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ScabyNet, a user‑friendly 
application for detecting common 
scab in potato tubers using deep 
learning and morphological traits
Fernanda Leiva 1*, Florent Abdelghafour 2, Muath Alsheikh 3,4, Nina E. Nagy 5, Jahn Davik 6 & 
Aakash Chawade 1

Common scab (CS) is a major bacterial disease causing lesions on potato tubers, degrading their 
appearance and reducing their market value. To accurately grade scab‑infected potato tubers, this 
study introduces “ScabyNet”, an image processing approach combining color‑morphology analysis 
with deep learning techniques. ScabyNet estimates tuber quality traits and accurately detects and 
quantifies CS severity levels from color images. It is presented as a standalone application with 
a graphical user interface comprising two main modules. One module identifies and separates 
tubers on images and estimates quality‑related morphological features. In addition, it enables 
the extraction of tubers as standard tiles for the deep‑learning module. The deep‑learning module 
detects and quantifies the scab infection into five severity classes related to the relative infected 
area. The analysis was performed on a dataset of 7154 images of individual tiles collected from field 
and glasshouse experiments. Combining the two modules yields essential parameters for quality 
and disease inspection. The first module simplifies imaging by replacing the region proposal step of 
instance segmentation networks. Furthermore, the approach is an operational tool for an affordable 
phenotyping system that selects scab‑resistant genotypes while maintaining their market standards.

Potato is the third most important commodity in the world and represents an essential energy source for human 
consumption. Potato tubers are processed to provide food, starch, crisps, food additives, and beverages and used 
for some pharmaceutical  products1. There is a demand for high-quality tubers that fulfill standards in appearance, 
size, shape, and flesh or skin  color2. Regardless of the cultivar, it is essential to guarantee undamaged, appealing, 
and healthy tubers. Yet these characteristics are challenging to obtain in the context of climate  change3. Most 
tuber disorders result from the interaction between environmental conditions, cultivation systems, storage, har-
vest, or transportation. During growth and handling operations, tubers can sustain various mechanical damage. 
Likewise, numerous bio-aggressors degrade potato quality and represent a critical threat to their  marketability4,5.

Such is the case of the common scab (CS) bacterial disease, one of the most important blemish diseases caused 
by a pathosystem of soil-borne, gram-positive bacteria of the genus Streptomyces. The symptoms appear as super-
ficial scab lesions or deep-pitted lesions, downgrading the harvest and resulting in significant economic losses 
for the growers. Only a few of the several hundred described species are known to be pathogenic to the crop. 
According to Braun et al.6, the two most abundant common scab-causing bacteria in Europe are Streptomyces 
turgidiscabies and S. europaeiscabiei. The resistance mechanism to CS is not yet well defined and is still under 
study. Potato breeders attempt to mitigate the disease spread by developing resistant genotypes that can satisfy 
both the field and market  requirements7. Different potato varieties have been recognized to have high levels of 
resistance to CS under field screenings. Quality assessments of tubers as well as disease severity are generally 
conducted by visual scorings or manual  measurements8,9. Although these methods have provided valuable infor-
mation for selecting desirable genotypes, they are imprecise, time-consuming, and subjective.
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On the other hand, digital image processing has improved the consistency and accuracy of plant traits assess-
ment by diminishing the variability caused by human  bias10. Previous reported studies have evaluated tuber 
shape, size, and  color11–14, with accuracies ranging from 70 to 94% compared with caliper measurements and 
human scorings. Although the results show high accuracies, some challenges remain, such as the lack of user-
friendly tools, automation, or adaptation to low-cost and high-throughput  phenotyping15.

Similarly, some approaches have been reported to assess potato tuber  defects16,17. Samantha et al.18 proposed 
a method to detect CS based on image analysis in the RGB (red, green, and blue) color space. However, the 
method uses a series of filters and an unsupervised classifier that is very sensitive to changes in image acquisition 
 conditions19. In the range of infrared wavelengths, it has been shown that it is possible to discriminate between 
infected and asymptomatic areas. Despite the high correlation with the standard severity measurements, the 
equipment to measure diffuse reflectance is costly and requires seasoned staff to perform acquisitions. Dacal-
Nieto et al.20 presented a non-destructive approach using hyperspectral imaging combined with supervised 
classifiers to identify areas affected by CS. The results showed an accuracy of 97.1%, clearly distinguishing the 
severity levels. However, the method requires a special system to acquire the images that lack operability to be 
implemented in a breeding context.

