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Spatiotemporal lake area changes 
influenced by climate change 
over 40 years in the Korean 
Peninsula
Myung Sik Cho 1 & Jinwoo Park 2*

Water resources in lakes of the Korean Peninsula play a significant role in society and ecosystems in 
both South and North Korea. This study characterized spatiotemporal changes in the lake area during 
the dry season (March–May) in the Korean Peninsula over the last 40 years. The satellite images 
(Landsat 5–9) were used to derive annual areas of 975 lakes during the dry season from 1984 to 2023. 
Our analysis indicated that the MNDWI is the optimal remote sensing-based index for delineating 
lake areas in the Korean Peninsula, with an overall accuracy of 92.3%. Based on the selected index, 
the total lake areas of the dry seasons have increased from 1070.7  km2 in 1984 to 1659.3  km2 in 2023, 
mainly due to newly constructed dam reservoirs. While the detailed changes in lake area vary, we 
found divergent results based on their sizes. The large lakes (> 10  km2) showed their area increased 
by 0.0473  km2 (0.1%) every year and have more influences from climate change. On the contrary, 
the small lakes (≤ 10  km2) have area decreases by 0.0006–0.006  km2 (0.15–0.5%) every year and have 
less influence from climate change. This study shows that the spatiotemporal lake area changes are 
determined by either climate change or human activity.

Water resources in lakes are an essential component of the terrestrial hydrosphere. Lakes play a significant role 
in storing water during the wet season and releasing water during the dry season, especially for the region which 
has a large seasonal precipitation  variability1,2. Many lakes have been constructed by damming the river and 
extracting groundwater to secure water resources and keep stable lake  areas3,4. Meanwhile, drier climate condi-
tions and water exploitation for water consumption, urbanization, and agriculture reduces water resources in 
 lakes5–7. The efforts to secure water resources and threats to decrease water resources are compounded in lakes, 
so monitoring the lake individually can cause biased  result8–10. Instead, monitoring a large number of lakes over 
the region in a long temporal scale helps understand the current status of regional water resources and establish 
a better  policy6,11–13.

The remote sensing-based estimation of lake areas is one of the most optimal ways of monitoring lakes in a 
regional scale over time. Since the lake area is highly correlated with lake  storage7,11,14 and the remote sensing 
data provides spectral information that can distinguish water pixels from  others15–18, spatiotemporal analysis 
of lake areas is used to characterize water  resources6,12,13,19. Various remote sensing methods have been devel-
oped to delineate water pixels, such as supervised  classification19, unsupervised  classification20, linear unmixing 
 methods21, spectral  transformation22, and spectral index  method15–18.

Especially, the spectral index methods are widely used due to their ease of use and satisfactory results. 
This uses the distinct spectral characteristics of water pixels. For example, water absorbs most near-infrared 
(NIR) and shortwave infrared (SWIR) wavelengths, but it strongly reflects visible wavelengths (blue, green, and 
red)15,16. The normalized difference water index (NDWI) is the first spectral index method for water detection 
using NIR and green  wavelengths15, and many indices subsequently have been developed based on the NDWI 
16–18. The advantage of the spectral index methods is that they are usually designed to have a global threshold 
of 0 to separate water pixels (pixel value > 0) from non-water pixels (pixel values < 0). However, its performance 
significantly varies across regions and time, due to variations in scenes, atmospheric conditions, topographical 
characteristics, and water characteristics (e.g., turbidity)23–25. Adaptive thresholds were applied to overcome the 
limitations of global thresholding methods by examining the best thresholding values for specific  regions24,26, but 
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adaptive thresholds are still sensitive to the characteristics of surrounding pixels of water  pixels26,27. Unfortunately, 
the results of the studies determining the most accurate remote sensing-based water index vary from region 
to  region23–28. This implies that the water index should be regionally determined by considering the regional 
characteristics of landscape and water.

