levels, with a deficit of 92, 95, 115, and 143 mm 
of average rainfall over one, three, six, and twelve months, respectively. Temperature played a crucial role, with 
minimum, maximum, and mean temperatures exceeding 20.7 ± 1.1, 30.9 ± 0.7, and 25.9 ± 0.8 ℃, respectively, 
resulting in severe drought conditions across these time scales. Similarly, we observed that extended periods of 
sunshine hours and relative humidity surpassing 6.3 ± 0.6 h and 77.3 ± 1.3%, respectively, contributed to drought 
conditions. Low wind speeds below 1.9 ± 0.2 m/s and high evapotranspiration exceeding 123 ± 10 mm at all 

Figure 5.   Heatmap illustrates the region-specific ML model selection for drought assessment based on R2, 
MAE, and RMSE values. Various colors indicate the strength of the R2 values. The region-specific ranking of ML 
models for predicting (a) SPEI1, (b) SPEI3, (c) SPEI6, and (d) SPEI12 was displayed by the added value label in 
the middle of the box. Greater R2 and lower MAE and RMSE values defined the performance ranking scale of 
the model.
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Figure 6.   The Sankey graph illustrates a visualization of drought prediction models in Bangladesh across 
different timescales and regions.

Figure 7.   Region-specific best predictive ML models’ performance.
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four-time scales also played a significant role in inducing drought in the country. Furthermore, the water balance 
was identified as a substantial factor affecting SPEI prediction. Below-average water balance levels, specifically 
116, 143, 148, and 190 mm for one, three, six, and twelve months, respectively, were associated with drought 
occurrences in Bangladesh. These findings provide critical insights into the complex interplay of weather vari-
ables and their impact on drought patterns in the study region.

Figure 8.   Box plot presentation of the best ML model performance of SPEI prediction for multiple time scales 
at the 35 investigated meteorological stations of Bangladesh.

Figure 9.   Fitted a partial dependence plot using the ICE curve method for each climatic feature against SPEI 
(yhat) for different time scales (a) SPEI1, (b) SPEI3, (c) SPEI6, and (d) SPEI12. Black and red curves denote ICE 
curves and their average value.
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Spatio‑temporal pattern of seasonal drought intensity and frequency
Using the region-specific best selected model based on SPEI influential meteorological parameters, we predicted 
the seasonal intensity and frequency of drought over time in Bangladesh (Fig. 10). We divided the forty years into 
four periods, i.e., Period I: 1981–1990, Period II: 1991–2000, Period III: 2001–2010, and Period IV: 2011–2020. 
Results showed that while drought intensity has decreased over time, but the return period has become more 
frequent. Spatially, the drought intensity shifted from the northern to central and southern zones of the country. 
In periodic assessment, the period with the most severe drought intensity was Period II. Notably, the frequency 
of drought has increased in Periods III and IV, indicating an increase in the number of droughts that occurred 
twice a decade in the past.

Season-wise, Pre-kharif was the most common season for drought compared to other seasons. During the 
Period I of the Pre-kharif season, the northern, eastern, and a few southern regions of the country were primar-
ily affected by severe drought. During Period II, the northern and the majority of the central regions were most 

Figure 10.   Spatio-temporal pattern of drought intensity and frequency based on the best predicted model for 
Pre-kharif, Kharif, and Rabi seasons over four decades (1981–1990, 1991–2000, 2001–2010, and 2011–2020) 
of Bangladesh. The authors used ArcGIS 10.8 (https://​www.​arcgis.​com/​index.​html) to generate the map, 
employing the administrative shapefile of Bangladesh in the process. Shapefile republished from the Bangladesh 
Agricultural Research Council (BARC) database (http://​maps.​barca​pps.​gov.​bd/​index.​php) under a CC BY 
license, with permission from Computer and GIS unit, BARC, original copyright 2014.

https://www.arcgis.com/index.html
http://maps.barcapps.gov.bd/index.php
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affected by drought, while the severity of drought in the north and center regions gradually relieved in Period 
III. In Period IV, the drought severity has been more prevalent in the Rangpur, Bogura, Sylhet, Mymensingh, 
Cumilla, Jashore, Sitakundu, Kutubdia and parts of southern regions in Bangladesh. Except for Rajshahi, the 
drought intensity of the Barind tract (located mainly in the northwestern part) was so unpredictable and has 
decreased significantly in recent decades. Noticeably, we found that the intensity of drought (> 1.0) in Chattogram 
division has been affected continuously over the last forty years. The highest frequency of drought was observed 
during Period III (2001–2010). Among all periods, the spatial patterns of drought frequency had changed, and 
high crop-intensive areas had become more vulnerable in the Pre-kharif season.

