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Density clustering‑based automatic 
anatomical section recognition 
in colonoscopy video using deep 
learning
Byeong Soo Kim 1,11, Minwoo Cho 2,3,4,11, Goh Eun Chung 5,11, Jooyoung Lee 5, Hae Yeon Kang 5, 
Dan Yoon 1, Woo Sang Cho 1, Jung Chan Lee 6,7,8, Jung Ho Bae 5*, Hyoun‑Joong Kong 2,3,4,10* & 
Sungwan Kim 6,7,9*

Recognizing anatomical sections during colonoscopy is crucial for diagnosing colonic diseases and 
generating accurate reports. While recent studies have endeavored to identify anatomical regions of 
the colon using deep learning, the deformable anatomical characteristics of the colon pose challenges 
for establishing a reliable localization system. This study presents a system utilizing 100 colonoscopy 
videos, combining density clustering and deep learning. Cascaded CNN models are employed to 
estimate the appendix orifice (AO), flexures, and "outside of the body," sequentially. Subsequently, 
DBSCAN algorithm is applied to identify anatomical sections. Clustering‑based analysis integrates 
clinical knowledge and context based on the anatomical section within the model. We address 
challenges posed by colonoscopy images through non‑informative removal preprocessing. The image 
data is labeled by clinicians, and the system deduces section correspondence stochastically. The model 
categorizes the colon into three sections: right (cecum and ascending colon), middle (transverse 
colon), and left (descending colon, sigmoid colon, rectum). We estimated the appearance time of 
anatomical boundaries with an average error of 6.31 s for AO, 9.79 s for HF, 27.69 s for SF, and 3.26 s 
for outside of the body. The proposed method can facilitate future advancements towards AI‑based 
automatic reporting, offering time‑saving efficacy and standardization.

Colonoscopy serves as the primary screening method for identifying neoplastic diseases (such as colon polyps 
and cancer) and inflammatory conditions (like Crohn’s disease and ulcerative colitis) within the  colon1,2. How-
ever, the efficacy of colonoscopy is hindered by inter-observer and intra-observer variability influenced by the 
experience and expertise of the  endoscopist3−6.

To address these pitfalls, artificial intelligence (AI) has been introduced to gastrointestinal (GI) endoscopy, 
aiming to enhance procedure effectiveness and mitigate human errors. Numerous studies have demonstrated that 
computer-assisted detection and diagnosis systems can significantly improve an endoscopist’s ability to detect 
and optically diagnose colon  polyps7−9. Commercial products like GI Genius™ (Medtronic, Minneapolis) and 
CAD EYE™ (Fujifilm Holding Corporation, Tokyo, Japan) have been introduced for clinical use. AI technologies 
in colonoscopy are advancing towards autonomously assessing quality indicators, such as cecal intubation rates, 
bowel preparation scores, and the generation of procedural  reports10,11.

OPEN

1Interdisciplinary Program in Bioengineering, Graduate School, Seoul National University, Seoul 08826, 
Korea. 2Innovative Medical Technology Research Institute, Seoul National University Hospital, Seoul 03080, 
Korea. 3Department of Transdisciplinary Medicine, Seoul National University Hospital, Seoul 03080, 
Korea. 4Department of Medicine, Seoul National University College of Medicine, Seoul 03080, Korea. 5Department 
of Internal Medicine and Healthcare Research Institute, Healthcare System Gangnam Center, Seoul National 
University Hospital, Seoul 06236, Korea. 6Department of Biomedical Engineering, Seoul National University 
College of Medicine, Seoul 03080, Korea. 7Institute of Bioengineering, Seoul National University, Seoul 08826, 
Republic of Korea. 8Institute of Medical and Biological Engineering, Medical Research Center, Seoul National 
University, Seoul 03080, Korea. 9Artificial Intelligence Institute, Seoul National University, Research Park 
Building 942, 2 Fl., Seoul 08826, Korea. 10Medical Big Data Research Center, Seoul National University College of 
Medicine, Seoul 03087, Korea. 11These authors contributed equally: Byeong Soo Kim, Minwoo Cho and Goh Eun 
Chung. *email: bjh@snuh.org; gongcop7@snu.ac.kr; sungwan@snu.ac.kr

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-023-51056-6&domain=pdf


2

Vol:.(1234567890)

Scientific Reports |          (2024) 14:872  | https://doi.org/10.1038/s41598-023-51056-6

www.nature.com/scientificreports/

Following the inspection, endoscopists are required to produce high-quality reports detailing bowel prepara-
tion by colon sections and specifying disease phenotypes, including lesion location or  extent10,11. This informa-
tion is crucial for clinical decision-making regarding accurate diagnosis and treatment  plans12−14. Additionally, 
knowledge of the colon’s location aids in revisiting polyps during subsequent insertions, especially if they are too 
large or complicated to resect during the initial inspection, or necessitate transfer to a more advanced medical 
facility for surgical intervention, the colon location provides supplementary information to revisit the polyps at 
subsequent  insertion15,16. Such AI systems have the potential to enhance procedure quality and accuracy while 
reducing the workload on medical  professionals10,11.