The remote sensing-based water index for the Korean Peninsula, where South Korea and North Korea are 
located, is necessary as lake areas have rarely been studied, although the location is under the pressure of cli-
mate change. The Korean Peninsula has over 975 lakes with a size over 0.1  km2 (Fig. 1; Messager et al. 2016). 
About 70% of precipitation is concentrated in summer (June through August) due to summer Monsoons and 
Typhoons, whereas its dry season is in winter and  spring29. With the seasonal changes in precipitation, the lakes 
in the Korean Peninsula have large inter- and intra-annual variability. Because of the high seasonal variability 
in precipitation and large demands on water for the paddy rice fields (rice is the main staple), many small lakes 
were constructed across the  Peninsula19,30,31. The tendency in the Peninsula that the dry season is drier, and the 
wet season is wetter has caused South Korea to increase the height of the agricultural  reservoirs30. Additionally, 
the Korean Peninsula is under a distinct political system and the economic status between the two countries 
brings different lake  management30,32–35. In this context, spatiotemporal lake area changes in the Korean Pen-
insula should be characterized for a better understanding of how lake areas have been changed under such a 
complex situation.

In this paper, we first determined the optimal remote sensing-based water index for the Korean Peninsula. 
We quantitatively compared the four popular indices with global threshold and adaptive threshold. Second, 
we characterized the lake area changes from 1984 to 2023 using 30 m spatial resolution Landsat 5–9 based on 
the selected index. The Korean Peninsula has suffered from severe hydrological drought during the dry season 
(March–May)30, so this study considered lake areas during the dry season. The annual areas of 975 lakes during 
the dry season over 40 years were individually extracted, and their spatiotemporal trends were quantified. Last, 
we determined the influence of climate change on lake areas using the Palmer drought severity index (PDSI), 
which can consider the complex influences of precipitation, temperature, and evapotranspiration on  lakes36.

Figure 1.  Locations of 975 Lakes in the Korean Peninsula groups by their sizes.
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Results
The optimal remote sensing-based water index in the Korean Peninsula
The modified normalized difference water index (MNDWI) with global threshold, which refers to a threshold 
larger than 0 as a water pixel (see the details in Methods), outperformed other indices in delineating water pix-
els of lakes in the Korean Peninsula (Table 1). The MNDWI with a global threshold has an overall accuracy of 
92.8%. For other indices using global threshold, the Automated Water Extraction Method (AWEI), Normalized 
Difference Water Index by McFeeter ( NDWIM ) and Normalized Difference Water Index by Rogers and Kearney 
( NDWIRK ) have an overall accuracy of 91%, 89.5%, and 88.3% sequentially. For indices using adaptive threshold, 
the otsu method was used to define a scene-based threshold using spectral characteristics (see the details in 
Methods)37. The overall accuracy of NDWIRK , MNDWI, NDWIM and AWEI are 74.1%, 72.5%, 70.6% and 68.3%.

Indices using the global threshold were more accurate than those using the adaptive threshold in extracting 
water pixels of lakes in the Korean Peninsula (Table 1). The global thresholding methods have high user’s accu-
racy (97–99%), which indicates errors of commission and low producer’s accuracy (60–79%), which indicates 
errors of omission. On the other hand, the adaptive thresholding methods have low user’s accuracy (58–67%) 
and high producer’s accuracy (96–98%).

Lake area changes in the Korean Peninsula
The total lake areas during dry season (March–May, see details in Methods) increased over the past 40 years in 
the Korean Peninsula (Fig. 2). In 1984, they were 1070.7  km2 and then were increased to 1659.3  km2 in 2023. 
The main factor in the increase was the construction of new lakes, especially dam reservoirs (grey bars in Fig. 2). 
Dams impound huge amounts of water, and 26 new dams have started their operations since 1984. In details, 1, 
2, 2, 1, 1, 1, 2, 1, 6, 5 and 4 dams were newly operated in 1985, 1987, 1990, 1993, 2000, 2003, 2005, 2007, 2010, 
2011 and 2012, respectively.

The changes in the lake area varied from location to location. The newly built lakes largely contributed to 
increasing the lake areas (green plots and green areas in the map in Figs. 3 and 4A). Over the latitude, the area 
between 39.6° and 41° gained the largest amount of water by 472.4  km2 during the dry season over the course of 
40 years. The areas around 38° and 36.9° and the ones between 34.2° and 35.6° increased lake areas by 36.3  km2, 
105.8  km2 and 106.4  km2. Over the longitude, the area between 127° and 128.2° gained the largest amount of 
water between 1984 and 2023 by 451  km2. The areas around 128.8° and 130.5° and the one between 124.5° and 
126.4° increased lake areas by 13.3  km2, 26.7  km2, and 421.3  km2 during the dry season. Imha dam (Fig. 4A) is 

Table 1.  Accuracy results of delineating water pixels over four water indices with global and adaptive 
thresholds.

