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Transcriptome‑based biomarker 
prediction for Parkinson’s disease 
using genome‑scale metabolic 
modeling
Ecehan Abdik  & Tunahan Çakır *

Parkinson’s disease (PD) is the second most common neurodegenerative disease in the world. 
Identification of PD biomarkers is crucial for early diagnosis and to develop target‑based therapeutic 
agents. Integrative analysis of genome‑scale metabolic models (GEMs) and omics data provides a 
computational approach for the prediction of metabolite biomarkers. Here, we applied the TIMBR 
(Transcriptionally Inferred Metabolic Biomarker Response) algorithm and two modified versions 
of TIMBR to investigate potential metabolite biomarkers for PD. To this end, we mapped thirteen 
post‑mortem PD transcriptome datasets from the substantia nigra region onto Human‑GEM. We 
considered a metabolite as a candidate biomarker if its production was predicted to be more efficient 
by a TIMBR‑family algorithm in control or PD case for the majority of the datasets. Different metrics 
based on well‑known PD‑related metabolite alterations, PD‑associated pathways, and a list of 25 
high‑confidence PD metabolite biomarkers compiled from the literature were used to compare the 
prediction performance of the three algorithms tested. The modified algorithm with the highest 
prediction power based on the metrics was called TAMBOOR, TrAnscriptome‑based Metabolite 
Biomarkers by On–Off Reactions, which was introduced for the first time in this study. TAMBOOR 
performed better in terms of capturing well‑known pathway alterations and metabolite secretion 
changes in PD. Therefore, our tool has a strong potential to be used for the prediction of novel 
diagnostic biomarkers for human diseases.

Parkinson’s disease (PD) is the most common neurodegenerative motor function disorder, which affects 0.1% 
of the population older than 40  years1. This ratio reaches 2–3% for the population older than  652. The world’s 
population is aging as a result of the improvements in health care and life quality, causing an increase in the 
PD incidence rate. The number of people with PD is expected to double between 2015 and  20403. The current 
treatments mainly relieve symptoms, but there is no neuroprotective treatment  yet4.

The main pathological features of PD are the loss of the dopaminergic neurons in the substantia nigra region 
and the accumulation of α-synuclein-containing Lewy bodies in those  neurons2. PD is defined as a complex 
disease with multiple underlying genetic and environmental  factors5. Oxidative stress and mitochondrial dys-
function are the primary metabolic hallmarks of the degeneration of neurons in  PD6. Gene expression profiling 
studies are widely used to investigate molecular mechanisms of the  disease7–9. Numerous PD transcriptome 
datasets are available in databases like Gene Expression Omnibus (GEO)10.

Although clinical symptoms are widely utilized for the diagnosis of Parkinson’s disease, pathological indica-
tions of the disease appear at the molecular level several years before the clinical symptoms. Therefore, the investi-
gation of preclinical biomarkers of PD is essential to diagnose the disease in the early stages, develop target-based 
therapeutical agents, and distinguish PD from other Parkinsonian diseases. Research on predicting molecular 
biomarkers commonly focuses on differential gene expression analysis to put forward gene  biomarkers11,12. Yet, 
measuring gene-based biomarkers is hard compared to measuring metabolite-based biomarkers in terms of labo-
ratory labor, cost, and time. Decrease in dopamine levels is a well-known PD metabolite  biomarker13, and defin-
ing more metabolite-based biomarkers can be crucial in early diagnosis of PD before dopamine deficiency arises.

Biomarker prediction by integrative usage of computational models and omics data is an active research 
 field14,15. TIMBR (Transcriptionally Inferred Metabolic Biomarker Response)16 is an algorithm that predicts 
metabolite biomarkers from the constraint-based analysis of genome-scale metabolic networks. TIMBR basically 
uses gene expression changes to calculate the network demands required for the secretion of metabolites, and 
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compares them between two states. Before, it was successfully applied to predict early metabolite markers for 
toxicant-induced organ damages in  rats17–19 and to analyze the changes in the secretion rates of metabolites for 
different experimental mouse models of  PD20. Genome-scale metabolic models (GEMs) provide a mathematical 
platform for the integration of omics data for predicting condition specific metabolic behaviors of organisms. 
The publication of the first genome-scale metabolic network of Homo sapiens,  Recon121, made it possible to 
investigate human physiology, pathology, and  pharmacology22,23. The unified human GEM (Human-GEM)24 
is the last released human GEM. The human GEMs are commonly used for the systematic investigation of the 
metabolic mechanisms of  diseases25–27, including brain-related  diseases28–30.