In the past decade, deep learning (DL) techniques, especially based on Convolutional Neural Networks 
(CNNs), have become state-of-the-art approaches in pattern recognition, including plant disease detection and 
 scoring21,22. CNNs generate visual representations hierarchy, which is enhanced for a particular task, especially 
for image recognition and classification that has proved to yield accurate and robust  models22. They require a 
training set to calibrate a model with a set of biases and weights corresponding to the target that it was designed 
for. Among their advantages is that CNNs can process new data and identify significant features with minimal 
human supervision and tuning. In the case of potato tubers, Oppenheim et al.4 proposed a method based on 
CNN to identify tuber diseases from patches of grayscale images, achieving discrimination accuracies of over 
90%. However, the sole identification of diseases is not sufficient to select varieties. An additional scoring of 
severity levels provides a finer insight into their relative resistance. Thus, developing a robust, user-friendly, and 
automated imaging method to assess CS infections and tuber morphology is highly valued.

Therefore, this study answers three objectives. The first is to evaluate tuber morphology traits of potato tubers, 
providing insight into tuber quality for the market. The second is to detect and quantify the level of severity 
of CS using CNNs. The third is to develop a fully automated and user-friendly application combining the two 
previous objectives.

Materials and methods
Plant material
Samples of potato tuber were collected from two sources: (1) from Graminor’s core collection grown in field 
experiments at Ridabu, Norway, from 2019 to 2022, and (2) from a greenhouse inoculation experiment in which 
840 interrelated potato lines were planted in sterile peat soil infected with a mixture of three S. europaescabiei 
strains from the NIBIO collection of plant pathogens (isolate nos. 08-12-01-1, 08-74-04-1, 09-185-2-1). In total, 
7200 tubers of yellow and red genotypes were used. The core collection tubers represented different levels of 
infections naturally occurring in the field. Figure 1 shows four samples of tuber containing the full possible range 
of infections, from completely healthy to maximum severity.

Image acquisition
Tubers were washed, dried, and manually placed in groups of six onto a fiber blue background, along with a 5 cm 
ruler and a color scale palette for further analysis. Images were captured with a Canon PowerShot G9 X Mark II 

Figure 1.  Tile images were used as a training set for the deep learning process. The tiles correspond to a whole 
potato tuber. (A) and (C) correspond to a yellow and a red tuber respectively with no symptoms of common 
scab (CS); (B) and (D) correspond to a yellow and red tuber respectively with characteristics of severe CS 
infection, shown as brown spots and lesions on the skin. Scab symptoms can range from a few small lesions on 
the surface of the tuber to deep and open scab ulcers, covering most of the tuber surface.
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camera with a lens of 10.2–30.6 mm, 1:2.0–4.9, and a resolution of 20.1 megapixels. The camera was mounted 
on a Hama photo stand at a top-view angle of 40 cm from the target. The target was uniformly illuminated by 
daylight bulbs of 85W-5500 K. Camera settings were selected based on the best view of the tubers, ISO 1250, 
F-stop 1/125, exposure time 1/11, and focal length 10.2 mm. Digital images were stored in JPEG format with a 
pixel resolution of 7864 × 3648. The size of the tubers varies from 172 to 256 pixels in length. Figure 2 shows an 
illustration of the image acquisition protocol.

Database
The database contains 1100 images with 7154 yellow and red tubers. The tubers were categorized into five severity 
classes, with class 1 being healthy and classes from 2 to 5 that represent increasing severity levels of infection. 
The classes were attributed based on the area percentage of lesions on the potato tuber skin. A first approxima-
tion of the percentage of infected area was obtained in a semi-automated way, using the machine-learning tool 
Trainable Weka Segmentation (TWS)23 as a plugin for the software  ImageJ24. Manual annotations of 200 images 
containing 1000 tubers were taken to train a random forest  model25. The data was segmented into four classes 
(background, red tuber, yellow tuber, and scab). The segmentation was then taken to a pixel-wise classification 
where each pixel was classified as belonging to one of the four classes. This first quick approximation with color 
analysis was then corrected and validated manually.

Image and data processing
All the image processing was conducted using Python  language26 with the package OpenCV (Open Source 
Computer Vision Library)27 for image manipulation and analysis of tuber morphology, and  TensorFlow28 for the 
deep learning section; the algorithms developed were automated in a GUI (graphical user interface) that could 
be run over a single image or a large group of images as a batch.

GUI
The GUI, hereafter called ScabyNet (Fig. 3), was developed in Python using the package  Tkinter29 and 
 customTkinter30. The GUI is user-friendly and contains two main modules and a tab designed as a home window. 
Modules 1 and 2, corresponding respectively to the estimation of tuber morphology traits and area lesions by CS.

Home
The home module contains information about the functionality of ScabyNet, where the user receives instructions 
on how to use the application.

Module 1: morphology features
The morphology module is a fully embedded data processing pipeline that estimates potato tuber morphology 
characteristics from color images. The module measures for each tuber, length, width, area, length-to-width ratio, 
circularity, and color values distinguishing between red and yellow tubers. The color analysis is performed in the 
L*a*b* color space: lightness, a*, and b* chromaticity values for respectively the green–red and yellow-blue  axes31.