Overall accuracy Producer’s accuracy User’s accuracy

Global threshold

 NDWIM 89.5 62.1 99.1

 NDWIRK 88.3 60.2 98.1

 MNDWI 92.8 78.9 97.6

 AWEI 91.0 69.1 98.7

Adaptive threshold

 NDWIM 70.6 96.3 61.6

 NDWIRK 74.1 95.7 66.6

 MNDWI 72.5 97.6 63.7

 AWEI 68.3 97.9 58.0

Figure 2.  Total annual lake areas during dry season (blue color and right axis) and counts of newly operated 
dams which impound huge amount of water (grey color and left axis) from 1984 to 2023.
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an example of increased lake area (green color) due to a newly operated dam (commissioned in 1991), which 
impounded area along the river and made a lake.

On the contrary, human activity and climate change contributed to decreasing the lake areas (red plots and 
red areas in the map in Figs. 3 and 4B,C,D). Over the latitude, the area near 36° experienced the largest amount 
of water loss (25.9  km2). The areas around 38.4° and 39.3° and the ones between 41 and 41.7° lost lake areas by 
4  km2, 10.7  km2, and 8  km2 during dry season, respectively. Over the longitude, the area around 126.6° showed the 
largest amount of water loss (20.5  km2). The area around 128.5° and the one between 129° and 130° also presented 
the lost of the lake areas by 27.4  km2 over the past 40 years. Figure 4B shows that the lake Kongsan decreased 
lake areas (red color) due to climate changes. As described in the later section in detail, this location shows the 
correlation coefficient between lake areas and the Palmer drought severity index (PDSI) over the lake is 0.59 
(p-value < 0.05; see the details in Methods), which means that shrinking lake areas and drier climate during dry 
season are positively related. Sariwon, North Korea (Figure 4C) shows an example of decreasing lake areas due to 

Figure 3.  Lake locations and their area over latitudes and longitudes in 1984 and 2023 and their changes (Δ). 
The map demonstrates the water pixels of lakes observed in both 1984 and 2023 (blue), only in 1984 (red), and 
only in 2023 (green). Lake areas in 1984, 2023, and their differences (increased in green and decreased in red) 
are shown over every 0.1° in latitude and longitude in peripheral plots. Circles with A, B, C, and D indicate the 
locations of detailed maps in Fig. 4.
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Figure 4.  Detailed changes in lake area per subset in Fig. 3. Note: Rows represent the location of lakes. A: Imha 
Dam in Andong, South Korea; B: Lake Kongsan in Daegu, South Korea; C: Sariwon, North Korea; and D: Lake 
Uiam in Chuncheon, South Korea. Columns represent the time of each lake and their temporal differences. 1984 
(Landsat 5; NIR-red-green color composite), 2023 (Landsat 9; NIR-red-green color composite), and changes in 
lake area from 1984 to 2023 (blue color: observed in both years, green color: gain, red color: loss).
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expansion of agriculture. The northern part of the lake located to the left was converted to a rice paddy field (red 
color). The lake in the middle was built for storing water for irrigation (green color). The lake on the right lost 
water due to drier weather (red color) as its correlation coefficient with PDSI is 0.48 (p-value < 0.05). Figure 4D 
(lake Uiam) shows that urbanization could contribute to decrease lake areas. The sediment was deposited along 
the lake (red color), and was developed into urban infrastructure (road, building, etc.).

Lake areas, during the dry season, changed differently by size during 1984–2023 (Fig. 5). The lakes with size 
smaller than 10  km2 experienced decreasing lake areas over the past 40 years, while the ones with size larger 
than 10  km2 gained lake areas (see the detailed criteria for grouping by size in Methods). Out of 48 lakes with a 
size smaller than 0.1  km2, 29 (60%) decreased lake areas and 2 (4%) increased lake areas statistically significantly 
(p-value of Mann–Kendall Test < 0.05; see the details in Methods). Each lake decreased lake area by 0.0006 
 km2 during the dry season every year. Among 779 lakes with a size larger than 0.1  km2 and smaller than 1  km2, 
520 lakes (67%) decreased lake areas, and 26 lakes (3%) increased lake areas. Each lake decreased lake area by 
0.0013  km2 during the dry season every year. Out of 117 lakes with a size larger than 1  km2 and smaller than 
10  km2, 63 (54%) decreased lake areas and 5 (4%) increased lake areas. Lake areas of 0.006  km2 were shrunk 
every year. Among 31 lakes with a size larger than 10  km2, 8 lakes (26%) lost lake areas and 4 lakes (13%) gained 
lake areas. Lake areas of 0.0473  km2 were expanded every year.

