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Immune, metabolic landscapes 
of prognostic signatures for lung 
adenocarcinoma based on a novel 
deep learning framework
Shimei Qin 1,2, Shibin Sun 1,2, Yahui Wang 1,2, Chao Li 1, Lei Fu 1, Ming Wu 1, Jinxing Yan 1, 
Wan Li 1, Junjie Lv 1* & Lina Chen 1*

Lung adenocarcinoma (LUAD) is a malignant tumor with high lethality, and the aim of this study was 
to identify promising biomarkers for LUAD. Using the TCGA-LUAD dataset as a discovery cohort, a 
novel joint framework VAEjMLP based on variational autoencoder (VAE) and multilayer perceptron 
(MLP) was proposed. And the Shapley Additive Explanations (SHAP) method was introduced to 
evaluate the contribution of feature genes to the classification decision, which helped us to develop 
a biologically meaningful biomarker potential scoring algorithm. Nineteen potential biomarkers for 
LUAD were identified, which were involved in the regulation of immune and metabolic functions in 
LUAD. A prognostic risk model for LUAD was constructed by the biomarkers HLA-DRB1, SCGB1A1, 
and HLA-DRB5 screened by Cox regression analysis, dividing the patients into high-risk and low-
risk groups. The prognostic risk model was validated with external datasets. The low-risk group was 
characterized by enrichment of immune pathways and higher immune infiltration compared to the 
high-risk group. While, the high-risk group was accompanied by an increase in metabolic pathway 
activity. There were significant differences between the high- and low-risk groups in metabolic 
reprogramming of aerobic glycolysis, amino acids, and lipids, as well as in angiogenic activity, 
epithelial-mesenchymal transition, tumorigenic cytokines, and inflammatory response. Furthermore, 
high-risk patients were more sensitive to Afatinib, Gefitinib, and Gemcitabine as predicted by the 
pRRophetic algorithm. This study provides prognostic signatures capable of revealing the immune and 
metabolic landscapes for LUAD, and may shed light on the identification of other cancer biomarkers.

Cancer is still a global major public health  problem1. According to the latest global cancer statistics estimates, lung 
cancer remains the leading cause of cancer death and the second most commonly diagnosed cancer, accounting 
for approximately 20% of cancer-related mortality and 10% of  incidence2. Non-small cell lung cancer (NSCLC) 
accounts for approximately 85% of lung cancer  cases3, with lung adenocarcinoma (LUAD) as its main histologic 
subtype and its incidence is still  increasing4. Despite significant advances in diagnosis and treatment, the 5-year 
survival rate of LUAD is only 4–17%5. Therefore, screening and poor prognosis of lung adenocarcinoma remains 
an ongoing challenge. Accumulating evidence suggests that biomarker identification and application are of major 
importance for timely diagnosis and accurate prognosis of  cancer6,7.

Machine learning has been widely used in biomarker discovery studies for  cancer8–10. For example, based on 
breast cancer gene expression datasets, Zare et al.11 identified 59 novel inflammatory breast cancer-specific gene 
signatures using a random forest approach. Zhang et al.12 used a support vector machine algorithm to excavate 
a m6A target miRNAs diagnostic signature for cancer detection and successfully implemented it for lung can-
cer. Machine learning algorithms were deployed to develop tumor-infiltrating immune cell associated RNAs to 
predict survival outcomes in LUAD  patients13. Deep learning has gained increasing attention in the research of 
cancer signatures  identification14,15. The denoising autoencoder, an unsupervised deep learning algorithm, has 
been successfully applied to LUAD molecular signature  mining16. Divate et al.17 presented a robust neural net-
work model providing gene signatures for accurate classification of cancers based on gene expression data. Three 
feed-forward neural networks were employed to RNA-seq samples from 18 solid tumor types and recognized 
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transcriptome signatures that were consistent across  tumors18. Deep learning methods are capable of identifying 
highly complex patterns in large datasets compared to common machine learning techniques, which help to 
efficiently identify molecular signatures associated with  cancer19.

Variational autoencoder (VAE) is a deep generative model based on variational Bayesian inference designed 
to learn nonlinear latent representations of high-dimensional  data20. VAE has shown encouraging results in 
capturing biologically meaningful low-dimensional representations of multi-omics data. Daniel et al.21 utilized 
VAE to learn a generalized latent representation of large-scale metabolomics data, and VAE representation 
outperformed both linear and nonlinear principal component analysis. VAE models trained on gene expression 
data have good ability to identify generalizable biological  representations22. In addition, VAE has been applied 
in multi-omics representation learning such as proteomics and  epigenomics23,24. Evidently, VAE is a powerful 
method for dimensionality reduction. Neural networks are commonly employed in the current deep learning 
field, among which multilayer perceptron (MLP) is widely used in cancer diagnosis research. Lorencin et al.25 
combined MLP and Laplacian edge detector to achieve bladder cancer detection. Deep learning methods includ-
ing MLP have revealed salivary glycopatterns as biomarkers for the diagnosis of papillary thyroid  cancer26. MLP 
has also been applied to screening for breast, colorectal, and prostate  cancers27–29. Shapley Additive Explanations 
(SHAP) is derived from the Shapley value in cooperative game theory, which aims to tackle the problem of lack of 
interpretability faced by machine  learning30. In a study by Chakraborty et al.31, SHAP facilitated the identification 
of prognostic factors for breast cancer by enhancing the interpretability of the extreme gradient boosting model. 
Multiple studies have utilized SHAP to interpret the output of machine learning models to screen out important 
 features32–34. SHAP is considered a state-of-the-art machine learning  interpreter35. The magnitude and direction 
of the influence of features on the output variables can be assessed by calculating SHAP values.

Here, we developed a LUAD biomarker potential scoring algorithm based on a novel deep learning frame-
work, variational autoencoder joint multilayer perceptron (VAEjMLP), which combined the feature dimen-
sionality reduction and classification prediction tasks and efficiently evaluated the importance of each feature 
gene by applying SHAP. This work successfully identified 19 LUAD biomarkers (LABs) and constructed a LUAD 
prognostic risk model. The functions mediated by the biomarkers in LUAD were investigated. The metabolic and 
immune landscapes of the prognostic risk model and its associations with angiogenesis, epithelial-mesenchymal 
transition (EMT), tumorigenic cytokines, and inflammation were explored. Our study provided reliable biomark-
ers for LUAD and may help to more accurately determine the survival of LUAD patients.