Figure 2.  Diagram of the image acquisition protocol.
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The steps in the processing chain of this module are presented in Fig. 4 and described in more detail in the 
following subsections and the flowchart in Fig. 5.

Resizing and color segmentation. To remove the background, facilitate object identification, and decrease 
computation time, the image size was reduced from 4864 × 3648 to 1459 × 1094 pixels (one-third, conserving 
proportions). Then, a color conversion was applied from the RGB to the L*a*b* color space, using the features 
of the OpenCV package. This color representation was chosen because it was designed to approximate human 
psychovisual representation. A binary filter was applied to remove undesired objects. Each channel of the image 
was subjected to an examination to determine the adapted threshold. Subsequently, the resulting binary image 
was used as a mask for the original one.

Morphological operation: opening. Due to variations in lighting intensities, drops of shadows, and reflections, 
some objects in the image contained gaps. They were corrected with the flood-fill  algorithm32, ensuring object 
integrity in the image. However, despite this correction of the gaps, some artifacts remained on the image. To 
discard them, a morphological opening operation was  applied33. The opening consists of removing pixels on the 
object boundaries (erosion), then adding pixels to the new boundaries (dilation) on the resulting image. In both 
cases, the same 5 × 5-pixel square kernel was used as a structuring element. This structuring element identifies 
the pixel to be processed and defines the neighborhood of connected components based on this binary informa-
tion. As a result of the opening, the small objects were removed from the image while the shape and size of the 
tubers were preserved.

Figure 3.  The ScabyNet GUI application with all associated options and functions to evaluate potato tuber 
images.

Figure 4.  Workflow of the color-morphology module for features extraction, saving, and displaying results. (A) 
Original image to be processed; (B) binary image containing the desired and non-desired objects after resized, 
segmented, and filtered by morphology; (C) Identified connected components, non-convex blobs (red) and 
convex-blobs (green); (D) Processed image with segmented tubers.
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Identifying connected blob components. Once the segmentation and color reduction was applied, the next 
step was to identify the tubers. In some cases, tubers were found to be placed too close to each other in the image. 
Thus, they were detected as a single component. A distinction between connected and disconnected components 
was performed based on convexity criteria to solve this issue. The operation works in two steps, finding contours, 
then computing their convex  hull34. Convex objects i.e. individual tubers were copied and kept apart (noted 
image A) meanwhile objects corresponding to connected blobs, i.e., joint tubers (noted image B) were submitted 
separately to a segmentation process to split the connected blobs into the correct individual tubers.

Segmenting with watershed transformation. The image containing only the connected blob components 
(image B), was processed with watershed transformation to split the blobs into individual tubers and obtain 
the correct tuber count and morphology. The watershed transformation is based on topographic distances. It 
identifies the center of each element in the image using erosion, and from this point to the edges of the object, 
it estimates a distance map. Then, this area “topological map” is filled according to the gradient direction, as if it 
were filled with water. In this way, all connected components are separated (noted image C)35,36. Subsequently, 
image c was combined with image A to gather all the identified individual tubers in only one image (D).

Filtering by size and circularity. Once the objects were whole, the tubers were isolated from the non-targeted 
objects (ruler, color scale palette, genotype serial tag, etc.). For this purpose, a filter was first applied according to 
the object’s area and then according to the circularity based on Eq. (1) given by Wayne  Rasband24. After inspect-
ing the area of tubers and their circularity, the min and max values were determined. Only objects of an area 
between 11,000  px2 and 104,000  px2 and of circularity higher than 0.7 were retained.

Estimating morphology features. Tubers were identified and labeled with an ID, then for each one, the fol-
lowing parameters were measured: area, perimeter, length, width, length-to-width ratio, and circularity. After-
ward, to provide a visual representation of the processed input image, the original image was masked with the 
results from the size and circularity filter, leaving only the tubers. The following formula was used to calculate 
circularity:

(1)Circularity =

(4× π × area)

Perimeter2

Figure 5.  Flowchart of the processing chain, operation algorithms, and outputs for the estimation of tuber 
morphology features.
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Identifying tuber skin color. The tubers contained a complex color spectrum corresponding to variations of 
the skin, buds, lenticels, mechanical damage, common scab symptoms, and other possible defects. To overcome 
this problem, color identification was performed using a K-means color  quantization37, aiming both at facilitat-
ing the identification and reducing computation time. The process consists of reducing the number of colors 
in an image from 256 × 256 × 256 possible values in the 8-bit RGB color model to the desired number of colors 
but preserving the important information of it. In this case, three colors were selected, (background and the 
two considered colors for tubers). Based on these values (clusters), the centroids were determined. Then the 
color was determined, according to the minimum Euclidean distance between all the respective colors present 
in the image to the three cluster centroids. Several repetitions were performed until the centroid of clusters did 
not show changes and the distance between the centroids and the color objects was minimal while the distance 
between centroids was maximal. Subsequently, the image was segmented into three colors and an 8-bit value was 
given to the respective object, ‘0’ to the background, ‘1’ to the red tuber, and ‘2’ to the yellow tuber.