In this study, thirteen PD related transcriptome datasets were mapped on Human-GEM by the TIMBR 
algorithm and its modified versions to provide a powerful computational biomarker prediction approach. Tran-
scriptome datasets from the most affected brain region in PD, substantia nigra, were chosen to better capture 
PD-associated metabolic alterations. Metabolites predicted to have changed secretion profiles for the major-
ity of the datasets were considered to be potential biomarkers with a meta-analysis approach. Metabolite and 
pathway-based metrics were used to compare the algorithms. A reaction on–off based modification of TIMBR 
algorithm introduced in this study, called TAMBOOR (TrAnscriptome-based Metabolite Biomarkers by On–Off 
Reactions), was found to be the most powerful approach. The metabolites predicted by TAMBOOR were sug-
gested as candidate biomarkers for PD.

Materials and methods
The methodology of this study is summarized in Fig. 1.

Human‑GEM
The generic genome-scale metabolic model of Homo sapiens (Human-GEM)24 version 1.11.0 was used in this 
study. The model consists of 13,069 reactions, 3,067 genes and 8,366 metabolites. The simulations were performed 
in Ham’s medium, which consists of 44 metabolites (Supplementary Table S1)24, and three additional metabo-
lites, which are taurine, ornithine and  NH3. The uptakes of those metabolites were allowed in the simulations 
whereas the uptakes of all other metabolites in the model were blocked by setting the lower bounds of the rates 
through corresponding exchange reactions to zero. Maximum glucose and oxygen uptake rates were respectively 

Figure 1.  The basic pipeline followed in this study for predicting metabolite biomarkers by the integration of 
omics data and genome-scale metabolic networks.
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constrained as 0.32 μmol/g/min and 1.76 μmol/g/min, the values from literature for the resting state brain 
 metabolism31,32. Maximum uptake rates of fourteen amino acids (histidine, isoleucine, leucine, lysine, methio-
nine, phenylalanine, threonine, tryptophan, valine, tyrosine, cysteine, arginine, ornithine and taurine),  NH3 and 
other carbon source metabolites in Ham’s medium were constrained to be 1/10 of the glucose uptake rate, based 
on their reported relative  rates31. As an additional constraint, the biomass production rate was constrained to be 
at least 0.0001 μmol/g/min to ensure that macromolecule synthesis is active in all conditions.

Transcriptome data
Thirteen PD-related human transcriptome datasets presented in Table 1 were used to analyze changes in metabo-
lite secretions in the substantia nigra region by using the biomarker prediction algorithms. Some of these data-
sets contain samples from different brain regions and/or different neurodegenerative diseases and expression 
profiles coming from distinct microarrays. Since the substantia nigra is the most affected brain region in PD, 
only post-mortem substantia nigra samples belonging to PD and control groups were considered. GSE8397 
dataset includes expression profiles of lateral and medial substantia nigra regions separately. Therefore, 14 dif-
ferent comparisons from 13 datasets were evaluated in this study. The datasets include 112 control samples and 
141 PD samples in total.

The datasets were downloaded from Gene Expression Omnibus (https:// www. ncbi. nlm. nih. gov/ geo/) in 
non-normalized format. The normalizations were performed as detailed in our previous  study40. Briefly, robust 
multi-chip average (RMA) and quantile normalization methods were applied for background correction and 
normalization of the microarray datasets whereas the RNA-seq datasets were normalized by the Trimmed 
Mean of M-values (TMM) method. Principal Component Analysis was applied to each normalized dataset to 
check for  outliers40. Sample GSM506020 from dataset GSE20164, sample GSM208633 from dataset GSE8397, 
sample GSM663086 from dataset GSE26927, samples GSM509556 and GSM509557 from dataset GSE20333, 
samples GSM4054769 and GSM4054767 from dataset GSE136666, and samples GSM606624, GSM606625 and 
GSM606626 from dataset GSE20292 were determined as outliers and excluded from further analysis. GSE49036 
contains PD samples including Braak stage information. Only the samples having Braak stage between 3 and 6 
were assumed as PD samples.