Materials and methods
LUAD data sources and preprocessing
The RNA-seq expression data and clinical information for LUAD were retrieved from The Cancer Genome Atlas 
(TCGA) (https:// tcga- data. nci. nih. gov/ tcga/) data portal. In constructing the prognostic risk model, the samples 
were filtered by clinical information including age, sex, survival time, overall survival (OS) status, pathologic 
T, N, M, stage, and history of previous cancer diagnosis, and a total of 482 patients with LUAD were included 
in the study. The  GSE72 094 derived from The Gene Expression Omnibus (GEO)36 (http:// www. ncbi. nlm. nih. 
gov/ geo) database was used as a validation set for the prognostic risk model, in which 393 LUAD samples with 
complete clinical information were included in this study. Single-cell RNA sequencing (scRNA-seq) data for 11 
cases of distal normal lung tissue and 15 cases of primary LUAD were acquired from the GEO database, with 
accession number  GSE13 1907. The  GSE13 1907 dataset was used to analyze the expression of prognostic risk 
factors at the single-cell transcriptome level.

Methods
Identifying reliable biomarkers is crucial for improving the prognosis of LUAD. Deep learning has been widely 
used in the exploration of biological problems. In this study, we proposed a novel deep learning framework based 
on VAE, MLP, and SHAP to identify biomarkers and construct a prognostic risk model for LUAD (the workflow 
of our investigation is shown in Fig. 1).

LUAD biomarker identification framework
In order to mine biomarkers for LUAD, it is first necessary to identify genes that are highly altered between 
cancer and normal states. Based on the TCGA LUAD expression data consisting of read counts, the differen-
tially expressed genes between normal and cancer samples were identified using the negative binomial distri-
bution model of the R package “edgeR” (version 3.40.2), with a threshold set at | log2(fold change) |> 1 and 
p-value < 0.0537. To identify more stable differentially expressed genes, random sampling was performed on 
normal and cancer samples in a 1:6 ratio for 1000 times, where all normal samples were taken in each sampling. 
Differential expression analysis was conducted on each of the 1000 sets of samples and then the frequency of dif-
ferential expression of each gene was counted. All differentially expressed genes, as well as genes with a frequency 
not less than 950 or 750, were selected as subsequent input features, respectively. The joint framework VAEjMLP 
was developed by combining the VAE model with MLP to perform the feature dimensionality reduction and 
classification prediction tasks simultaneously, allowing efficient representation learning with the help of the 
classification task. VAE consists of an encoder and a decoder and is an important generative model for dealing 
with feature representation capabilities. In this study, the encoder of the VAE is an inference model modelled by 
a neural network with the variational parameter φ as a learnable parameter, defined as an approximate posterior 
distribution, which is further assumed to be a Gaussian distribution:

(1)z = encoder(x) ∼ qϕ(z|x)

https://tcga-data.nci.nih.gov/tcga/
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE72094
http://www.ncbi.nlm.nih.gov/geo
http://www.ncbi.nlm.nih.gov/geo
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE131907
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE131907
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Figure 1.  Flowchart of this study. Step 1, Constructing a joint framework VAEjMLP and then using the output 
of VAEjMLP as the input to Shapley Additive Explanations (SHAP), based on which a biomarker potential 
scoring algorithm was developed. Step 2, Enrichment analysis of biomarkers. Step 3, Construct a prognostic risk 
model for Lung adenocarcinoma (LUAD) by examining the prognostic significance and biological functions of 
the potential biomarkers, and analyze the model in multiple aspects. “DEG” means differentially expressed gene 
and “ICB” means immune checkpoint blockade.
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where z is the latent variable and x is the original input. The encoder will output the mean, µ , and variance, σ , of 
the latent distribution, allowing for sampling from the hidden variable space. Since this operation of sampling 
is non-differentiable, to make the model trainable, sampling was performed by re-parameterization:

where ǫ ∼ N(0, 1) . The decoder still modelled by a neural network uses z as input to reconstruct the original 
data to generate x′:

where θ is the learnable parameter of the decoder and pθ (x|z) follows a Bernoulli distribution. The objective 
function of the VAE is given by:

where BCE is the binary cross entropy used to compute the distance between the original input x and the recon-
structed data x′ , and DKL is the difference between the learned distribution and the standard Gaussian distribu-
tion. The VAE maps the original input to a low-dimensional latent space, which achieves feature dimensionality 
reduction. The latent space representation was then used as an input to the MLP to perform the classification 
task. The MLP adopted the cross entropy as a loss function, which can be expressed as:

where y is the true label and y′ is the predicted label. Ultimately, the loss function of the VAEjMLP can be 
expressed as:

where � is the hyperparameter that balances the training weights of VAE and MLP and was set to 0.001. The 
training objective of VAEjMLP is namely to minimize the loss function LVAE−MLP . To train the VAEjMLP, we 
had randomly split the sample into an 80% training set and a 20% test set. The trained VAEjMLP was then passed 
into SHAP to quantify the contribution of each feature to the prediction results. SHAP interprets the predicted 
value y(i) of sample x(i) as the sum of the attributions of each feature in the sample, where the attributions are 
the SHAP values, which satisfy the following formula:

where ybase is the model’s baseline, which is the mean prediction of all training samples, N represents the number 
of feature genes, and f

(
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 is the SHAP value of the j-th feature of the sample x(i) . f
(
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> 0 indicates that 
the feature is a positive contributor to the prediction, and vice versa, indicating that the feature is a negative 
contributor to the prediction. SHAP outputs the contribution rate of each feature gene in each sample. Based on 
the positive or negative impact of feature genes on the predicted output, this study proposed a biomarker potential 
scoring algorithm to assess the potential of the feature genes as markers for LUAD. First, the distribution of the 
data formed by all contribution rate values for all feature genes was examined, and a threshold for significant 
contribution was determined based on the distribution. In this study, a positive contribution rate indicates that 
the feature gene tends to classify the sample as a cancer sample and, conversely, a negative contribution rate when 
classified as a normal sample. For each feature gene g with significant contribution, there exists the number of 
times CP counted as a significant positive contribution in cancer samples and the number of times CN counted 
as a significant negative contribution in normal samples. The number of cancer samples is Ntumor and the number 
of normal samples is Nnormal , then the proportion of feature gene g that make a significant positive contribution 
to cancer samples is Ptumor =

CP
Ntumor

 , and the proportion of feature gene g that make a significant negative con-
tribution to normal samples is Pnormal =

CN
Nnormal

 . Then, the biomarker potential score Score
(

g
)

 for feature gene g 
is calculated as follows,

The biomarker potential scores of all feature genes with significant contributions were calculated, and the 
25th percentile of all scores in descending order was used as the lower bound to screen for potential LABs. The 
framework for identifying LABs was implemented in python using the PyTorch SHAP software  packages38,39.