Displaying results. When analyzing an individual image the results are directly displayed on the screen. A 
window with the image containing only the previously labeled potato tubers, and another window with a table 
containing the estimations of morphology and color features. On the other hand, when selecting a batch of 
images, the results are saved in a folder named ‘Results’ in the same source directory given by the user. The folder 
contains the processed images with the potato tubers labeled and a CSV file with all the measurements linked 
to the respective IDs.

Module 2: common scab detection
Deep learning. The deep-learning module processes individual tiles of fixed size (172 × 172 pixels) represent-
ing an individual tuber. The tiles contain the segmented tubers without background, resulting from the mor-
phology module’s output.

Convolutional neural network architecture. A benchmark including six common architectures of CNN was 
conducted to model and predict the severity level of scab infection: VGG16, VGG19, ResNet50V2, ResNet101V2, 
InceptionV3, and Xception. These architectures were developed for different object recognition applica-
tions, including plant and disease classification, and ranked among the best performing in the deep-learning 
 challenges38. A table comparing their characteristics is described in Table 1.

Different training strategies were compared and the training parameters were optimized according to the 
following criteria: minimizing the false positive rate of the infected classes in the health class and maximizing 
the separability between the minor and severe infection classes. The compared strategies were transfer learning 
and fine-tuning (Table 2). For both strategies, the networks are initialized with the weights resulting from the 
training on the ImageNet dataset containing 1.2 million images in 1000 classes such as “cat”, “dog”, “person”, and 
“tree”, among  others39. In addition, we evaluated the robustness of the model with standard metrics (loss and 
accuracy). A schematic overview of ScabyNet-module 2 is shown in Fig. 6.

Generally, the complete training of a CNN is computationally intensive and requires a substantial amount 
of annotated data. These data are usually gathered from multiple collaborative projects. In the case of new 

Table 1.  Comparison of the six CNN architectures used in the benchmark.

CNN Architectures Description References

VGG16 and VGG19 Contain respectively 16 and 19 weighted layers. Simple and computationally efficient and easy to adapt to relatively 
small datasets

40

Residual Network (ResNet) 50V2 and 101V2 Introduce residual connections, to process smaller objects while keeping the ability to learn complex features. 50 and 
101, respectively denote the number of layers in the networks

41

InceptionV3 Based on sub-structures to learn features at multiple scales simultaneously. Adapted to capture some differences 
between patterns that share many common features

42

Xception
Utilizes depth-wise separable convolutions, a type of convolutional operation that separates the spatial filtering and 
channel-wise processing of the input. Reduce the number of parameters to optimize the training complexity while 
retaining the important features

43

Table 2.  Comparison of the two machine learning models for CNN used in the benchmark.

Strategy to transfer learning Description Advantages References

Transfer learning (generic)
Use a pre-trained model that previously learned generic features 
on wide and diverse databases and adapts the classification to a 
new problem

Save training time, does not require a lot of new annotated data 44

Fine-tuning

Use the weights of a pre-trained network for a new task, and 
new classes from new data. The first layers of the network, which 
extract generic features common to many objects are fixed, while 
the last layers extract more complex and specific features, which 
are updated according to the new data

Allow the network to leverage optimal parameters learned from 
a robust database and fit it with a lesser cost for the classes of the 
new application

45
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applications, where less data is available, it is common to use a pre-trained network from public databases and 
adapt them to the specific application.

Visual inspections and manual measurements
Manual measurements for morphology traits. Tubers were measured manually using the ImageJ  software24, 
using the 5 cm ruler placed at the bottom of the images as a scaling reference. Each potato was selected, and 
using the option “line” from the toolbox, the length and width were measured, then using these two parameters 
the length-to-width ratio was calculated.

Expert scores for disease severity of CS. The severity levels of CS are usually assessed visually and scored by 
an expert evaluating two parameters. First, the surface area covered with scab lesions, and second, the severity 
level, i.e., how deep the scab lesion is observed. The surface area covered is rated on a scale from 0 to 9, where 0 
corresponds to no scab lesions on the surface, and 9 corresponds to about 100% of the surface area covered with 
lesions. The depth of the scab lesion is rated on a scale from 1 to 3, where 1 = superficial lesions, 2 = raised lesions, 
and 3 = deep lesions, the most severe coverage. Here, only the surface area was used and the expert scoring in ten 
grades (or severity classes) was transformed into a five classes severity scale.

Classes for CS. Potato tuber images were visually selected and classified in five classes, depending on the level 
of severity of CS on the surface area. Class 1 corresponds to 0–9%, class 2 to 10–24%, class 3 to 25–50, class 4 
51–74%, and class 5 to 75%–100%. Figure 7, shows the scoring scale with corresponding images.