During the Kharif season (June-October), the incidence of drought was lower than in the Pre-Kharif season, 
but the pattern was comparable. In Period I of the Kharif season, the northern region of the country was hit 
by a severe drought, and the central half of the region was affected by a moderate drought. The intensity of the 
drought shifted from the north to the central region during the succeeding decade. During Period III, the major-
ity of the northwest region again witnessed a severe drought, while the rest of the county was affected by a mild 
drought. In Period IV, the frequency of drought increased relative to previous periods, and its intensity rose in 
the north-eastern, central, and southern regions of Bangladesh.

During the Rabi season in Period I, the southwest and a portion of the northern region experienced drought 
intensity larger than one, and drought frequency greater than three times the average. However, nearly the entire 
country faced drought conditions in the succeeding decade. Throughout the country, the drought intensity has 
reduced, but frequency increased in Period III. Again, during Period IV, the divisions of Barishal, Chattogram, 
and Sylhet, as well as parts of the central regions, had droughts with intensities more than one. This suggests that 
drought conditions were similarly erratic throughout the Rabi season.

Overall, the intensity and frequency of drought in Bangladesh have exhibited erratic patterns over the past 
forty years, with certain periods witnessing more severe droughts than others. Factors such as average rainfall, 
temperature, sunshine hours, relative humidity, wind speed, and evapotranspiration have collectively influenced 
drought intensity, along with water balance deficits. These factors have significantly influenced SPEI predictions, 
rendering regions with high crop intensity more susceptible. This underscores the crucial importance of com-
prehending the impacts of drought on food production and livelihoods in the region.

Discussion
Bangladesh experiences a predominantly tropical climate characterized by high temperatures and humidity, with 
droughts being more prevalent than other climate stressors in the country13. The occurrence, severity, and dura-
tion of droughts vary based on meteorological, hydrological, and agricultural factors95. In an effort to develop 
best ML-based models for predicting seasonal droughts in Bangladesh, this study utilized data from 35 meteoro-
logical stations at four distinct time scales. Applying 24 ML models based on the SPEI, we compared them with 
individual station predictions at different time intervals, contributing to the formulation of a spatio-temporal 
drought management program. In alignment with previous studies by Alamgir et al.96 and Yaseen et al.13, our 
SPEI1 results indicated a short-term rainfall deficit, SPEI3 and SPEI6 suggested agricultural drought, and SPEI12 
reflected reductions in river flow and groundwater levels, signifying hydrological droughts in Bangladesh.

The use of ML models guaranteed the robustness of the drought prediction. We observed precipitation, 
maximum and minimum temperature, and water balance was the essential elements for predicting droughts in 
Bangladesh. Similar findings has been found by Rahman and Lateh8. In Pakistan, relative humidity, temperature, 
and wind speed were the most significant meteorological characteristics for accurately predicting drought97. 
Using ML models, Zhang et al.46 determined that temperature and precipitation, air pressure, wind speed, relative 
humidity, and duration of sunshine have a substantial effect on drought in China. So, it is evident that the relative 
importance of meteorological parameters on drought prediction varies among geo-climatic and geographical 
segments. Zhang et al.46 also stated that rf, ranger, qrf, bagEarth, and svm were the best methods for annual 
drought prediction. In the context of model stability assessment, the ranger model has the highest chance for 1–5 
rating 90% of the time in SPEI1, SPEI3, and SPEI12 time scales. On another side, svm and bagEarth have 91% 
and 86% probability on the SPEI6 time scale, respectively. The svm-based models exhibited great temporal and 
geographical drought characterization in Pakistan97. Similarly, we observed that the performance and efficacy 
of the model varied based on the time frame and location of its application.