Enrichment analysis of LABs
Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis was per-
formed using the R package “clusterProfiler”40. Biological pathways of target mitochondrial genes were annotated 
by MitoCarta 3.0 (http:// www. broad insti tute. org/ mitoc arta)41 database. Gene set variation analysis (GSVA) is 
an unsupervised method that calculates enrichment scores for specific gene sets in each  sample42. We used the 
GSVA to assess and compare differences in enrichment of functional gene sets across samples, with reference gene 
sets from the KEGG database resource (http:// www. genome. jp/ kegg/)43. Gene set enrichment analysis (GSEA) is 
used to assess the distribution trend of genes in a predefined gene set in a gene list ranked by phenotypic related-
ness to determine their contribution to the  phenotype44. In this study, GSEA was applied to identify biological 

(2)z = µ+ σǫ

(3)x′ = decoder(x) ∼ pθ (x|z)

(4)LVAE = BCE
(

x, x′
)

+ DKL(N(µ, σ)�N(0, 1))

(5)LMLP = CE
(

y, y′
)

(6)LVAE−MLP = �LVAE + LMLP

(7)y(i) = ybase +
∑N

j=1 f
(

x
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j

)

(8)Score
(

g
)

=
2×Ptumor×Pnormal
Ptumor+Pnormal

http://www.broadinstitute.org/mitocarta
http://www.genome.jp/kegg/
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functions associated with LUAD. | NES (normalized enrichment score) | > 1, Permutation test p-value < 0.05 
and false discovery rate (FDR) < 0.25 were considered statistically significant.

Constructing a prognostic risk model for LUAD
Univariate Cox regression analysis was performed on each LABs to screen genes significantly associated with OS 
in LUAD. Then, the screened genes were further filtered for biological functions and the regression coefficients 
of the genes were calculated using multivariate Cox regression analysis. A prognostic risk score was generated 
for each patient using the following formula,

where M represents the number of samples, CoefGene(i) represents the regression coefficient of Gene(i) and 
ExpGene(i) represents the expression level of Gene(i) . The samples were divided into high-risk and low-risk groups 
based on the median risk score.

Enrichment analysis of the high- and low-risk groups
GO enrichment analysis was performed for differentially expressed genes between the high- and low-risk groups. 
Functional differences between the high- and low-risk groups were further analyzed by calculating enrichment 
scores for the hallmark and immunologic gene sets between the two groups using the GSVA method. The 
hallmark gene sets and immunologic signature gene sets were obtained from “h.all.v2023.1” and “c7.immune-
sigdb.v2023.1” of The Molecular Signatures Database (MSigDB) (https:// www. gsea- msigdb. org/ gsea/ msigdb)44, 
respectively.

Characterization of immune, metabolic, and other tumor-related factors
The relative infiltration abundance of 22 immune cell types in each sample was estimated based on gene expres-
sion data using the  CIBERSORTx45 online tool. The R package “estimate” calculated stromal and immune scores 
to estimate the abundance of stromal cells and the level of immune cell infiltration in the sample’s tumor microen-
vironment (TME) and combined the two scores to infer tumor  purity46. Metabolic reprogramming is recognized 
as one of the key features of malignant tumors, with reprogramming of glycolysis, amino acid metabolism and 
lipid metabolism providing a tremendous energy demand for cancer cell  proliferation47. Angiogenesis, EMT, 
tumorigenic cytokines and inflammation play crucial roles in tumor growth and  progression48–51. Angiogen-
esis, EMT and tumorigenic cytokines-related genes were collected from the published literature of Qiu et al.52. 
Genes related to aerobic glycolysis, metabolism of glutamine, serine, glycine, arginine, methionine, tryptophan, 
fatty acids and sphingolipids, and inflammatory response were downloaded from MSigDB (https:// www. gsea- 
msigdb. org/ gsea/ msigdb) database. Reference collections include “h.all.v2023.1”, “c2.cp.wikipathways.v2023.1”, 
“c2.cp.reactome.v2023.1”, “c2.cp.kegg.v2023.1” and “c5.go.bp.v2023.1”. Metabolic reprogramming, angiogenic 
activity, EMT, tumorigenic cytokines and inflammatory response scores were calculated for each sample by 
single-sample gene set enrichment analysis (ssGSEA) using the R package “GSVA”42.

Prediction of immunotherapy response
The R package “EaSIeR” was used to predict the likelihood of patient response to immune checkpoint inhibitors 
(ICI). “EaSIeR” employs five types of features describing the immune TME to construct a model and uses tran-
scriptome-based immune response scores (cytolytic activity (CYT), Roh immune score (Roh_IS), chemokines, 
Davoli immune signature (Davoli_IS), IFNy signature (IFNy), Expanded immune signature (Ayers_expIS), T-cell 
inflamed signature (Tcell_inflamed), T-cell inflamed signature (RIR), Tertiary lymphoid structures signature 
(TLS)) as learning targets to predict patients’ ICI  response53. Higher scores indicate a higher likelihood that a 
patient will respond to ICI therapy.

Analysis of prognostic risk factors
The expression of prognostic risk factors and their correlations with immune-related genes and immune check-
points were analyzed. Immune-related genes were downloaded from the TISIDB (http:// cis. Hku. hk/ TISIDB/) 
 database54 and 79 immune checkpoints were from Hu et al.55.

Statistical analysis
All statistical analyses were performed based on R software (4.2.1). Kolmogorov-Smirnov test was used for testing 
normality. Two-tailed Student’s t-test was used to estimate the difference between the two groups when the data 
obeyed normal distribution, otherwise the Wilcoxon rank-sum test was performed. Spearman’s rank correlation 
analysis was employed to explore the correlation between the variables. If not mentioned, p < 0.05 was considered 
statistically significant. If not specifically labelled, for the symbolic marking of statistical significance, we used 
the following convention, “ns”: p > 0.05; “*”: p <= 0.05; “** “: p <= 0.01; “***”: p <= 0.001; “****”: p <= 0.0001.

Results
Potential biomarkers for LUAD
The TCGA database contains 539 cancer samples and 59 normal samples corresponding to LUAD. To identify 
stable differentially expressed genes, 1000 random samplings were performed between normal and cancer sam-
ples in a ratio of 1:6 (59:354). A total of 8836 differentially expressed genes were screened in the 1000 sample 
sets. Among them, 80.24% of the genes were differentially expressed with a frequency of 1000, 7471 genes had a 