Statistical analyses
Statistical analyses were performed using R version 4.146 and Python version 3.947. To evaluate module 1, the 
Pearson correlation coefficient was computed between the ground truth (manual measurements of the tubers), 
and the results obtained respectively with ImageJ and ScabyNet. For module 2, the two training strategies fine-
tuning and transfer learning were compared. To ensure the reliability of the benchmark, the dataset (7154 potato 
tubers) was split into training, validation, and testing sets. By employing the function “Random Split” from Scikit 
 Learn48, the main dataset was fractionated into 70% for the training set and the remaining 30% as a testing set. 
Subsequently, the training set was divided again using the same function to perform cross-validation, into 70% 
for the training set and the remaining 30% as a validation set. The results were compared with expert scoring in 
order to verify the accuracy of module 2.

Figure 6.  Schematic of module 2 for the detection and quantification of CS severity using deep learning with 
the ResNet architecture.

Figure 7.  Images of the different severity levels of CS on yellow tubers. The rating of disease severity ranged 
from 0 to 100%. Scoring was based on the surface coverage of CS on the tuber.
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Research involving plants
All the methods employed regarding plant materials followed the strict rules of the Swedish Agricultural Uni-
versity which are in accordance with all international standards, including those in the policies of Nature.

Results
ScabyNet is a user-friendly application that contains two main modules and a home tab dedicated to providing 
information on how to use the application. Modules 1 and 2 were designed to process images for morphology 
traits and CS severity. In both cases, an individual image containing any number of potato tubers or a batch 
of images could be analyzed. For the first case (individual image), the user selects the image file and after the 
analysis, the resulting image is displayed on the screen with the morphological features in a separate table. 
Then, the user decides whether to save the results or not. In the second case (a batch of images), the user selects 
the source folder containing the images to be analyzed, and in the same folder, a subfolder named “Results” is 
automatically created in the root of the data, and corresponds to the storage of the resulting processed images 
and the CSV file with the data information.

Module 1: morphologic features
Performance test
To assess the consistency of the morphologic features analysis, a dataset of 100 randomly selected images con-
taining different numbers, shapes, and sizes of potato tubers was analyzed. In total 4735 tubers were processed.

Tuber size. The results obtained by ScabyNet were compared with ground truth data and a method proposed 
for  ImageJ24. A medium–high correlation was observed with the ground truth and ScabyNet (> 0.84; Table 3). For 
the case of correlation between ScabyNet and ImageJ, the results show a high correlation (> 0.88; Table 3). Hence, 
ScabyNet provides a robust and reliable approach to evaluate tuber size features like the ones here described. 
Figure 8 shows the frequency distribution of all the morphological traits measured with this module. All the 
traits showed an almost symmetrical Gaussian distribution, except for the circularity that showed a skewed left.

Time efficiency. Images were processed in a computer with an Intel(R) Core(TM) i7-8650U CPU processor at 
1.90 GHz 2.11 GHz. Time was recorded for all the steps required to analyze an image, starting with image acqui-
sition and ending with saving the data. A complete analysis is described in the following subsections.

Table 3.  Pearson correlation coefficients of the three methods for estimating different tuber size parameters, 
ScabyNet, ImageJ, and Ground truth measurements.

Morphology parameter ScabyNet vs ImageJ ScabyNet versus ground-truth

Area 0.86 NA

Width 0.92 0.85

Length 0.86 0.79

L/W 0.86 0.89

Circularity 0.90 NA

Figure 8.  Frequency distribution of the different morphological traits measured with ScabyNet module 1, 
including area, length, width with the respective units, circularity (Circ.), and length-to-width ratio (LWR).
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• Image acquisition: Establishing the image acquisition protocol
  Organizing the shooting place with the illumination panels, setting up image parameters, and placing the 

camera in the stand at 40 cm took 10 min. This step is done only once during the analysis. Then, placing 
the previously washed tubers on the background took 2 min in batches of six tubers. The time for capturing 
the image took less than 5 s. The time taken for cleaning the potatoes was not accounted for because it was 
already required before performing visual inspections of the tubers.

• Image processing: Executing ScabyNet GUI
Estimating the time approximately that a user took to analyze an individual image with 6 potato tubers was 

around 4 s. The time of selecting the image file depends on the accessibility of the file. A more detailed inspection 
was performed with images containing different numbers of potato tubers (Table 4A). The results showed that 
the analysis of one image containing up to 12 potato tubers lasts between 1 to 3.5 s. For a batch, the time varies 
depending on the number of images to analyze. A time recording was performed with a dataset of 100 images 
with 4735 potato tubers (Table 4B).