Influence of climate on lakes on the Korean Peninsula
Climate change significantly affected the Northern and Eastern part of the Korean Peninsula (Fig. 6; see the 
details in Methods). The climate had been drier (red color) during the dry season over the Northern and Eastern 
parts (Fig. 6b). Only small areas in the Southern part of the Korean Peninsula had been wetter (blue color) during 
the dry season. Half of the lakes were under drier climate conditions (Fig. 6c).

Smaller lakes in the Korean Peninsula are likely to have less influence from climate change, while changes 
in larger lakes could be attributed to (Fig. 7). Out of 31 lakes in the smallest category (with a size smaller than 
0.1  km2), only 4 lakes (13%) have decreases in lake area related to climate change (PDSI; see the details in Meth-
ods). In addition, among 547 lakes with a size larger than 0.1  km2 and smaller than 1  km2, 152 lakes (28%) have 
decreases in lake area related to climate change, and 4 lakes (1%) have increases in lake area related to climate 
change. Out of 68 lakes with a size larger than 1  km2 and smaller than 10  km2, 25 lakes (37%) have decreases in 
lake area related to climate change, and 1 lake (1%) has increases in lake area related to climate change. Among 
12 lakes larger than 10  km2, 6 lakes (50%) have decreased and 3 lakes (25%) have increased in their lake areas 
related to climate change.

Discussion
This research presented that total lake areas during the dry season in the Korean Peninsula have increased since 
1984. The smaller lakes (≤ 10  km2) showed a shrinking tendency, whereas it is less likely to be related to the drier 
climate conditions. The MNDWI was selected as an optimal remote sensing-based water index for extracting 
lake areas through the comparison with four well-known remote sensing-based water indexes and two threshold 
types. It was employed to delineate annual lake areas during the dry season (March–May) using Landsat 5–9. 
In short, the total lake areas during the dry season increased, mainly due to newly operated lakes, while climate 
change and human activity could have contributed to shrinking lake areas in our study area. Additionally, small 
lakes (≤ 10  km2) lose lake areas by 0.0006–0.006  km2 every year, while larger lakes (> 10  km2) gain lake areas 
by 0.0473  km2 every year. Notably, the increasing tendency of large lakes was mainly related to climate change, 
while the decreasing tendency of the small lakes was not.

The optimal remote sensing-based water index in the Korean Peninsula
The complicated landscape surrounding lakes of South Korea and North Korea determines the MNDWI as the 
optimal water index for the Korean Peninsula (Table 1). Our result that the MNDWI outperformed is aligned 
with previous studies about its applications to  China25,28,  Australia23, and simulated  scenes26. Most lakes in South 
Korea and North Korea are small reservoirs whose main purpose is  agriculture38, and the scale of the agriculture 
is relatively  small39. This makes lakes have complex landscapes with the composition of buildings, roads, and 
 vegetation40. The MNDWI uses SWIR reflectance which can effectively distinguish the built-up areas and shadow 
from lower albedo  features16,17,23,25. The MNDWI also utilizes green reflectance which can separate water from 
surrounding  vegetation16.

Additionally, the complex landscape caused lower accuracy of the adaptive threshold. The otsu’s method, 
which was used for the adaptive threshold, finds the thresholds that can maximize the separability between the 
two classes (i.e., water and non-water)37. Thus, the otsu’s method can cause the misclassification for water bodies 
surrounded by complex  features23,27. Contrarily, the global threshold can be robust to the complicated landscape, 
which has a variety of spectral range.