(9)RiskScore =
∑M

i=1 CoefGene(i) × ExpGene(i)

https://www.gsea-msigdb.org/gsea/msigdb
https://www.gsea-msigdb.org/gsea/msigdb
https://www.gsea-msigdb.org/gsea/msigdb
http://cis.Hku.hk/TISIDB/
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frequency not less than 950, and 7723 genes had a frequency not less than 750 (Fig.  2A). For each of the above 
1000 sets of samples, three groups of differentially expressed genes screened according to frequency thresholds 
were respectively used as feature inputs for VAEjMLP. For the VAEjMLP model, it used a VAE model consisting of 
an encoder and decoder modeled by a neural network, respectively, to achieve feature dimensionality reduction, 
and input the reduced features into an artificial neural network MLP for classification prediction. In VAEjMLP, 
the encoder part of VAE consisted of four hidden layers, with 1024 neurons in hidden layer 1 and hidden layer 2, 
512 in hidden layer 3, and 128 in hidden layer 4, and the decoder had a mirrored structure with the encoder (Fig.  
2B). The latent vector of dimension 128 obtained from VAE training was passed into a three-layer MLP with 128 
neurons in the first layer, 64 in the second layer and the third layer as the output layer (Fig. 2B). Both VAE and 
MLP used the Leaky ReLU activation function. The number of epochs was set to 250, with the first 50 epochs 
for unsupervised training of VAE, the 51st–100th epochs for classification training of MLP, and the 101st–250th 
epochs for joint training of VAEjMLP. The area under the curve (AUC) of the trained VAEjMLP model reached 
over 0.999, and the accuracy, precision, and recall all reached over 0.99, 0.955, and 0.994, respectively. For each 
set of input samples, three groups of significant contributing genes were screened using ±5%, ±1%, and ±0.5% 
of the distribution formed by all the contribution values of the SHAP output as thresholds, respectively. Using 
the biomarker potential scoring algorithm, each significant contributing gene received its scores in each set of 
samples. The quartiles of the descending biomarker potential scores of the three groups of significantly contrib-
uting genes were used as lower bounds to screen the genes, respectively, and the intersection was considered as 
candidates. When all differentially expressed genes, genes with a frequency not less than 750, and genes with 
a frequency not less than 950 were used as features, respectively, the number of candidate genes identified in 
1000 sample sets was 127–183, 109–137, and 92–132, respectively (Fig. 2C). Eventually, the 19 shared genes of 
all candidates were identified as potential LABs (Fig. 2D).

Figure 2.  Potential biomarkers for LUAD. (A) Number of input features for the 3 sets. (B) Number of neurons 
in each hidden layer of VAEjMLP. (C) Number of candidate genes identified in each of the 1000 sample sets 
corresponding to the three sets of input features. Where “All”, “Freq_750”, “Freq_950” represent three sets of 
input features respectively. (D) The identified biomarkers for LUAD.
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Association analysis of LABs with LUAD
LABs consist of 15 nuclear and 4 mitochondrial genes. The biological functions of nuclear genes were explored 
using GO and KEGG enrichment analysis. The results demonstrated that nuclear genes were mainly enriched 
in immune pathways, such as MHC protein complex assembly, Th1 and Th2 cell differentiation, antigen pro-
cessing and presentation, regulation of T cell activation, etc. (Fig. 3A,B). In addition, four mitochondrial genes 
(MT-ND6, MT-ND5, MT-CO3, MT-CO2) were all involved in driving mitochondrial oxidative phosphoryla-
tion (OXPHOS) (Fig. 3C). The OXPHOS system serves as the center of cellular metabolism and is critical for 
energy production in eukaryotic  cells56. Besides, the GSVA results showed that immune pathways, such as 
platelet activation, leukocyte transendothelial migration, natural killer cell mediated cytotoxicity, and Th1 and 
Th2 cell differentiation, were mostly enriched in the normal group as compared to the LUAD group (Fig. 3D). 
Simultaneously, the normal and LUAD groups presented significant differences in the enrichment of metabolic 
pathways (e.g., fructose and mannose metabolism, arginine and proline metabolism, and cholesterol metabolism) 
(Fig. 3E). The GSEA was also employed to evaluate the signaling pathways involved in nuclear genes. The results 
indicated that nuclear genes of LABs were negatively linked to immune pathways (Th17 cell differentiation, Th1 
and Th2 cell differentiation, Phagosome, intestinal immune network for IgA production, and hematopoietic cell 
lineage) in LUAD (Fig. 3F–J). These results illustrated that LABs were implicated in the regulation of immune 
and metabolic functions in LUAD.

Construction and validation of a prognostic risk model
The univariate Cox regression analysis showed that HLA-DRB1, SCGB1A1, SFTPB, RNASE1, SLC34A2, and 
HLA-DRB5 among the LABs were significantly associated with LUAD survival (Fig. 4A). Further analysis was 
conducted using survival-related biomarker sets that were enriched in the same GO entries. There were four sets 
of genes enriched in the same GO entries (Fig. 4B): HLA-DRB1/HLA-DRB5, HLA-DRB1/SCGB1A1/HLA-DRB5, 
HLA-DRB1/SCGB1A1, and HLA-DRB1/SFTPB/HLA-DRB5. The Kaplan-Meier survival curve analysis for all four 
gene sets showed significant associations with LUAD survival. More specifically, the significant p-values for the 
HLA-DRB1/HLA-DRB5 (Fig. 4C), HLA-DRB1/SCGB1A1 (Fig. 4D), and HLA-DRB1/SFTPB/HLA-DRB5 (Fig. 4E) 
sets were 0.01, 0.0024, and 0.0014, respectively. The HLA-DRB1/SCGB1A1/HLA-DRB5 set presented the most sig-
nificant difference in survival rates (p-value=0.00055) (Fig. 4F). Ultimately, the set HLA-DRB1/SCGB1A1/HLA-
DRB5, which was most correlated with LUAD survival, was selected to construct the LUAD prognostic risk 
model and risk scores for patients were calculated. The regression coefficients for HLA-DRB1, SCGB1A1, and 
HLA-DRB5 in the LUAD prognostic risk model were  − 7.36e−05,  − 1.51e−03, and  − 7.43e−04, respectively. It 
can be observed that the patients with higher risk scores had poorer OS (Fig. 4F). The univariate Cox regres-
sion analysis suggested that pathological T, N, M and stage staging were significantly associated with survival 
in LUAD patients (Fig. 4G). A multivariate Cox regression analysis was performed to explore the predictive 
independence of the prognostic risk model by combining these survival-related clinicopathological factors with 
the risk score. The results demonstrated that the risk score (HR = 2.33, 95% CI = 1.38–3.9, P = 1e−3) served as 
an independent risk factor for OS in patients with LUAD (Fig. 4H). The    GSE72 094 dataset derived from the 
GEO database validated the accuracy of the prognostic risk model (Fig. 4I,J). The association of the risk score 
with survival status and prognostic risk factors was further explored (Fig. 4K). Overall, a higher risk score was 
associated with a higher number of deaths, indicating a poorer prognosis and higher risk of death in the high-risk 
group. Compared to the low-risk group, the prognostic risk factors SCGB1A1, HLA-DRB1, HLA-DRB5 were all 
down-regulated in the high-risk group.