The colon, comprising six segments (cecum, A-colon, T-colon, D-colon, S-colon, and rectum), is a deformable 
organ, posing a challenge to developing an AI model that recognizes its anatomical  regions17,18. Some studies 
have delved into analyzing the motion vector in scope images, calculating scope  movement19, and classifying 
the location of the cecum or  flexure11,20. Bao et al.21 introduced a method incorporating an RF sensor inside a 
capsule endoscope, tracking its position through an external receiver. Armi et al.22 generated videos by capturing 
simulator footage to determine the camera pose in colonoscopy images. They employed a CNN model trained 
on this simulated data to estimate the camera’s intrinsic parameters, thus approaching the localization of the 
colonoscope camera. Laiz et al.23 developed an algorithm distinguishing between internal and external regions, 
including the entrance and exit of the colon. They utilized information visualizing the camera’s motion along with 
temporal data for this development. In summary, recognizing the colon’s positional segments allows for tailored 
diagnosis and treatment when diseases are detected, enhancing surgery efficiency, facilitating postoperative 
tracking and monitoring, and enabling effective medical support specific to each region. However, the location 
segment information needed to be more sufficient and accurate in those studies. Additionally, estimating the 
camera’s trajectory through motion is only feasible when translation and rotation transformation information 
is reliably captured.

This study focuses on developing a model capable of identifying anatomical sections of the colon through 
density clustering, considering anatomical continuity. Notably, the training data for the model were meticulously 
chosen with the consensus of eight gastroenterologists, comprising information from 100 patients, including 
4127 images related to the cecum area and an additional set of 5546 images for flexure detection.

During the anatomical section clustering phase, each image was categorized as non-informative or informa-
tive, as illustrated in Supplementary Figure A1. Automatic non-informative filtering assigned labels to images 
as Appendix orifice, flexure, or outside of the body. This approach allows the model to autonomously categorize 
the colon into three main sections: right colon, middle colon, and left colon. Importantly, this novel approach 
eliminates the need for estimating the camera’s trajectory, avoids camera-specific parameters, and dispenses with 
the requirement for 3D reconstruction. It stands out as a distinctive methodology by classifying colon segments 
directly from the original colonoscopy image, requiring no additional components or separate procedures.

Material and methods
Dataset
Due to the colon’s deformable nature, precise localization poses a challenge for endoscopists during colonoscopy. 
They rely on a combination of factors, including markers for insertion depth, the shape of the lumen, and the 
presence of adjacent organs such as the liver, gallbladder, and spleen. The colon, with its six segments—cecum, 
ascending colon (A-colon), transverse colon (T-colon), descending colon (D-colon), sigmoid colon (S-colon), 
and rectum—is typically divided into three main sections: the right colon (comprising the cecum and A-colon), 
the middle colon (T-colon), and the left colon (D-colon, S-colon, rectum). Notably, the hepatic flexure (HF) 
marks the boundary between the right and middle colon and features the liver and gallbladder, appearing as a 
distinctive blue spot resembling a half-moon shape in colonoscopy. Similarly, the splenic flexure (SF) between the 
middle and left colon reveals the presence of the spleen as a distinct blue  spot18. Our system, designed to leverage 
anatomical features such as flexures, consists of three layers that progressively incorporate clinical information. 
During 100 colonoscopy procedures performed using the EVIS LUCERA ELITE Video Colonoscope CF-HQ290 
(Olympus Corporation, Tokyo, Japan), six experienced gastroenterologists (excluding GEC and JHB) meticu-
lously annotated colon segments with timestamps for key landmarks, including the appendiceal orifice (AO), HF, 
SF, sigmoid/descending colon junction (SDJ), and recto/sigmoid junction (RSJ). Real-time monitoring of inser-
tion depth was facilitated through the colonoscopy’s marked length scale. These annotations underwent cross-
verification by another observer (GEC), and a third gastroenterologist (JHB) conducted a thorough review of the 
100 video clips to ensure accuracy. All participating physicians were seasoned experts in the field of endoscopy. 
Since we used retrospective data, we waived the need to obtain informed consent. The retrospective data were 
collected from the previous study’s database, and informed consent from the patients was  waived24. The study 
adhered to ethical guidelines and received approval from the Seoul National University Hospital Institutional 
Review Board (IRB number H-2001-083-1095), following the Declaration of Helsinki. Videos were recorded 
at a resolution of 720 × 480 pixels, at 30 frames per second, using H.264/MPEG-4 (Part10) AVC compression. 
From the 100 video clips, still images were extracted at a rate of three frames per second (resulting in PNG files 
captured every 0.3 s using VirtualDub software)11,25,26. Demographic data is provided in Table 1. We uniformly 
cropped patient information in image preprocessing. The final training image size was 520 × 410 pixels. In this 
study, we established two criteria, ‘out of focus’ and ‘specularity,’ to define non-informative images. ‘Out of focus’ 
refers to cases involving blurring or motion blur, impairing visibility, while ‘specularity’ pertains to instances 
where light reflection causes pixel saturation. Informative images eligible for input into the model in endoscopic 
footage exclude those falling into these two scenarios (Supplementary Figure A1 provides detailed examples). 
The "removal of non-informative frames" process utilized the global contrast factor (GCF)27−29 as the threshold to 
exclude out-of-focus images and employed the specular reflection detection  method30 to eliminate  specularities31.
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Development of the anatomical section recognition algorithm
Figure 1 depicts a comprehensive pipeline for the recognition of anatomical sections. The process consists of two 
main components: data and model. During data preprocessing, frames are extracted from a 30fps video, and only 
relevant regions for endoscopic training are cropped. To address the computational demand, frames are sampled 
at three frames per second. The final preprocessing step involves experimentally defining (see supplementary 
material A) and removing non-informative frames based on criteria for out-of-focus and specularity images. 
In the model development phase, the remaining informative frames are annotated, used for training, and the 
resulting model is applied for analysis.