Our exemplary findings urged for the adoption of regional models instead of a single unified model, con-
sidering regional spatio-temporal heterogeneity. This conclusion is drawn from the analysis of influential mete-
orological variables on the SPEI depicted in Fig. 4, and the identification of region-specific best models shown 
in Fig. 6. These models indicate a spatio-temporal shift in both the intensity and frequency of seasonal drought 
patterns in Bangladesh, as illustrated in Fig. 10. Notably, the intensity of drought in climate hotspot regions, 
such as northwest and northern Bangladesh, has diminished and gradually shifted towards the center and south. 
Similar findings were reported by Mohsenipour et al.12. Projections until the end of the century (the 2070s) 
anticipate a decrease in maximum drought intensity98. Among the three seasons in Bangladesh, the Pre-kharif 
season witnessed the most significant decline in drought severity over the years. Comparable changes in drought 
patterns have been reported periodically in several Asian countries, including Nepal, Bhutan, Cambodia, Lao 
PDR, India, China, and Pakistan1,46,97,99–101.

Considering land use changes in drought prediction models is essential for a comprehensive understanding of 
drought dynamics. It enables improved assessments of water availability, vegetation responses, human-induced 
vulnerabilities, feedback mechanisms, and the design of effective adaptation and mitigation strategies102,103. By 
accounting for land use changes, enhance the accuracy and relevance of drought predictions, ultimately sup-
porting sustainable water resource management and resilience to drought events.
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Changes in drought duration and recurrent nature justified the trends in crop damage and lower cropping 
intensity in Bangladesh8. The Climate Change Cell of Bangladesh104 reported that droughts reduced T. Aman rice 
yields by 45–60% and Rabi crop yields by 50–70%. Boro (grown in the Rabi season), the major rice, is entirely 
dependent on irrigation. Prolonged water scarcity encourages excessive groundwater extraction for irrigation, 
which further depletes groundwater levels in drought-prone regions9. To cope with drought, many farmers have 
chosen drought-resistant rice varieties cultivation105,106, but adoption rates remain low107. Other adaptation strat-
egies included switching farming practices or changing the crop-sowing windows. Depending on the severity 
of the drought, some rural households may choose to migrate or change their livelihoods108. Overall, this could 
severely impact food supplies and endanger food security.

The economic losses associated with severe drought in specific countries can vary widely depending on fac-
tors such as the severity of the drought, the country’s economic resilience, and its dependence on agriculture 
and water resources109. The United States experienced substantial economic losses from drought, particularly in 
agricultural states such as California and Texas. Prolonged droughts can lead to reduced crop yields, increased 
irrigation costs, and even water shortages for urban areas. The economic impact can run into billions of dollars110. 
Australia has a history of severe droughts, which can devastate the agriculture sector. The "Millennium Drought" 
in the early 2000s, for example, resulted in significant economic losses, affecting everything from livestock farm-
ing to wine production111. Severe droughts in South Africa have led to water scarcity and reduced agricultural 
productivity. In recent years, the country has experienced drought-related losses in key sectors like maize pro-
duction and livestock farming112. India, with its large agricultural sector, is highly vulnerable to drought. Severe 
droughts can lead to crop failures, food shortages, and economic hardships for farmers. The economic losses 
can be substantial113. Droughts in Brazil impacted its important agricultural and livestock sectors. The country’s 
economy is closely tied to these industries, making drought-related losses a significant concern114. In countries 
with fragile economies like Somalia, severe drought had devastating effects, leading to food shortages, loss of 
livestock, and economic distress115. Ethiopia experienced recurring droughts, leading to food insecurity and 
economic challenges. Efforts to mitigate the impact of drought and build resilience are ongoing in the country116. 
In sum, the imperative to prioritize drought mitigation cannot be overstated for nations grappling with the pro-
found impacts of water scarcity. Making drought a top policy concern is paramount to developing comprehensive 
strategies encompassing preparedness, response, and recovery. As evident in the experiences of these countries, 
a forward-looking policy framework is crucial to building resilience, ensuring effective response mechanisms, 
and facilitating a swift recovery from the complexities posed by drought. By placing drought mitigation at the 
forefront of policy agendas, nations can proactively address the multifaceted challenges posed by water scarcity, 
safeguarding their economies, food security, and overall well-being for a more sustainable and resilient future.