Enrichment analysis of the prognostic risk model
Genes differentially expressed in the high- and low-risk groups were identified, and 459 up-regulated genes and 
352 down-regulated genes were recognized in the high-risk group (Fig. 5A). The up-regulated genes were mainly 
enriched in various metabolic pathways, secretion and transportation of substances, and pathways related to 
development (Fig. 5B). The down-regulated genes were predominantly enriched in various immune-related path-
ways (Fig. 5C). To further explore the differences in biological functions of different risk groups, we conducted 
GSVA analysis. Among the 50 cancer hallmark gene sets, significant enrichment differences were observed in 37 
gene sets between the high and low-risk groups (Fig. 5D). Compared with the low-risk group, the high-risk group 
was mainly accompanied by the enrichment of cell proliferation pathways (such as E2F targets, G2M checkpoint, 
MYC targets, etc.) and metabolic pathways (such as MTORC1 signaling, glycolysis, oxidative phosphorylation, 
etc.) (Fig. 5D). Also of concern was the significant down-regulation of the activity of immune-related pathways 
in the high-risk group compared to the low-risk group, such as IL2/STAT5 signaling, IL6/JAK/STAT3 signaling, 
inflammatory response, and other pathways (Fig. 5D). Both GO and GSVA analyses illustrated that metabolism-
related pathways were primarily enriched in the high-risk group and immune-related pathways were mostly 
enriched in the low-risk group. The characteristics of unlimited tumor proliferation often require alterations in 
energy  metabolism57, and studies have indicated that increased expression of glycolytic enzymes correlates with 
poor prognosis in lung cancer  patients58,59. The immune system plays a dual role of both promotion and inhibi-
tion of cancer  development60, and the signaling pathways IL2/STAT5 and IL6/JAK/STAT3 were closely associated 
with the prognosis of pancreatic ductal adenocarcinoma and olfactory  neuroblastoma61,62. The immunologic 
signature gene sets derived from the MSigDB database represent immune states and perturbations signatures. 
Therefore, we used GSVA analysis to compare the differences in the enrichment of immunologic signature gene 
sets between the high- and low-risk groups. Among the 4,872 immunologic signature gene sets, there were dif-
ferences in enrichment in 3,574 gene sets between the two risk groups. Specifically, the high-risk group exhibited 
significantly lower enrichment scores in 2,585 immunologic signature gene sets compared to the low-risk group. 

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE72094
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Not only that, the top 100 gene sets with the most significant differences were all showed down-regulation of 
activity in the high-risk group (Fig. 5E presents the top 20 gene sets with the most significant differences).

Figure 3.  Association analysis of LUAD biomarkers (LABs) with LUAD. (A) KEGG, and (B) GO enrichment 
analysis of LABs. (C) Pathway annotation of mitochondrial genes. (D–E) GSVA analyses in TCGA LUAD. (F–J) 
GSEA analyses based on TCGA LUAD.
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Figure 4.  The construction of the prognostic risk model. (A) Forest plot of univariate Cox regression analysis 
for the LABs. Genes with p-value < 0.05 are highlighted with a grayish blue background. (B) Enriched for genes 
with the same GO entry. (C–F) Kaplan–Meier survival curve analysis for the gene sets HLA-DRB1/HLA-DRB5, 
HLA-DRB1/SCGB1A1, HLA-DRB1/SFTPB/HLA-DRB5, and HLA-DRB1/SCGB1A1/HLA-DRB5. (G) Forest 
plot of univariate Cox regression analysis for clinical environmental factors. Factors with p-value < 0.05 are 
highlighted with a grayish blue background. (H) Forest plot of multivariate Cox regression analysis of the risk 
score combined with survival-related clinical factors. (I) Kaplan–Meier survival curve analysis of the validation 
set. (J) Multivariate Cox regression analysis of the validation set. (K) Upper panel: risk scores of patients in 
ascending order. The horizontal dashed line represents the median risk score. Middle panel: survival time of 
patients in ascending order of risk score. Bottom panel: heatmap of gene expression levels in patients sorted by 
ascending risk score.



10

Vol:.(1234567890)

Scientific Reports |          (2024) 14:527  | https://doi.org/10.1038/s41598-023-51108-x

www.nature.com/scientificreports/

Figure 5.  Enrichment analysis of the prognostic risk model. (A) Differentially expressed genes between the 
high- and low-risk groups. (B, C) Clustering maps of GO entries enriched by up-regulated genes in the high-risk 
and low-risk groups. Word cloud annotations are appended on the right, and font sizes reflect word frequencies. 
(D) Enrichment analysis of cancer hallmark gene sets with differential enrichment between high-risk and 
low-risk groups. Vertical dashed lines represent significance thresholds. (E) Heatmap of enrichment scores for 
immunologic signature gene sets differentially enriched in the high-risk and low-risk groups.
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Immune landscapes for the prognostic risk model
The high-risk group presented significantly down-regulation of immune pathway activity compared to the low-
risk group. Therefore, the CIBERSORT algorithm was employed to calculate the immune infiltration of the 
high-risk and low-risk groups, while the ESTIMATE algorithm was utilized to assess the immune TME in both 
groups. The level of infiltration of 22 immune cell types in LUAD patients was estimated using the CIBERSORT 
algorithm. The proportions of 13 immune cell types infiltrated showed significant differences between the two 
risk groups. The infiltration proportions of B cells naive, eosinophils, macrophages M0, mast cells activated, 
plasma cells, and T cells CD4 memory activated were higher in the high-risk group than in the low-risk group 
(Fig. 6A). The correlation between the risk score and the level of infiltration of these six immune cells was 
significant and positive (Fig. 6B). B cells memory, dendritic cells resting, macrophages M2, mast cells resting, 
monocytes, T cells CD4 memory resting, and T cells regulatory (Tregs) infiltration levels were higher in the low-
risk group (Fig. 6A). The infiltration proportions of these 7 immune cell types showed a significant and negative 
correlation with the risk score (Fig. 6B). Several LUAD survival studies have demonstrated that macrophages 
M0, mast cells activated and T cells CD4 memory activated were accompanied by higher levels of infiltration in 
high-risk groups, and infiltration levels of B cells memory, dendritic cells resting, mast cells resting, monocytes, 
T cells CD4 memory resting and T cells regulatory (Tregs) were higher in low-risk  groups63–65. This aligns with 
the findings of our study. Stromal scores for stromal cell abundance, immune scores for the extent of immune 
cell infiltration and tumor purity in the TME were estimated using ESTIMATE for different risk groups. The 
results indicated that patients in the high-risk group had higher tumor purity than those in the low-risk group 
(p < 2.2e−16) (Fig. 6C). The risk score was positively correlated with tumor purity in LUAD patients (R = 0.55, 
p < 2.2e−16) (Fig. 6D). Compared to the low-risk group, patients in the high-risk group had significantly lower 
stromal scores (p = 3.2e−16), immune scores (p < 2.2e−16), and ESTIMATE scores (p < 2.2e−16) (Fig. 6E,G,I). 
The risk score showed negative correlations with the stromal score (R = − 0.43, p < 2.2e−16), the immune score 
(R = − 0.59, p < 2.2e−16), and the ESTIMATE score (R = − 0.55, p < 2.2e−16) (Fig. 6F,H,J). Taken together, we 
thought that the immune response effect in the high-risk group may be inferior to that of the low-risk group. 
Multiple studies have separately constructed survival models for LUAD, and their findings consistently demon-
strated that LUAD patients with high-risk scores exhibited lower immune scores, stromal scores, ESTIMATE 
scores, and higher tumor  purity64,66–68. This provides valid support for our findings.