Table 1.  Patient demographics.

Characteristics Total (N = 100)

Age (years)

 Median 53

 Range 27–78

Gender

 Male 42

 Female 58

Inspection time (in withdrawal phase from cecum to anus)

 Median 7 min 53 s

 Range 3 min 34 s–27 min 37 s

Number of polyps

 Average 0.48

 Range 0–1

Figure 1.  Overall system of the density clustering-based automatic reporting system. (a) The Data 
Preprocessing phase involves cropping frames extracted from videos, sampling one frame per three, and 
removing non-informative frames. (b) The Model Development section encompasses the training process of the 
model and the analytical process of distinguishing colon segments through the model. ATC: appendix orifice 
time coordinated.
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The primary objective of this study is to improve the macroscopic visualization of the lower gastrointestinal 
(GI) tract, specifically the colon, which presents challenges due to its deformable properties. To address this 
difficulty, we utilize time-series data from endoscopic videos, allowing for a segment-by-segment macroscopic 
view. The system is designed with three distinct layers: The Appendix Orifice Time-Coordinated (ATC) layer, 
the Flexure Recognition layer, and the "Outside of the Body" Recognition layer.

We employed the modified AlexNet  algorithm32 (refer to supplementary material B) with a training batch 
size of 8 incorporating a decay rate of 1e-4 and a learning rate of 1e-3. The loss function used was categorical 
cross-entropy, and the optimization was carried out using the Adam optimizer. We compared various CNN 
architectures, including EfficientNet, Inception, SE-ResNet, and DenseNet, as potential models for DPM layers. 
Through this evaluation, we found that a modified version of AlexNet performed the best for utilization in DPM 
layers. The performance comparison table is presented in Supplementary Table B1.

The modified AlexNet’s architecture entailed replacing the activation function of the original AlexNet from 
ReLU to Swish and iteratively applying BatchNormalization, Activation, and Maxpooling at each layer. Addition-
ally, we increased the number of Flatten Layers from two to three in the original AlexNet, aiming to achieve a 
deeper layer structure. We utilized this modified AlexNet in our study and trained it using the aforementioned 
parameters, undergoing 86 epochs for the ATC model, 96 epochs for flexure classification, and 17 epochs for 
Outside of the body classification. This variation across models was due to the application of early stopping.

Our hardware setup comprised two NVIDIA® GeForce® RTX 2080 Ti 12 GB GPUs, an Intel® Core™ i7-9700 K 
CPU @ 3.60 GHz, and 128 GB RAM. Significantly, anatomical segmentation of the large intestine considered its 
irregular shape and variability, utilizing density-based spatial clustering of applications with noise (DBSCAN)33. 
After applying DBSCAN, results were represented through kernel density estimation (KDE) graphs. DBSCAN 
was further applied to all three decision graphs to obtain clusters, and the density-based potential map (DPM) 
visualized these clusters as KDE graphs.

Density‑based potential map (DPM)
During a colonoscopy inspection, the output image captured by the scope exhibits dynamic movements due to 
rotation, shaking, and reciprocation as it navigates through each segment. Consequently, obtaining a clear view 
of informative features, even when the scope is positioned within a specific anatomical region, becomes a chal-
lenging endeavor. Significantly, pinpointing the precise detection time requires considerable effort. Moreover, 
due to the colon’s anatomical structure, the colonoscope continually examines the lumen during the withdrawal 
phase. This results in each segment being observed multiple times within a short timeframe, without a single 
timestamp to rely on. Consequently, defining the locations of the AO, flexures, or areas outside of the body 
becomes impossible. In response, we have generated a KDE graph to illustrate the model’s predictions.