Spatiotemporal characteristics of lake area changes in the Korean Peninsula
Our results indicated that the spatiotemporal characteristics in the lake area between the two countries (North 
and South Korea) were marginal during the dry season despite the systematic difference in their water-cycle 
patterns. In other words, the spatiotemporal changes were more influenced by the geographical locations than 
the water resource management (Fig. 3). To be specific, North Korea has pursued food self-sufficiency due to 
global restrictions from the United Nations for several  decades41,42. Therefore, the country proceeded with defor-
estation, which has caused the loss of the ability to store water resources by converting forests to agricultural 
lands to effectively cultivate enough  food35,43. For example, it cut trees and terracing with the hill slope over 16° 
over 2 million  ha43. On the other hand, South Korea is one of the most successful countries of afforestation and 
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Figure 5.  The trend of lakes area changing over the past 40 years per size. Note: The maps show the locations 
of the lakes along the statistical results (red: significant decrease (p-value < 0.05), blue: significant increase 
(p-value < 0.05), and grey: statistically insignificant). Texts in the maps indicate the number of lakes per size 
(without parenthesis), the number of statistically significant lakes (with parenthesis), and their trend (D: lakes 
with decreased area, I: lakes with increased area). The plots demonstrate the annually averaged lake areas with 
statistically significant results (both red and blue points on the maps) and their trends in black and red-colored 
lines, respectively.
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systematically controls water resources over  lakes30,32. Despite this difference in their water resource management, 
both countries frequently suffer from flooding and drought events. South Korea suffered from severe drought 
during the dry season due to climate  change30,31, and North Korea has had frequent flooding and  drought33,34.

Instead of the systematic differences between those two countries, our study detected more regional-scale 
spatiotemporal changes in lake areas, and those changes could be attributed to regional human activity and cli-
mate change (Fig. 3). For example, the construction of new lakes for generating electricity (Fig. 4A) and storing 
water for agriculture (Fig. 4B) largely increased water resources during the dry season. On the contrary, urbani-
zation (Fig. 4D), expansion of agricultural land (Fig. 4C), and drier climate conditions (Fig. 4B,C) significantly 
decreased water resources during the dry season. Additionally, water resources in small lakes (≤ 10  km2) are 
under pressure from human activity. The small lakes have been decreasing during the dry season over the past 
40 years (Fig. 5), but their shrinkage is less likely to be related to climate changes (Fig. 7). In other words, human 

Figure 6.  The magnitude maps for the trend of climate variability (Palmer Drought Severity Index; PDSI) from 
1984 to 2023. The blue color represents a wetter trend, and the red color represents a drier trend. The tau value 
from Mann–Kendall Test (a) without consideration of p-value and (b) only significant p-value (< 0.05). (c) lakes 
with statistically significant changed areas (grey-colored points) were overlayed with (b).

Figure 7.  Locations of lake area changes which show positive correlations with climate variability (PDSI). 
Colors of the points indicate their trend in lake area changes along with the positive correlation with climate 
variability: red (decreased (p-value < 0.05)), blue (increased (p-value < 0.05) and grey (statistically insignificant). 
Texts in the maps indicate the number of lakes per size (without parenthesis), the number of statistically 
significant lakes (with parenthesis), and their trend (D: lakes with decreased area, I: lakes with increased area).
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activity, such as urbanization and agriculture, can be a major factor in the decreasing lake areas in small  lakes13. 
Due to urbanization and exploitation of water resources in South  Korea40 and deforestation and expansion of 
agricultural lands in North  Korea34,41,43, lake area changes of small lakes can be linked to human activity, rather 
than climate change.

Current limitation and future direction
Despite our findings on the regional-scale spatiotemporal changes in the lake area and their distinctive relation-
ship per size of the reservoir towards climate change, our study has a limitation on the climate change analysis. 
This is mainly attributed to the availability and quality of the input climate change data, given the absence of 
ground-truth climate change data (e.g., climate station), especially in North Korea. While the climate variability 
dataset (PDSI) is known to have one of the highest-resolution datasets among its competitors, its spatial resolu-
tion (4638 m) still has room to be improved. Our next study would increase the granularity of the climate change 
dataset with the climate station data in South Korea and apply it to North Korea. As our study revealed that there 
were marginal differences in the spatiotemporal changes in lake area changes between both countries, it would 
be interesting to see how climate change has affected the water resources in North Korea, especially since there 
are limited resources available in the country.