Metabolism landscapes and tumor-related factors analysis for the prognostic risk model
Cancer cells reprogram their metabolic pathways to meet the needs of tumor initiation and  progression69,70. 
GO and GSVA analyses revealed significant metabolic differences between the high- and low-risk groups. The 
metabolic reprogramming differences between the high- and low-risk groups were investigated by calculating the 
reprogramming scores of glycolysis, amino acid metabolism, and lipid metabolism in LUAD patients. Aerobic 
glycolysis is a key metabolic hallmark of cancer, promoting the survival and proliferation of cancer cells. The pref-
erence of cancer cells for glycolysis is often associated with poorer clinical  outcomes71. The risk score was posi-
tively correlated with the aerobic glycolysis reprogramming score (R = 0.29, p = 1.1e−10) (Fig. 7A). The patients 
in the high-risk group had significantly higher aerobic glycolysis reprogramming scores (p = 2.9e−06) than those 
in the low-risk group (Fig. 7A). Amino acid metabolism is one of the pivotal nutrients supporting cancer cell 
growth, and the metabolism of glutamine, methionine, serine, glycine, arginine, and tryptophan is deregulated in 
many  cancers72–76. The risk score was positively correlated with the metabolic reprogramming scores of glutamine 
(R = 0.58, p < 2.2e−16) and methionine (R = 0.15, p = 1.2e−3) (Fig. 7B,C). The metabolic reprogramming scores 
of glutamine (p < 2.2e−16) and methionine (p = 2.4e−2) were both higher in the high-risk group than in the 
low-risk group (Fig. 7B,C). Studies have shown that the metabolism of glutamine and methionine not only drives 
tumor cell growth, but also creates a TME that benefits from tumor immune  escape77–79. Meanwhile, significant 
positive correlations were observed between the risk score with the metabolic reprogramming scores of serine 
(R = 0.37, p < 2.2e−16) and glycine (R = 0.39, p < 2.2e−16) (Fig. 7D,E). The high-risk group presented higher 
metabolic reprogramming scores of serine (p = 3e−09) and glycine (p = 3.6e−13) (Fig. 7D,E). The upregulation 
of serine\glycine metabolism is associated with poor clinical outcomes in several  cancers80. While the patients’ 
metabolic reprogramming scores for arginine (R = − 0.32, p = 8e−13) and tryptophan (R = − 0.24, p = 5.8e−08) 
were negatively correlated with the risk scores (Fig. 7F,G). The metabolic reprogramming scores of arginine (p = 
3.2e−08) and tryptophan (p = 1.3e−4) were lower in the high-risk group (Fig. 7F,G). Lipids are acting as central 
players in cancer  biology81, and metabolic imbalances in fatty acids and sphingolipids assume a crucial role in 
cancer  development82,83. There were significant negative correlations between the risk scores with the metabolic 
reprogramming scores of fatty acids (R = − 0.15, p = 8.2e−4) and sphingolipids (R = − 0.28, p = 2.8e−10) (Figure 
7H,I). The patients with higher metabolic reprogramming scores for fatty acids (p = 5e−2) and sphingolipids (p 
= 8.9e−07) tended to be accompanied by lower risk scores (Fig. 7H,I).

In addition, angiogenesis, EMT, tumorigenic cytokines and inflammation play important and complex roles 
in the progression of malignant tumors. Thereby, angiogenic activity score, EMT score, tumorigenic cytokine 
score and inflammatory response score were evaluated for the prognostic risk model, respectively. The angiogen-
esis activity score in the high-risk group was significantly higher than that in the low-risk group (p = 2.9e−08) 
(Fig. 7J). There was a significant trend of positive correlation between the risk score and the angiogenesis activity 
score (R = 0.32, p = 9.5e−13) (Fig. 7J). Angiogenesis is associated with poor prognosis in several cancers, includ-
ing NSCLC, and anti-angiogenic drugs are being  developed84,85. Patients in the high-risk group had significantly 
lower EMT scores (p = 2e−05), tumorigenic cytokine scores (p = 9.4e−08) and inflammatory response scores (p 
< 2.2e−16) than those in the low-risk group (Fig. 7K–M). The risk score was negatively correlated with the EMT 
score (R = − 0.2, p = 6.5e−06), tumorigenic cytokine score (R = − 0.3, p = 3.9e−11), and inflammatory response 
score (R = − 0.51, p < 2.2e−16) (Fig. 7K–M).



12

Vol:.(1234567890)

Scientific Reports |          (2024) 14:527  | https://doi.org/10.1038/s41598-023-51108-x

www.nature.com/scientificreports/

In conclusion, patients with poor prognosis experienced significant changes in metabolic reprogramming, 
angiogenesis, EMT, tumorigenic cytokines, and inflammation.

Figure 6.  Immune landscape of the prognostic risk model. (A) Infiltration levels of 22 immune cells in high- 
and low-risk groups. (B) The correlation between risk scores and immune cell infiltration levels in patients. (C) 
Tumor purity, (E) stromal score, (G) immune score, and (I) ESTIMATE score in the high- and low- risk groups. 
Correlation of risk scores with (D) tumor purity, (F) stromal score, (H) immune score, and (J) ESTIMATE 
score.
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Characterization of prognostic risk factors
We further analyzed the prognostic risk factors HLA-DRB1, SCGB1A1 and HLA-DRB5. They were all significantly 

Figure 7.  Metabolism landscapes and tumor-related factors analysis for the prognostic risk model. Correlations 
between risk scores and metabolic reprogramming scores for (A) aerobic glycolysis, (B) glutamine, (C) 
methionine, (D) serine, (E) glycine, (F) arginine, (G) tryptophan, (H) fatty acids, and (I) sphingolipids. The 
correlations between risk scores and scores for (J) angiogenesis activity, (K) EMT, (L) tumorigenic cytokines, 
and (M) inflammatory response. “High” and “Low” represent the high-risk and low-risk groups, respectively.
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lower expressed in the high-risk group than in the low-risk group (Fig. 8A–C). HLA-DRB1, SCGB1A1 and HLA-
DRB5 were accompanied by lower expression in LUAD tissues compared to their expression in normal lung 
tissues (Fig. 8A–C). The scRNA-seq dataset  GSE13 1907 was used to explore the expression of prognostic risk 
factors in normal lung tissue and primary LUAD. With data preprocessing and quality control, a total of 92,951 
single cells were captured and clustered into nine cell types including endothelial cells, epithelial cells, monocytes, 
etc. Similarly, the expression of prognostic risk factors was observed at the single-cell transcriptome level were all 
significantly lower in the disease state than in the normal state (Fig. 8D–F). Differential expression of prognostic 
risk factors was also compared in different cell types between normal and LUAD states. HLA-DRB1 exhibited 
differential expression between normal and disease states in all cell types except MAST cells (Fig. 8G). In the 
LUAD state, HLA-DRB1 expression was significantly higher in all cell types except B Cells and Monocyte than 
in the normal state (Fig. 8G). SCGB1A1 expression was significantly higher in all cell types in the normal state 