 (i) The execution of the DPM for predictions follows the subsequent sequence. The withdrawal phase 
videos from colonoscopic time-series data are processed by selecting only three frames per second and 
subsequently eliminating non-informative frames.

 (ii) The retained frames become candidate sample points for the clustering step. A classification model 
trained on anatomical sections (AO, Flexures, and outside of the body) determines whether a frame 
qualifies as a sample point.

 (iii) Frames identified as corresponding segments by the classification model (e.g., AO model classifying AO 
presence) serve as sample points for DBSCAN input.

 (iv) Densely clustered sample points labeled AO on the video timeline pinpoint the locations of AO. Replicat-
ing this process for the Flexure and Outside of the body models and overlaying the results in the time 
domain allows for the classification of the entire colon into right, middle, and left sections.

We hypothesized that as the endoscope approaches specific anatomical regions during the examination, the 
classifier would consistently recognize frames with elevated confidence levels. Subsequently, we determined the 
probability of encountering the intended anatomical section by systematically analyzing the video frames. In 
step 2 of the aforementioned method, determining whether the frames are used as valid data points relied on 
the confidence score of the CNN model, with a threshold set at 0.5. This threshold aligns with the True Positive 
criterion commonly adopted in most deeplearning based decision making  tasks34,35.

In this context, for each data point within a cluster, we evaluated the proximity of neighboring data points 
within a specified radius (epsilon) and assessed whether there were a sufficient number of neighboring points 
(minimum points) to satisfy a particular threshold. The neighborhood of an arbitrary point ‘ p ’ is defined as 
 follows36.

 where D is the group of data points. If the vicinity of point p contains at least MinPts, then p is a core point.
We conducted an experiment to identify AO, flexure and the section outside the body. Using this dataset, we 

generated a potential map (refer to Fig. 3). In our study, we employed a technique known as DPM for the analysis 
of colonoscopy videos. This approach facilitated the segmentation of the colon into three distinct parts: the right 
colon, middle colon (T-colon), and left colon. Concurrently, it enabled us to precisely determine the positions 
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of the AO, the two flexures, and the point at which the colonoscopy extends beyond the body (corresponding 
to the end of the rectum). Furthermore, we calculated the total inspection time by measuring the duration from 
the ATC to the point outside the body.

Appendix orifice time coordinated (ATC) layer
In this study, ATC denotes the initiation time of cecum detection through the AO detection model, providing a 
temporal reference in colonoscopy videos. The duration from ATC to the conclusion of the procedure is referred 
to as withdrawal time, a critical quality metric for colonoscopies. Prolonged withdrawal times, extending up to 
10 min, have been linked to higher adenoma detection  rates37. We compiled AO, semi-cecum, and non-cecum 
images from 100 videos. Clinicians meticulously reviewed and trained on 1580 cecum, 967 semi-cecum, and 1580 
out-of-focus images. The dataset was divided into a 0.6:0.2:0.2 train: validation:test ratio. AO images showcased 
cecum features, excluding those resembling the ileocecal valve (ICV). Semi-cecum images depicted the terminal 
ileum and A-colon features, occasionally combined with unrelated content. Out-of-focus images extracted from 
colonoscopy videos served as ‘negative class’ images for discriminating intestinal walls from foreign substances. 
The average AO estimation time error was 6.31 s.

Flexure recognition layer
Set (A) of Fig. 2 displays images of ‘candidate flexure,’ extracted from the point where the liver or pancreas 
appears blue through the mucosal wall, spanning from the first observed point to the last. Clinicians annotated 
timestamps in seconds near the flexure to serve as reference points (see Fig. 2a). This dataset encompassed flexure 
images interspersed with those taken before and after the flexure region. In total, we collected 3840 candidate 
flexure images. Clinicians meticulously reviewed these images to verify precise anatomical features, resulting 
in 2773 confirmed flexure images and 24,028 non-flexure images (depicted in Fig. 2b). Images from other seg-
ments were included in the "non-flexure" class to maintain a natural distribution, regardless of the imbalance in 
the number of images for each section (as depicted in Fig. 2). Non-flexure images were extracted in a ratio that 
preserved the relative composition across five sections: 434 from the cecum, 672 from the A-colon, 586 from the 
T-colon, 135 from the D-colon, and 946 from the sigmoid and rectum.

Recognizing flexures, which represent anatomical regions where the lumen bends, presents challenges, includ-
ing instances where the camera loses focus in folded sections and encounters light reflections from nearby 
obstacles.