Methods
Data
The satellite data was used to extract the lake areas. Landsat 5–9 were used to detect lake areas from 1984 to 2023. 
Sentinel-2 was used to validate water detection from Landsat 5–9 for the period 2019–2022 due to the availability 
of satellite data. Images during the dry season (March–May) were selected for the lake every year to minimize 
the issues from the clouds and focus on lake areas during the dry season. The Landsat 5–9 Level 2 Collection 
2 Surface Reflectance products provide 30 m spatial resolution and 16-day revisits from 1984. The Sentinel-2 
Level 2 Surface Reflectance products provide 10 m spatial resolution for visible and NIR wavelength and 5-day 
revisits after the launch of Sentinel-2B in 2017.

All lakes (975 lakes) from the HydroLAKES over the Korean Peninsula were used for monitoring the lake 
changes (Fig. 1). The HydroLAKES dataset has 1,427,688 water bodies over 10 ha which were compiled from 
the eight global water products, including MOD44W and the Global Lakes and Wetlands Database (GLWD)38. 
Their global coverage and their ability to detect inland surface water made them widely used in water resource 
 studies44. In addition, to increase the accuracy of our analysis, we manually check the dataset to remove misi-
dentified locations (e.g., a location misidentified as a lake in HydroLAKES, while it is a river).

Palmer Drought Severity Index (PDSI) was considered for examining climate change because this can sum-
marize the complex results of precipitation, temperature, and evapotranspiration, which affect surface  water36. 
PDSI was derived from a gridded climate dataset, TerraClimate, which is based on climate observations and 
climate reanalysis  dataset45. The size of the grid is 4638 m, so the grids over lakes were collected on a monthly 
scale during monthly scale. Despite its coarse resolution, the gridded climate dataset was used due to the insuf-
ficient number of climate stations over the  lakes46,47, especially the locations in North Korea.

Water pixel detection
The four popular spectral index methods with the global threshold and adaptive threshold were selected for 
finding the most optimal remote sensing-based water index for lakes in the Korean Peninsula. The MNDWIM 
is the first water index using green (562 nm) and NIR (865 nm) wavelengths developed by McFeeters (1)15. The 
MNDWIRK is the water index using red (655 nm) and SWIR (1650 nm) developed by Rogers and Kearney (2)18. 
The modified NDWI (MNDWI) is the water index using green (562 nm) and SWIR (1650 nm) (3)16. The auto-
mated water extraction index (AWEI) is the water index deriving from the empirical equations from the stable 
water areas globally using blue (482 nm), green (562 nm), NIR (865 nm), and SWIRs (1650 nm and 2215 nm) 
(4–6)17. The index is combined with AWEInsh (for the non-shadow area) and AWEIsh (for the non-shadow area).

where ρB is blue reflectance, ρG is green reflectance, ρR is red reflectance, ρNIR is near-infrared reflectance, ρSWIR1 
is SWIR (1650 nm), and ρSWIR2 is SWIR (2215 nm).

The index with the global threshold detects water pixels the values larger than 0. The index with the adap-
tive threshold detects water pixels using the otsu’s method. The otsu’s method is performing automatic image 
thresholding by maximizing inter-class variance and minimizing intra-class intensity  variance37. By using Otsu’s 
method on the scenes calculated by indices, this paper separated water pixels and non-water pixels (7–11).

(1)NDWIM = (ρG − ρNIR)/(ρG + ρNIR)

(2)NDWIRK = (ρR − ρSWIR1)/(ρR + ρSWIR1

(3)MNDWI = ρG − ρSWIR1)/(ρG + ρSWIR1)

(4)AWEI = AWEInsh
⋃

AWEIsh

(5)AWEInsh = 4× (ρG − ρSWIR1)− (0.25× ρNIR + 2.75× ρSWIR2)

(6)AWEIsh = ρB + 2.5× ρG − 1.5× (ρNIR + ρSWIR1)− 0.25× ρSWIR2)
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where P(i) is the probability of the occurrence of i, ni is the number of pixels with value i, and N is the total 
number of pixels. Wwater is the cumulative probability for water pixels, Wnon−water is the cumulative probability 
for non-water pixels, and the sum of Wwater and Wnon−water should be 1. t is a threshold used in dividing water 
and non-water pixels, and its range is in between -1 and 1.

where µ is the global mean values of the pixels in a scene, µwater is the mean values of water-labeled pixels, 
and µnon−water is the mean values of non-water-labeled pixels. g is the between-class variance, and the selected 
threshold ( totsu ) would be the maximum value of g. This method can consider the local variants due to the envi-
ronmental noise for sites and scenes and provide a better thresholding for each  scene26.