Module 2: scab detection using deep‑learning
The dataset composed of 7154 individual tuber tiles, from both red and yellow potato varieties was randomly 
divided into two main subsets. A learning set, composed of 70% of the data and used to calibrate and optimize 
models, and a test set, containing the remaining 30%, is used to assess the performance of the models on inde-
pendent data.

During the training phase, a cross-validation is performed for which the learning set was itself divided into a 
training set, which constituted 70% of the learning set data, and a validation set with the remaining 30% of data.

Training steps
Figure 9 represents respectively the training accuracy (A) and the training loss (B). Figure 10 represents the 
validation accuracy (A) and the validation loss (B).

The models trained with the transfer learning strategy are denoted with “_tl” and displayed as dashed curves, 
while the ones trained with fine-tuning are denoted with “_ft” and displayed as continuous curves. The different 
models were trained according to the parameters presented in Table 5, respectively to the architecture types and 
the training strategy.

All architectures showed a typical learning behavior, with increasing accuracy combined with a progressive 
decreasing loss at each epoch. Generally, the fine-tuning strategy presents significantly better performances 
than the transfer learning strategy for the deeper and more sophisticated architectures (ResNet50V2 and 
ResNet101V2, InceptionV3, and Xception), both in the training and validation. On the other hand, the simpler 
VGG networks (VGG16 and VGG19) showed better performances in fine-tuning (Fig. 9). With the transfer 
learning strategy, the ResNet architectures cannot be trained for the CS application. Their respective training 
accuracy barely exceeded 50% after 15 epochs, and the training loss did not decrease from 7 epochs. This means 
the produced model was equivalent to random decisions and did not include any new information. The valida-
tion performances showed the same behavior and confirmed that the training of these architectures in transfer 
learning failed with the available data. Similarly, InceptionV3 and Xception also showed poor transfer learning 
performance, with maximum accuracies of just over 60%. The two models quickly stagnated after a few itera-
tions, and their weights did not exhibit any significant change after 6 epochs. The validation’s respective accuracy 
and loss showed the same poor performances. For VGG16 and VGG19, the training accuracy reached over 
80% accuracy after 10 epochs and reached its maximum at 14 epochs with 85% and 86% accuracy, respectively. 
However, when looking at the validation results, performances became increasingly unstable, with drops of up 
to 10% accuracy between successive epochs. We can then attribute their relatively good performances in training 
only to a form of overfitting. Similarly, in fine-tuning, the VGG architectures seemed very unstable, as shown 
by their training and validation accuracies, which shifted substantially between epochs. In addition, they never 
reached above 80% accuracy.

Eventually, only four models, InceptionV3, Xception, ResNet50V2, and ResNet101V2, reached performances 
over 90% accuracy, all in fine-tuning. However, these results proved to be only consistent for InceptionV3 and 
Xception as it is shown by the difference between training and validation behavior for the ResNets (Fig. 10A). 
Likewise, only InceptionV3 and Xception showed stable results as shown by the validation accuracy and loss 

Table 4.  Performance test using ScabyNet, A) for an individual image, showing the time taken to analyze a 
different number of tubers, from 0 to 12 tubers. B) For a batch of images, showing the time taken to analyze a 
different number of images containing 6 tubers each one of them.

(A) No. of Tubers Time (s) (B) No. of images Time (s)

2 2.47 10 20.45

4 2.53 20 21.51

6 2.90 40 25.10

8 3.01 60 26.80

10 3.19 80 28.19

12 3.38 100 31.38
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Figure 9.  Training performance for the transfer learning and fine-tuning models. (A) Accuracy curve and (B) 
Loss function curve.

Figure 10.  Validation performance for the transfer learning and fine-tuning models. (A) Accuracy curve and 
(B) Loss function curve.

Table 5.  Parameters used for the training of the different models.

Training strategy Architectures VGGs ResNets /Inception/Xception

Transfer learning

Epochs 15 15

Batch size 64 64

Learning rate 10–3 10–3

Transfer learning with Fine-tuning

Epochs 15 15

Batch size 64 64

Number unfrozen layers 5 10

Learning rate frozen 10–3 10–3

Learning rate unfrozen 10–4 5 ×  10–5
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(Fig. 10A,B). In addition, these two models showed no sign of overfitting, as shown by the consistent increase 
in accuracy coupled with decreasing loss after reaching more than 95% accuracy (a more detailed view of the 
losses can be found in Supplementary Fig. 1).

Ultimately, the most accurate and stable model was Xception trained in fine-tuning. The results showed that 
this architecture with this training strategy reached a stable accuracy of over 95% after 10 epochs and consistently 
improved until reaching 99% accuracy on the validation set while keeping a low loss.