Figure 2.  Training data acquisition process: Set (A): The number of images selected after frame sampling. Each 
anatomical segment is clipped using the timestamp as a reference. Set (B): The number of informative images 
listed according to the corresponding anatomical segment. After the candidate data is reviewed by clinicians, 
2547 AO images, 2773 flexure images, and 15,520 outside-of-the-body images were obtained. (AO: appendiceal 
orifice, ICV: ileocecal valve, HF: hepatic flexure, SF: splenic flexure, SDJ: descending colon–sigmoid colon 
junction, RSJ: rectum–sigmoid colon junction, A-colon: ascending colon, T-colon: transverse colon, D-colon: 
descending colon).
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To overcome this challenge, the flexure recognition layer treated out-of-focus and specular images as distinct 
classes. Using an informative frame filtering algorithm (see supplementary material A), we randomly selected 
2773 out-of-focus and 2773 specularity images. Patient data were randomly divided to ensure that the same 
patient did not appear in different sets, resulting in a train: validation: test ratio of 0.6:0.2:0.2. In this study, the 
DPM analysis of the flexure layer was designed to recognize anatomical sections as probability intervals if they 
consistently appeared across temporally adjacent frames and clustered with sufficient frequency. The first and 
last clusters in the flexure layer were identified as representing HF and SF. Our observations revealed that the 
centroid of the first cluster matched the location of the HF, while the initial boundary of the last cluster cor-
responded to the SF. This suggests that accurate observation of the HF is feasible, as the subsequent section is 
the T-colon, allowing for relatively easy scope movement. However, in the case of the SF, as the scope advances 
into the D-colon and S-colon, the winding lumen causes the scope to face the colon wall, limiting visibility and 
posing challenges in obtaining informative images. In the DPM shown in Fig. 3, the high-confidence section 
is represented with a color gradient, particularly for the flexure. In density-based layer 2 (as shown in Fig. 4), a 
cross-section of the DPM for the flexure, obtained using the KDE method, is used as is (additional examples are 
provided in supplementary material Fig. C2).

Outside of the body recognition layer
This section outlines the methodology employed to identify the point at which the colonoscope exits the anus. 
Within the "outside of the body" recognition layer, images featuring characteristics of the external body surface 
were utilized to determine the conclusion of the inspection process. Specifically, the termination point from the 
SF to the external body boundary was defined as the left colon. The rectum could also be indirectly estimated 
as it represents the final part of the withdrawal phase. Additionally, we extracted frames captured after the anus 
from the training set videos to compile the training data for the "outside of the body" recognition.

Following this, an equal number of informative frames were extracted from the five colonoscopy segments, 
namely the cecum, A-colon, T-colon, D-colon, and S-colon, which collectively represent the "inside of the 
intestine." Similar to the models discussed in sections “Appendix orifice time coordinated layer” and “Flexure 
recognition layer”, the training set consisted of 9312 images, while the validation and test sets each comprised 
3104 images, with a distribution ratio of 0.6:0.2:0.2.

Figure 3.  Summarization of colonoscopy video with density-based potential map (DPM): Flexure Recognition 
Layer. DBSCAN is applied to each frame in the video sequence with a high confidence score obtained by the 
flexure classifier. The result of the projection is the DPM at the bottom of the figure.
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Merging the density‑based potential map layers
In Fig. 4, three layers of DPM collaborate to generate a prospective report, offering estimations of anatomical 
sections. This report serves a crucial role in aiding the recognition algorithm to identify the right, middle, and 
left colon, and concurrently estimate the rectum when the endoscope exits the body. Time calculations are rooted 
in the detection of the AO, with the detection time marked as ATC within the first layer. The potential report 
integrates information from layers 1, 2, and 3, taking into consideration the evaluation time errors associated 
with each estimated area. For instance, the HF model in layer 2 visualizes a time interval ranging from 8.63 s 
before the estimated evaluation time to 13.27 s after, indicating the probable HF appearance area. The ultimate 
output of this sophisticated recognition algorithm furnishes a detailed timeline, delineating the arrival times of 
the A-colon, T-colon, D-colon, and S-colon. This temporal mapping serves as a valuable tool for comprehending 
the chronological sequence of the colonoscopic examination.

Ethics approval
Approval of all ethical and experimental procedures and protocols was granted by the institutional review board 
(IRB) in Seoul National University Hosipital (IRB No: H-2001-083-1095). Due to the retrospective nature of the 
study, H-2001-083-1095 waived the need of obtaining informed consent.