Figure 8.  Characterization of the expression of prognostic risk factors. Expression of (A) HLA-DRB1, (B) 
SCGB1A1, and (C) HLA-DRB5 in normal tissues, cancerous tissues and high- and low-risk groups. Overall 
expression of (D) HLA-DRB1, (E) SCGB1A1, and (F) HLA-DRB5 at the single-cell level in normal and cancer 
states. Expression of (G) HLA-DRB1, (H) SCGB1A1, and (I) HLA-DRB5 in various cell types in normal and 
cancer states.

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE131907
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than in the LUAD state (Fig. 8H). HLA-DRB5 showed significant expression differences between normal and 
disease states in B cells, DC cells, endothelial cells, epithelial cells, macrophages, MAST cells, and T cells (Fig. 8I).

Recently, targeting TME has emerged as a promising method for cancer  treatment86. Immune-related genes, 
as important components of TME, play a crucial role in tumorigenesis and TME  homeostasis87. In parallel, 
immune checkpoints can modulate the degree of immune activation in  TME88. Co-expression analysis was 
performed to explore the correlation of the prognostic risk factors HLA-DRB1, SCGB1A1 and HLA-DRB5 with 
immune-related genes (chemokines, chemokine receptors, MHC, immunostimulatory genes, immunosuppressive 
genes) and immune checkpoints. The prognostic risk factors HLA-DRB1 and HLA-DRB5 are immune check-
points, of which HLA-DRB1 is also an MHC gene. The prognostic risk factors HLA-DRB1 (Fig. 9), SCGB1A1 
(Supplementary Fig. S1), and HLA-DRB5 (Supplementary Fig. S2) were positively correlated with the majority 
of immune-related genes and immune checkpoints. PD-1 (PDCD1), PD-L1 (CD274), CTLA4 and LAG3 are 
common immune checkpoints focused on by researchers. HLA-DRB1 was positively correlated with those four 
immune checkpoints (PD-1: R = 0.36, p = 2.22e−16; PD-L1: R = 0.43, p = 0; CTLA4: R = 0.42, p = 0; LAG3: R = 
0.27, p = 1.13e−09), as was HLA-DRB5 (PD-1: R = 0.30, p = 8.75e−12; PD-L1: R = 0.38, p = 0; CTLA4: R = 0.36, 
p = 8.88e−16; LAG3: R = 0.20, p = 1.44e−05), whereas SCGB1A1 showed a positive correlation with CTLA4 (R 
= 0.13, p = 4.6e−3). The findings of Aram et al.89 showed that HLA-DRB1 was associated with anti-PD-1/PD-L1 
therapy response in NSCLC. A recent study demonstrated the ability of fucosylation of HLA-DRB1 to enhance 
the efficacy of immune checkpoint blockade anti-PD1 drugs in  melanoma90.

Figure 9.  The correlation of HLA-DRB1 with immune-related genes and immune checkpoints: (A) chemokine 
genes, (B) chemokine receptor genes, (C) MHC, (D) immunosuppressive genes, (E) other immune checkpoints, 
and (F) immunostimulatory genes. “other immune checkpoints” means immune checkpoints other than 
immune-related genes.
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Prediction of immunotherapy response and analysis of therapeutic benefit in different risk 
groups
The immune checkpoint blockade therapy has made revolutionary progress in the treatment of human can-
cers, including  LUAD91. Hence, we employed the “EaSIeR” to predict the response scores to ICI therapy in the 
high-risk and low-risk groups. It was shown that the ICI treatment response score of the low-risk group was 
significantly higher than that of the high-risk group (p < 2e−16) (Fig. 10A). And the score was significantly 
negatively correlated with the risk score (R = − 0.52, p < 2.2e−16) (Fig. 10B). Additionally, “EaSIeR” further 
provided nine indicators (CYT, Roh_IS, chemokines, Davoli_IS, IFNy, Ayers_expIS, Tcell_inflamed, TLS, and 
RIR) for the evaluation of the immune response. Eight of these scores, except the RIR score, were higher in the 
low-risk group compared to the high-risk group, and these eight scores were negatively correlated with the risk 
score (Fig. 10C–K). This indicated a stronger immune response in the low-risk group. For the common immune 
checkpoints PD-1, PD-L1, CTLA4 and LAG3, inhibitors targeting them have already received regulatory approval 
or are undergoing clinical  trials92. The expression levels of PD-1 (p = 3.1e−08), PD-L1 (p = 9.7e−09), CTLA4 (p 
= 1.4e−08), and LAG3 (p = 8e−05) were higher in the low-risk group (Fig. 10L–O). These portend that patients 
in the low-risk group may benefit more from immune checkpoint blockade.

The pRRophetic algorithm was applied to evaluate sensitivity differences between the high- and low-
risk groups to drugs in the Cancer Genome Project database, in which eight NSCLC therapeutic drugs were 
 included93. The results showed that the high-risk group had significantly lower IC50 values than the low-risk 
group for Afatinib (p = 1.9e−2), Gefitinib (p = 7.5e−06), and Gemcitabine (p = 5e−2), suggesting that high-risk 
patients may benefit more from these drugs (Fig. 11A–C). Crizotinib (p = 2.8e−2) and Erlotinib (p = 2e−04) had 
lower IC50 values in the low-risk group, indicating that these drugs may be more suitable for low-risk patients 
(Fig. 11D–E). However, there was no significant difference in sensitivity to Docetaxel, Paclitaxel, and Vinorelbine 
between the two groups (Fig. 11F–H).

Discussion
LUAD is a cancer with a poor  prognosis94, and the search for available LUAD biomarkers is important to achieve 
effective medical management of patients and improve their prognosis. In this study, we proposed an interpret-
able deep learning framework based on VAE, MLP, and SHAP that has mapped a large number of genes to a 
low-dimensional latent representation, enabling efficient feature selection. Considering the SHAP value reflected 
the influence of the feature genes as well as the positivity and negativity of the influence, a potential biomarker 
scoring algorithm was developed and 19 LUAD biomarkers were successfully identified. These biomarkers were 
enriched in the metabolic and immune pathways, revealing that LUAD patients present significant immune 
alterations and metabolic disturbances.