Comparison of remote sensing-based water indices
The four spectral index methods with the global threshold and adaptive threshold were compared to the accu-
racy of detecting lake areas in the Korean Peninsula. For the comparison, 1260 points were randomly generated 
over the 500 m buffered spatial boundary of lakes for 4 years (2019–2022). The reason for considering a 500 m 
buffered spatial boundary was to have enough number of water and non-water pixels. The Landsat 8, which is 
operational from 2019 to 2022, was used to detect water/non-water at 1260 points, and visual inspections were 
conducted to have reference information of water/non-water at 1260 points using Sentinel-2.

Three measures (overall accuracy, producer’s accuracy, and user’s accuracy) were used to compare the per-
formances of indices and thresholding methods based on the visual  inspection48. The overall accuracy shows 
how each index and thresholding method labels the pixel correctly (12). This can represent the comprehensive 
performance of each water delineating method easily and efficiently. The producer’s accuracy shows the omission 
errors, which represent how each index and thresholding method does not mislabel the water pixels as non-water 
pixels (13). This can indicate whether each method includes all water pixels. The user’s accuracy represents the 
commission errors, which show how each index and thresholding method does not mislabel the non-water 
pixels as water pixels (14). This can tell us the performance of each method in excluding all non-water pixels.

where Pixeli,j refers pixel values of i (pixel values of the Landsat-8) and j (visual inspection using Sentinel-2). N 
indicates non-water and W indicates water.

Spatiotemporal analysis of lake areas from 1984 to 2023
The annual areas of 975 lakes during the dry season from 1984 to 2023 were derived from Landsat 5–9 using the 
MNDWI. The individual spatial boundary of lakes was delineated for each year, and then areas were calculated. 
Landsat imageries between March and May were selected if they intersected the 30 m buffered spatial boundary 
of lakes. The Landsat pixels were then stacked by the same year, and pixels with a QA value of cloud confidence 
over 33% were removed to reduce cloud effects. The stacked pixels, which are Landsat imageries from March to 
May of the same year, were aggregated into one pixel by taking the median value. The median pixel value provides 
the most robust pixel value of the dry season for a year. Then the MNDWI was applied to the median Landsat 
imagery to delineate the spatial boundary of lakes. Based on the boundary, the lake areas were calculated for a 
year for a lake from 1984 to 2023.

The Mann–Kendall trend test was conducted for individual lakes to examine the tendency of lake area changes 
over 40 years (Fig. 5)49. When the p-value is smaller than 0.05 and the tau value is positive, then the lake area 
is statistically significantly increasing. When the p-value is smaller than 0.05 and the tau value is negative, then 

(7)P(i) =
ni

N

(8)Wwater =

1
∑

i>t

P(i)andWnon−water = 1−Wwater =

t
∑

i=−1

P(i)

(9)µ =

1
∑

i=−1

i × P(i),µwater =

∑1
i>t i × P(i)

Wwater
, andµnon−water =

∑t
i=−1 i × P(i)

Wnon−water

(10)g = Wwater × (µwater − µ)2 +Wnon−water × (µnon−water − µ)2

(11)totsu = argmax
(

g
)

and

{

Pixelwater ifi > totsu
Pixelnon−water ifi ≤ totsu

(12)Overall accuracy =
PixelWW + PixelNN

PixelWW + PixelNW + PixelWN + PixelNN

(13)Producer′s accuracy =
PixelWW

PixelWW + PixelWN

(14)User′s accuracy =
PixelWW

PixelWW + PixelNW
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the lake area change is statistically significantly decreasing. When the p-value is larger than 0.05, the lake area 
change is insignificant.

Influences of climate changes on lake areas
The trend of PDSI was calculated by individual pixels to represent the tendency of climate change over the space 
(Fig. 6). The Mann–Kendall trend test was conducted, and the insignificantly changed pixels (p-value > 0.05) 
were removed (Fig. 6b).

The Spearman’s rank correlation was conducted to determine the relationship between PDSI and lake areas. 
For this, the mean of the PDSI values during the dry season (March–May) over the lake location was extracted 
for every year. The Spearman’s rank correlation was conducted for the collected annual PDSI values and the 
annual lake areas (Fig. 7).

Data availability
Upon a reasonable request, the data supporting this study’s findings are available from the first author (Dr. Myung 
Sik Cho; chomyun2@msu.edu).
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