Results
To address this, we determined an optimal cluster size. Given our utilization of time-series data, we set the epsilon 
value at 30 frames, which is equivalent to a 1-s window from the current frame for assessing region characteris-
tics. The minimum sample size was determined through experimentation (please refer to supplementary material 
C). Subsequently, we applied the DBSCAN  algorithm33 to the data presented in the anatomical segments report, 
resulting in the generation of a Density-Based Probability Map (DPM) (depicted in Fig. 3). In this figure, the 
blue line represents the estimation for the HF, while the purple line represents the estimation for the SF. The red 
vertical line denotes the ground truth timestamp provided by clinicians. Evaluation results for the AO, flexure, 
and outside-of-the-body classifiers are presented in Table 2.

In the density-based analysis of the ATC layer, the AO classifier utilized frames from the cecum and semi-
cecum to delineate the ATC region. Among the models proposed within the modified AlexNet (please refer to 
supplementary material B), the flexure classifier model exhibited the highest accuracy, with a sensitivity of 81.23% 
for flexure and 81.59% for non-flexure. Notably, the evaluation datasets from 20 videos were not included in the 
training dataset used for the classifier model.

Figure 4.  Analysis of anatomical sections using density clustering from three DPMs (Appendix Orifice, 
Flexures, and Outside the Body) for segment position estimation. Report sections: Right Colon (AO-HF), 
Middle Colon (T-Colon), and Left Colon (SF-outside of the body). DPM: Density-Based Probability Map.
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In Fig. 3, the horizontal axis represents the frame index of a frame where the probability of each section 
exceeds 0.5, while the vertical axis represents the softmax probability.

Comparison of classification CNN models
A performance comparison of image classification models for different classes, including  EfficientNet38, Incep-
tion-v439,  AlexNet32, Squeeze-and-Excitation  Network40,  ResNet5041, and  DenseNet42, was conducted. To ensure 
a fair comparison, consistent training conditions were maintained with 100 epochs, a learning rate of 1e-3, and 
the use of the Adam optimizer. Experiments were conducted in Python 3.7.6 using Keras version 2.4.3 and 
TensorFlow version 2.3.0. In cases of early stopping, training was halted if the validation loss for each epoch did 
not improve by 0.0005 or more for five consecutive deductions.

Additionally, potential performance differences based on image size were explored. Specifically, EfficientNet-
B3 using 300 × 300 size images was compared with Inception-v4 using 299 × 299 size images. Among these 
models, AlexNet emerged as the top performer, attributed to its relatively smaller number of layers, preventing 
overfitting due to an excessive number of  parameters43. The flexure classifier’s training dataset of 6660 images, 
constituting 60% of the total data, contributed to AlexNet’s superior performance (Detailed composition of the 
training data for each comparative model is extensively described in Supplementary Material B).

Anatomical section recognition error
The ATC layer and the flexure recognition layer collectively generate a result graph with probabilities to analyze 
densely clustered frames that yield high-confidence classification outcomes for the anatomical regions. Figure 5 
illustrates the time discrepancies computed via the DPM. Based on the DPM analysis results, the predictions 
for AO, HF, and SF exhibited average errors of 6.31 s, 9.79 s, and 27.69 s, respectively. The disparity between the 
detection time and the correct answer time is expressed in seconds. For instance, taking case 17 in Fig. 5 as an 
example, it can be inferred that the ATC detector module identified AO 1.33 s later, while the flexure classifier 
identified HF 13.67 s after and SF 22 s ahead of the ground truth.

The error outcomes for the 20 test set videos were as follows: HF was detected with an average time error of 
9.79 s, and SF was detected with a time error of 27.69 s. The outside-of-the-body model generally detected the 
end of the colonoscopy with minimal time error (3.26 s). As a result, there was no significant deviation between 
the model’s predictions and the ground truth.

Discussion
In this paper, we presented a CNN-based image classification model that recognizes the anatomical section of the 
colon using frame-wise density intervals of colonoscopy videos; in this study, we used 100 colonoscopy videos. 
We presented a DPM to recognize the anatomical section of the colon in the colonoscope video. In addition, 
we introduced a DBSCAN-based analysis that visualizes anatomic fiducials as core points, proposes a spatial 
context, and localizes colon segments during a colonoscopy procedure. We chose GCF and the specularity 
masking method to handle non-informative images in colonoscope videos, which filtered blurry image frames 
and specular regions, respectively.

The developed model autonomously classifies the anatomical section of the colon into three parts. Further-
more, our proposed method opens the possibility of generating an infographic commentary for colonoscopy 
videos, providing visualization information that reflects the anatomical location and order of each segment. 
However, existing studies often involve a time-consuming and burdensome process, necessitating optical flow 
calculation solely for camera motion detection or the integration of additional  sensors21. Approaches to deter-
mining the 6 Degrees of Freedom (6 DOF) pose of the camera involve estimating rotation and translation 
parameters, which can vary for each  camera22,23,44. Additionally, correcting for disturbances, especially those 
caused by shaking, is imperative.