Given the importance of prognostic prediction in guiding precise therapeutic decisions, a 3-gene prognostic 
risk model for LUAD was developed through functional profiling and survival significance testing of identified 
biomarkers. The high- and low-risk groups divided by the risk score showed differences in the immune and 
metabolic landscapes. The low-risk group featured higher immune pathway activity, immune infiltration, and 
ICI treatment response scores. This indicates that high-risk patients were under an immunosuppressive state and 
that low-risk patients may be more suitable for ICI therapy. Interestingly, the three prognostic risk factors were 
positively related to the majority of immune-related genes. They were differentially expressed genes between 
the high-risk and low-risk groups, enriched in immune-related pathways such as regulation of T cell activa-
tion and leukocyte cell-cell adhesion, especially among them HLA-DRB1 and HLA-DRB5, which are immune 
checkpoints. Anti- PD-1/PD-L1 has yielded significant benefits for patients with NSCLC by inhibiting immune 
checkpoint activity, and the study demonstrated that HLA-DRB1 enhances the efficacy of anti-PD-1  therapy90. 
These suggest that the screened prognostic risk factors may be promising targets for immunotherapy of LUAD. 
Whereas the high-risk group presented significant enrichment of metabolic pathways. The high-risk patients 
had a higher propensity for metabolic reprogramming of aerobic glycolysis, glutamine, methionine, serine, and 
glycine, while having a lower propensity for metabolic reprogramming of arginine, tryptophan, fatty acids, and 
sphingolipids. Aerobic glycolysis and the metabolism of serine and glycine were related to poorer prognosis in 
 cancers71,80. The close relationship between the prognostic risk model and metabolic reprogramming implies that 
targeting metabolism may contribute to improving the clinical prognosis of LUAD patients. Notably, increasing 
evidence suggests that altered metabolic patterns not only provide a survival advantage for tumor cells, but are 
also critical in modulating anti-tumor immune  responses95,96 Methionine depletion and metabolic byproducts of 
aerobic glycolysis led to antitumor immune  impairment79,97. Blocking glutamine metabolism has been shown to 
enhance anticancer  immunity98. The study by Omkar et al.99 revealed that modification of fatty acid metabolism 
in CAR-T cells can improve their anti-tumor immune capacity. These findings revealed that the immune system 
and metabolism influence each other in cancer progression.

Angiogenesis, EMT, tumorigenic cytokines, and inflammation are correlates of tumor development. For 
the risk groups divided by risk score, the high-risk group presented higher angiogenic activity and lower EMT, 
tumorigenic cytokines, and inflammatory response. Studies have shown that angiogenesis is a poor prognostic 
indicator for survival in  NSCLC100,101. The significant variations of these factors between the high- and low-risk 
groups may provide ideas for the treatment of LUAD. Of concern, EMT can stimulate cancer cells to produce pro-
inflammatory factors, while inflammation can in turn induce  EMT102. Not only that, EMT is also closely related 
to anti-tumor immune  response103. In addition, researchers have found that the tumor vessel and the immune 
system affect each other’s function, and that the combination of anti-angiogenesis therapies and immunotherapies 
may produce better therapeutic  outcomes104. Aerobic glycolysis is associated with angiogenesis, a phenomenon 
closely associated with  tumors105. Researchers have found that production of the tumorigenic cytokine IL-5 is 
associated with an enhanced response to immune checkpoint blockade in breast cancer  patients106. Processes such 
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Figure 10.  Immunotherapy response prediction for different risk groups. (A) Immune checkpoint inhibitors 
(ICI) treatment response scores for high and low risk groups. (B) Correlation of the patients’ risk score with 
the ICI treatment response score. Correlation of the risk score with the scores of (C) CYT, (D) Roh_IS, (E) 
chemokines, (F) Davoli_IS, (G) IFNy, (H) Ayers_expIS, (I) Tcell_inflamed, (J) TL, and (K) RIR. Expression 
levels of immune checkpoints (L) PD-1, (M) PD-L1, (N) CTLA4, and (O) LAG3 in high-risk and low-risk 
groups.
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as immune, metabolism, EMT, inflammation, and angiogenesis may crosstalk with each other, and combinatory 
interventions on them may present promising strategies for potential synergy.

To further explore the diagnostic potential of identified biomarkers, five common classification models were 
used, including a modified version of the integrated model AdaBoost.M139, the generalized linear model  GLM107, 
the L2 regularized linear support vector machine with class weights  SVMLinearWeights2108, the penalized logistic 
regression model  PLR109 and the extreme gradient boosting model XGBDART 110. The five classification models 
were trained and evaluated on the TCGA dataset and another independent dataset  GSE81 089 from GEO (involv-
ing 108 LUAD samples and 19 normal samples) in a leave-one-out method. The models were trained using the R 
package “caret” and the AUC was used as the evaluation metric for the models. For the TCGA LUAD dataset, the 
AUC values of the AdaBoost.M1, GLM, SVMLinearWeights2, PLR, and XGBDART models were 0.9012, 0.875, 
0.8929, 0.891, and 0.8918, respectively (Supplementary Fig. S3A). For the  GSE81 089 dataset, the AUC values 
for the five classification models reached 0.8855, 0.9769, 0.9242, 0.9454, and 0.8684, respectively (Supplementary 
Fig. S3B). To better understand the performance of the models, performance metrics including accuracy, preci-
sion, recall, and F1-score were also calculated. The five classification models achieved accuracy, precision, recall, 
and F1-score of over 94% on both the TCGA dataset and the  GSE81 089 dataset (Supplementary Table S1). The 
excellent performance of multiple classification models on different datasets reflected the diagnostic superiority 
of the biomarkers for LUAD.

Figure 11.  Benefit analysis of known therapeutic drugs in different risk groups. Sensitivity of high-risk and 
low-risk groups to known therapeutic drugs: (A) Afatinib, (B) Gefitinib, (C) Gemcitabine, (D) Crizotinib, (E) 
Erlotinib, (F) Docetaxel, (G) Paclitaxel, and (H) Vinorelbine.

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE81089
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE81089
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE81089
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Conclusion
Collectively, this study proposed a novel deep learning framework and successfully identified 19 biomarkers and 
3 prognostic signatures of LUAD. The immune and metabolic landscapes as well as alterations in angiogenesis, 
EMT, tumorigenic cytokines, and inflammation based on prognostic signatures were investigated. In the mean-
time, the prognostic signatures may be indicators for predicting response to immunotherapy, but further research 
is needed to clarify this point. Our study may provide new insights for screening genomic markers for LUAD, 
provide support for clinical judgment of LUAD prognosis and have potential to be applied to other cancers.

Data availability
All data generated or analysed during this study are included in this published article (and its Supplementary 
Information files).
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