Test step
Tables 6, 7, and 8 present the confusion matrices of the test data for the Xception models trained in fine-tuning 
after 15, 12, and 10 epochs, respectively, and the corresponding precisions detailed for each class. The actual 
classes are presented in the rows versus the predicted classes in the columns. In total, 2146 tubers were tested 
with the following repartition into the classes: 317 class 1 (healthy), 712 class 2, 591 class 3, 351 class 4, and 
174 class 5. The test set was sampled randomly, respecting the proportion of classes presented in the complete 
dataset. At 15 epochs (Table 6), only 6 tubers out of 2146 were misclassified, resulting in accuracies above 99% 
for all classes. At 12 epochs (Table 7), the precision was above 95% for all classes except class 5, i.e. the tuber 

Table 6.  Confusion matrix of the test data predicted for the Xception architecture using the model fine-tuning 
with 15 epochs.

Xception_ft_15 Predicted class

Actual class

Healthy 1 CS 2 CS3 CS4 CS5 Total

Healthy 1 317 0 0 0 0 317

CS 2 1 710 1 0 0 712

CS 3 0 2 590 1 0 593

CS 4 0 0 0 350 1 351

CS 5 0 0 0 0 173 173

Total 318 712 591 351 174 2146

Precision  > 99%  > 99%  > 99%  > 99%  > 99%

Table 7.  Confusion matrix of the test data predicted for the Xception architecture using the model fine-tuning 
with 12 epochs.

Xception_ft_12 Predicted class

Actual class

Healthy 1 CS 2 CS3 CS4 CS5 Total

Healthy 1 311 8 0 0 0 319

CS 2 5 698 13 0 0 716

CS 3 2 5 572 6 4 589

CS 4 0 1 4 334 9 348

CS 5 0 0 2 11 161 174

Total 318 712 591 351 174 2146

Precision 98% 98% 97% 95% 92%

Table 8.  Confusion matrix of the test data predicted for the Xception architecture using the model fine-tuning 
with 10 epochs.

Xception_ft_10 Predicted class

Actual class

Healthy 1 CS 2 CS3 CS4 CS5 Total

Healthy 1 309 18 3 0 0 330

CS 2 5 676 29 4 0 714

CS 3 3 15 542 35 2 597

CS 4 1 3 14 285 7 310

CS 5 0 0 3 27 165 195

Total 318 712 591 351 174 2146

Precision 97% 95% 92% 73% 95%
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most severely affected by CS, for which the precision was 92%. At 10 epochs (Table 8), the precision was above 
90% for all the classes except class 4. In this case, there was confusion between class 3 and class 5 with some 
tubers belonging to both classes. This mostly happened in class 4 for 10 epochs. The test of Xception, trained 
in fine-tuning with the last 15 layers unfrozen, shown on independent data, increased performances consistent 
with the training. The model discriminated perfectly healthy and lightly CS-infected tubers from the severe 
forms. Even the moderate symptoms (classes 3 and 4) can be distinguished with the optimal model. This means 
that optimally trained with adequate parameters and strategy, Xception can easily distinguish infection classes 
describing a 10% to 25% difference in infected areas.

Discussion
In plant breeding, tuber quality, in terms of shape, size, and severity level of CS, still relies on manual measure-
ments and low-throughput visual assessments. These approaches are known to suffer from a lack of accuracy 
and reproducibility on top of being time-consuming and labor-intensive. ScabyNet proposes an image-based 
method divided into two modules to measure the morphological features of tubers and to assess the severity 
level of CS. The results of both modules indicated a high correlation between the manual measurements and the 
visual scoring of the evaluated tubers. Furthermore, a comparison of the applicability of the two modules was 
properly addressed by evaluating the time and accuracy.

Module 1
Several studies have been reported to evaluate tuber morphology and had reached high correlations with manual 
measurements. However, some inconsistencies in outputs can be found in the simpler approaches while the 
most advanced ones are costly, often impractical, or unsuitable for full-scale  trials12,13,17,33. Here a low-cost image 
acquisition and processing approach was implemented, requiring only a simple RGB camera, a static frame, a 
light panel, and ScabyNet. While comparing with similar  approaches11,12 greater differences were found. First, 
the potential of these approaches is limited for images containing a greater variability in tuber shapes and color 
or containing several tubers or other objects. Second, to be properly processed, images must be acquired with a 
strict protocol, including using a  lightbox11. In the same way, as described  in11, ScabyNet also estimates circularity 
and LWR, which allow the screening of new varieties for different markets in terms of  quality13,49. Unfortunately, 
ScabyNet can only evaluate two-dimensional tuber shapes, which is a limitation in terms describing the real 
consumer value of tubers. Different studies have been conducted evaluating all the possible views of an object, 
and a close approach has been reported even to predict diseases based on seed morphological  parameters50. Using 
a cost–benefit instrument,  Cgrain51, it is possible to obtain a full 3D view of the seed and analyzed parameters 
almost instantaneously. This could provide more detailed shape information compared to 2D imaging in the case 
of tubers. However, the size of the tubers would need a specific instrument or a 3D imaging platform, which in 
terms of time and labor will not represent an efficient approach.