Furthermore, the value of the data in this study is significant, as it was trained using actual colonoscopy videos 
from 100 patients rather than a simulator. Simulators of the colon lack real-time peristaltic movement and do 
not undergo shape deformations, making them less representative of actual  conditions20,44,45.

The key differences between our study from previous similar works are the following:

Table 2.  Results of the evaluation of the proposed inferencing model (using the modified AlexNet described 
in supplementary material B).

Sensitivity (= Recall) PPV (= Precision) F1-score NPV Specificity Accuracy

Cecum 0.8323 0.8680 0.8498 0.8337 0.9160 0.8463

Semi-cecum 0.6649 0.7633 0.7107 0.8676 0.9344 0.8463

Not-cecum 0.9715 0.8672 0.9164 0.8305 0.8929 0.8463

Flexure 0.8123 0.8911 0.8499 0.9267 0.9598 0.7960

Non-flexure 0.8159 0.6859 0.7453 0.9279 0.8637 0.7960

Outside of the body 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997

Inside of the body 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997
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 (i) The large intestine is divided into three sections without relying on the depth or pose parameter of the 
camera. The division utilizes only a computer vision-based segment location estimation, without the 
need for an external sensor.

 (ii) The data required for all algorithm procedures can be obtained solely from simple colonoscopy videos.
 (iii) The data are obtained from colon inspections of actual patients, not simulations, ensuring considerable 

accuracy and robustness of results.

Contribution of anatomical segmentation
Accurate lesion localization within the colon is crucial for the effective detection of colonic abnormalities during 
 colonoscopy46,47. Precisely determining the tumor location can offer valuable insights into clinical  prognosis48 and 
treatment  strategies47. Various methods, including medical imaging modalities such as magnetic resonance imag-
ing (MRI)49,  ultrasound50, and computed tomography (CT)51, have been employed to pinpoint lesion locations 
within the colon. However, challenges arise due to the colon’s deformable nature when measuring transformation 

Figure 5.  Difference in time estimation using DPM. The interference results of the proposed density clustering-
based automatic reporting system can be confirmed through a horizontal bar. The test set time difference with 
ground truth is expressed for 20 patients. (Table C1 in supplementary material C).
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parameters using external sensors. Some studies have aimed to identify colon segments through image processing 
with colonoscopes to capture previously overlooked  areas15,16, while others have reconstructed spatial information 
during the withdrawal phase to guide the endoscope back to previously missed  sections43,52. Unfortunately, these 
methods lack the utilization of anatomical landmarks or fiducials associated with specific colon  sections53,54. The 
algorithm traditionally applied to simulators assumes an analysis based on a fixed  structure44,45. Additionally, 
algorithms that return reconstruction as their output are impractical for real-world usage because they need to 
recalculate when the gastrointestinal tract  moves20.

In contrast, our proposed algorithm uniquely identifies the position of corresponding segments in dynamic 
colon videos where peristaltic movements are continuous. It promptly addresses common issues in colonoscopy 
videos, such as motion blur and light reflections in frames, ensuring no computational delays in the model. 
Designed to distinguish segment locations within colonoscopic videos amid frequent peristaltic movements, 
our algorithm eliminates the need for additional sensors beyond the colonoscopy equipment. It sidesteps the 
complexities of parameter calculations and can be directly applied to actual patient videos, enhancing its practi-
cal utility. In our study, we classified the entire colon into right, middle, and left segments, utilizing information 
related to AO , flexures, and the external region (Fig. 6). The severity of colorectal polyps can vary depending 
on the examined region among the three areas (right colon, middle colon, and left colon). This approach pro-
vides clinical advantages by directly leveraging anatomical indicators, contrasting with traditional image-based 
colonoscope position estimation algorithms.

Unlike previous methods relying on motion for location and trajectory estimation, which necessitate the 
acquisition of translation transformation matrices and coordinate system  rotations22,23,44, our study achieved high 
accuracy in segment classification within the large intestine without depending on camera intrinsic  parameters17. 
Furthermore, our approach accommodates variable camera movement during colonoscopy, where the colono-
scope may move backward for observation, revisit previous sections, or linger in specific areas for polyp removal. 
Consequently, the order and appearance of colon segments, including AO, flexures, T-Colon, D-Colon, S-Colon, 
and Rectum, may not follow a linear sequence and can overlap. Some segments may even reappear after initial 
identification. Nevertheless, our approach allows us to estimate the location of each colon segment, enabling the 
classification of the sequence of anatomical sections, even in cases of repeated sections.