The potential for future research on long-term drought prediction is vast and holds great significance in 
understanding and mitigating the impacts of drought events. In this regards, deep learning models, specifically 
transformers, could be used on drought prediction. Developing and refining climate models to better capture 
long-term climate variability and teleconnections can enhance our ability to predict droughts beyond seasonal 
time scales117. Incorporating more accurate representations of physical processes, feedback mechanisms, and 
regional climate dynamics can improve model performance for longer-term predictions118. Incorporating data 
from remote sensing, ground-based observations, and hydrological models can enhance our understanding of 
the complex feedbacks between the land surface and the atmosphere, enabling better predictions of long-term 
drought conditions119. Ensemble methods, data assimilation techniques, and hybrid models that combine the 
strengths of physical models and data-driven approaches may improve the skill and reliability of long-term 
drought predictions120,121. So, the understanding of long-term drought prediction and contribute to more effec-
tive planning, preparedness, and management of drought events at longer time scales is required.

Conclusions and policy recommendations
The objective of this research is to determine the most effective machine learning methods and categorize the key 
factors influencing drought prediction. Utilizing a dataset spanning four decades of different weather variables, 
we conducted extensive statistical analysis and employed data visualization techniques to gain insights from the 
data. We explored a total of twenty-four machine learning models, encompassing both regression and classifica-
tion approaches, which included linear, non-linear, and ensemble learning techniques. An inclusive assessment 
of the twenty-four models’ performance, by applying statistical metrics such as the R2, RMSE, and MAE method 
during the model validation phase. Results shows, four best ML methods, ranger, bagEarth, support vector 
machine, and random forest have been identified for the prediction of multi-scale drought indices. Our findings 
revealed that Bangladesh experienced varying levels of drought, ranging from moderate to severe and existing 
the shifting tendency by regions with specific deficits in average rainfall over different time periods. For instance, 
the deficit was 92, 95, 115, and 143 mm over 1, 3, 6, and 12-months’ time span, respectively. Temperature was 
identified as a crucial factor influencing drought conditions, with minimum, maximum, and mean temperatures 
exceeding certain thresholds resulting in severe drought conditions across different time spans. This informa-
tion is valuable for understanding how temperature variations can impact drought severity. Additionally, we 
observed that extended periods of sunshine hours and high relative humidity levels also contributed to drought 
conditions in the region. Low wind speeds and high evapotranspiration further exacerbated drought conditions.

Ranking of multi-model machine learning algorithms indicate the appropriate selective options for different 
stations getting best prediction accuracy during drought forecasting. Reliable and effective strategies for choos-
ing the right weather variables and constructing accurate predictive models can help to reduce the destructive 
impacts of drought. In this study, the application of ML models confirmed the efficacy and reliability of the 
research. Moreover, model selection for each region improves the study performance, and the output can be 
used to assess drought risk in Bangladesh. Our research proposes specific recommendations to address various 
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aspects of drought mitigation in Bangladesh. To enhance water resource management, we advocate for strate-
gies that improve water storage, allocation, and distribution systems, including the construction of reservoirs, 
promotion of water recycling and rainwater harvesting, and implementation of water conservation practices. In 
terms of promoting agricultural resilience, we highlight the importance of adopting climate-smart agricultural 
practices such as cultivating drought-tolerant crop varieties, implementing efficient irrigation techniques, practic-
ing crop rotation, promoting agroforestry, and adopting sustainable land management practices. Additionally, we 
emphasize the significance of strengthening early warning systems by integrating climate data, remote sensing 
technologies, and advanced modeling techniques to improve the accuracy and lead time of drought predictions. 
Furthermore, our recommendations aim to enhance drought preparedness and response through the develop-
ment of drought contingency plans, establishment of drought monitoring and assessment frameworks, and 
provision of financial and technical support to vulnerable communities. Lastly, we advocate for the formulation 
and implementation of policies that prioritize drought risk reduction and sustainable water resource manage-
ment, including the integration of drought mitigation strategies into national and regional development plans, 
establishment of regulatory frameworks, and allocation of financial resources for drought resilience projects. 
By including these specific recommendations, our study aims to bridge the gap between research findings and 
practical applications, providing policymakers and stakeholders with tangible guidance to effectively mitigate 
the impacts of droughts in Bangladesh.

Future research should seek to better understand the effects of climate change on drought intensity, impact 
mechanism on crop, and explore strategies for adapting to longer-term drought. Collaboration between research-
ers, local authorities, and community organizations can help to identify effective solutions that take into account 
local socio-economic contexts and water management strategies that are amenable to research. Additionally, 
more research is needed to assess mitigation strategies, such as better water infrastructure and conservation 
efforts, to lessen the impacts of droughts.

Data availability
The datasets used and/or analysed during the current study available from the corresponding author on reason-
able request.
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