Considering tuber shape, it has been found that it can be a complex parameter to evaluate, especially for 
those with abnormal shapes or really flattened, which depends mainly on the different purposes of the final use. 
In order to have a standard measurement, the length and the width were set up as the potato was always placed 
horizontally, but this parameter can change if the potatoes are placed in a vertical position. For this case, there is 
a step that analyzes if there is any inconsistency between width and length, identifying the longest axis the length, 
and the shortest one the width, while LWR and circularity are calculated directly with these two parameters.

An important aspect to highlight is that, compared with other approaches, ScabyNet, showed to be robust 
and accurate, but above all much easier to implement. In terms of comparison with  TubAR12, despite being a 
free application for R  software46, it requires some pre-install packages and program execution requires running 
several command lines. This means that only seasoned operators are able to use the application. For the case 
of the approach presented for the software  ImageJ11, there is only a set of commands to follow but no complete 
application is proposed, which in the same way only can be applied by seasoned operators.

Module 2
In module 2, the best-performing model embedded in ScabyNet was the Xception architecture, which reached 
high accuracy and proved to be robust and stable for the tested dataset and the considered severity classes. The 
fine-tuning strategy was adapted to disease scoring, as it was a substantially different task from what the CNNs 
are usually trained for. The sole adaption of the weights in the deep neural network (DNN) part of the network, 
i.e., the classifier part, was not enough to distinguish between basic severity classes. This means that new weights 
in the filters were necessary to capture the specific patterns associated with CS coverage on the tubers. The spe-
cificities of the Xception architecture enabled to adapt efficiently the model to CS scoring with a reduced dataset. 
Other tested architectures (except InceptionV3) and training strategies could not provide the same performances 
or stability. They would either require more data to converge toward the right filters extracting the right features 
in the cases of the advanced architecture; in the case of the VGGs, they are simply not complex or deep transfer 
the common features learned from generic data to be applicable to the CS detection and scoring problem. Most 
likely, the advanced networks would also require deeper training of the CNN part, i.e., consisting in unfreezing 
more layers and reaching earlier layers in the backpropagation. Consequently, they would be more likely to show 
instabilities or even overfitting considering the relative size of the available database in agriculture and the ones 
used to calibrate the pre-trained models.

With the optimal model, some confusions are still possible, mostly between severity levels that are close to 
each other. A solution to improve the model should be to determine classes as severity profiles rather than based 
on ranges of infected areas and thus match more the assessment rules of breeders. As no other studies to our 
knowledge tackle the issue of scoring potato CS with an automated image-based approach, it is not possible to 
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compare the obtained results. A solution to improve both the performances and the sensitivity of the model, 
i.e. being able to distinguish between finer differences in infection profile, would be to fine-tune more deeply or 
even retrain the network with a generic plant disease database like “PlantVillage” or “PlantImageAnalysis”52,53. 
These databases contain hundreds of thousands of examples of healthy and infected plants from more than a 
hundred species, different pathogens, and infected organs. The generic features learned from that should be a 
better starting point to adapt the network to CS, or even to generalize ScabyNet to various plants and diseases.

Conclusion
This study proposes a novel application named ScabyNet that combines traditional image processing techniques 
and deep learning algorithms to estimate potato tuber morphology features and the detection and severity 
scoring of CS disease. This approach demonstrated operational qualities such as versatility and efficiency in 
analyzing images of potato tubers of various sizes, shapes, and colors, and with different levels of CS disease 
severity. The accuracy of ScabyNet was validated through correlation with manual measurements and with a 
previously established method for measuring potato tuber length and width, as well as visual correlation with 
disease severity scores. Among six different architectures and two training strategies tested, the one selected for 
ScabyNet outperformed the others with an accuracy of 99%.

Notably, ScabyNet was developed as a lightweight application that relies solely on CPU computation, enabling 
greater portability and ease of deployment on a wider range of computing systems. These findings demonstrate 
that ScabyNet represents a significant advancement in agricultural research, providing an efficient, accurate, and 
objective method for analyzing tuber morphology features and estimating CS disease severity in potato crops.

In future research, it is planned to extend the applicability of ScabyNet to include additional color ranges 
of tubers and other potato varieties and incorporate semantic segmentation to achieve higher precision and 
accuracy in tuber identification. The purpose would be to reach finer levels of discrimination between infection 
stages and to recognize specific patterns of the symptoms to match better with phytopathology. Furthermore, 
incorporating additional spectrometric data, such as hyperspectral imaging, may provide further insights into the 
finer phenomena related to the disease and allow for the detection of early symptoms before they become  visible20.

Data availability
The datasets generated and analyzed during the current study are not publicly available due to being obtained 
from a commercial breeding program but are available from the corresponding author on reasonable request.
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