Figure 6.  Reporting result of the proposed system. A-colon: ascending colon, T-colon: transverse colon, 
D-colon: descending colon, S-colon: sigmoid colon, ATC: appendix orifice time coordinated.
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Visualization of density‑based potential map
During the withdrawal phase of a colonoscopy, the colonoscope moves backward to exit the colon. Consequently, 
the field of view continuously observes areas that were previously traversed for a few to tens of seconds. Flexure 
images can still be observed even when the scope isn’t precisely positioned in that region. Therefore, our aim was 
to detect flexures as clusters rather than timestamps. In our testing, the colon localization algorithm provided 
detection times for AO, flexures, and the point outside the body in 20 colonoscopy videos. On average, the AO 
detection error was 6.31 s. In nine of these cases, AO was detected earlier than the correct timestamp, with an 
average lead time of 4.35 s. In cases where AO was detected later than the correct timestamp, an average delay of 
7.92 s was recorded. For HF detection, the error averaged 9.79 s, while for SF detection, it was 27.69 s. The detec-
tion of the point outside the body, marking the end of the withdrawal phase, exhibited an average error of 3.26 s.

To plan our research and guide our segment detection patterns using DPM, considering the colon’s anatomical 
features, we conducted a focus group interview. We anticipated that the hepatic flexure region would become 
clearer during the T-colon phase. The DBSCAN analysis confirmed that the first core point in the DPM with the 
flexure classifier corresponded to the HF’s time index. Similarly, DPM with the ATC detector predicted AO as 
the first core point during colonoscopy. As the scope moved into the D-colon after the SF, it faced the mucosal 
wall, and we had to supply water due to limited movement in these segments. We expected the DPM’s foremost 
time index in the SF area to be closely related. In general, our predictions aligned with the DPM results, reflect-
ing the colon’s anatomical structure.

Limitations and future work
The limitation of this study is the challenge of performing external validation due to the absence of public data 
collected with the same protocol. Moreover, gastrointestinal clinicians demonstrated proficiency in distinguishing 
each anatomical region during data collection. In our subsequent study, we plan to collect prospective data from 
other institutions and apply this algorithm to establish its validity through external validation. Additionally, each 
training dataset for the developed models exhibited class-wise imbalances. While this is a common occurrence 
in medical data, we chose not to apply augmentation to address this issue in our study. The data used in this 
research was deemed valid for training only after consensus from multiple clinical experts, who identified the 
corresponding segments. Conversely, concerns were raised that augmented data, when viewed by clinical experts, 
might lack certainty in preserving valid information about anatomical landmarks’ features in colonoscopy videos. 
Furthermore, the model structure employed in this study was designed with three independently developed 
models, each specializing in learning and distinguishing different types of segment features. The inference results 
for each segment were then stacked to form the overall model (Figs. 1 and 4). This design was considered to 
mitigate the impact of data imbalance on the entire model, providing a potential solution.

In addition, attempts were made to separate the boundary between D-colon and S-colon and the anatomical 
section recognition to distinguish HF and SF into different sections. Accurately identifying the junction between 
the D-colon and S-colon in endoscopic videos of real patients has proven to be challenging, presenting difficulties 
for both image-based recognition models and gastroenterologists in the field. The delineation of D-colon and 
S-colon boundaries introduces complexities in training models for image analysis using deep learning. Despite 
challenges in detecting the SDJ, one avenue for addressing this issue involves leveraging the characteristics of 
folds. Folds in the D colon exhibit a rounded shape due to fixation to the posterior peritoneum, while those in 
the S colon may display a triangular shape influenced by the tenia  coli55. We are exploring methods to utilize 
these features.

However, accurately creating the ground truth for the boundary line of the D-colon and S-colon is difficult. 
We are considering a method of learning the exact boundary through simulator images obtained from the mani-
kin simultaneously. Our future research will involve video research techniques that learn not only from the still 
images but also from the  sequence56. Nevertheless, when considering left colon classification based on the SF, 
accurately distinguishing between the D-colon and S-colon may not have a significant clinical impact in terms of 
therapeutic approaches, as discussed  clinically57. Likewise, training was limited by dividing it into more detailed 
sections because the observable features were ambiguous to distinguish the junction between S-Colon and 
Rectum. Nevertheless, it was meaningful to classify it as left, middle, and right in terms of clinical significance.

Consequently, our system employs an analytical methodology for a density-based clustering map. This map 
analyzes the frame-wise inference results of the classification CNN model, automatically representing each sec-
tion’s distribution in the colonoscopy video as a stochastic value. This capability allows for the separation of three 
anatomical regions, providing a visualized report. If this visualized report is integrated into the polyp detection 
algorithm, it becomes possible to generate a report that automatically suggests the location of the detected polyp. 
This AI-based colon section recognition during colonoscopy holds the potential to contribute to future advance-
ments in AI-assisted automatic reporting, offering efficiency gains and standardization.

Data availability
The data generated and/or analyzed during the current study are available from the corresponding author on 
reasonable request.
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