Biomarker prediction via TIMBR and alternative algorithms
The transcriptionally inferred metabolic biomarker response (TIMBR)  algorithm16 was used here to predict 
biomarker potential of extracellular metabolites in PD patients. Briefly, transcriptome data from controls and 
PD patients were separately mapped on the human genome-scale metabolic network, Human-GEM, using GPR 
(gene-protein-reaction) rules defined in the model for each reaction. In this mapping, expression values of genes 
were assigned to reactions as follows: For the reactions controlled by a single enzyme, the gene expression value 
of the responsible gene was directly assigned to the reaction. The maximum of the expression values of respon-
sible genes was assigned to the reactions controlled by isoenzymes, which are different enzymes catalyzing the 
same reaction independently. The minimum of the expression values was assigned to the reactions controlled 
by enzyme complexes, which consist of at least two enzymes that catalyze the reaction together. The expression 
values assigned to the reactions with this approach were referred to as reaction scores. Then, for each metabolite 
with a defined secretion reaction in the model, a linear-programming based optimization was performed to 
predict a flux distribution that satisfied a high secretion flux through the metabolite (Fig. 2). The TIMBR algo-
rithm solves an optimization problem with the minimization of the weighted sum of fluxes, where the weights 
of the objective function are calculated as fold changes of transcriptome-based reaction scores from the GPR 
rules (control/disease for disease case, and disease/control for control case simulations). With this weight-based 

Table 1.  Information about the PD transcriptome datasets used in this study. (C: Control, PD: Parkinson’s 
disease, LSN: Lateral substantia nigra, MSN: Medial substantia nigra).

Accession codes Source Technique and platform Sample size Reference

GSE7621 Substantia nigra Microarray—Affymetrix Human Genome U133 Plus 2.0 Array 25 (9C–16PD) 33

GSE8397 Lateral and Medial
Substantia nigra Microarray—Affymetrix Human Genome U133A Array LSN: 14 (5C–9PD)

MSN: 25 (89C–15PD)
34

GSE20141 Substantia nigra Microarray—Affymetrix Human Genome U133 Plus 2.0 Array 18 (8C–10PD) 35

GSE20163 Substantia nigra Microarray—Affymetrix Human Genome U133A Array 17 (9C–8PD) 35

GSE20164 Substantia nigra Microarray—Affymetrix Human Genome U133A Array 11 (5C–6PD) 35

GSE20292 Substantia nigra Microarray—Affymetrix Human Genome U133A Array 29 (18C–11PD) 7

GSE20333 Substantia nigra Microarray—Affymetrix Human HG-Focus Target Array 12 (6C–6PD) –

GSE26927 Substantia nigra Microarray—Illumina humanRef-8 v2.0 expression beadchip 20 (8C–12PD) 36

GSE54282 Substantia nigra Microarray—Affymetrix Human Gene 1.0 ST Array 6 (3C–3PD) 8

GSE136666 Substantia nigra RNAseq—Illumina HiSeq 2000 10 (5C–5PD) 37

GSE24378 Substantia nigra Microarray—Affymetrix Human X3P Array 17 (9C–8PD) 35

GSE114517 Substantia nigra RNAseq—Illumina NextSeq 500 27 (10C–17PD) 38

GSE49036 Substantia nigra Microarray—Affymetrix Human Genome U133 Plus 2.0 Array 23 (8C–15PD) 39

https://www.ncbi.nlm.nih.gov/geo/
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optimization strategy, reactions with the higher objective function coefficient values (lower expression values 
in the case of interest) were forced to take lower flux values. In this way, a flux vector is predicted such that it is 
correlated with the upregulation/downregulation information at mRNA level. The algorithm we implemented 
here includes some modifications to the original  algorithm16. The modified parts of TIMBR were detailed in 
our previous  study20.

Figure 2.  Modified TIMBR and TAMBOOR approaches for predicting metabolite biomarkers based on the 
gene expression changes. (a) Reaction weights are calculated as fold changes of transcriptome-based reaction 
scores obtained by mapping transcriptome data on the genome-scale metabolic model. The minimization of 
the weighted sum of fluxes is used as the objective function to predict flux distribution correlated with the 
upregulation/downregulation information. 90% of the maximum secretion flux through the related metabolite 
is used as a constraint in the optimization. (W: weight, S: reaction score, V: flux vector of reactions,  Vmetabolite: 
the secretion rate of the metabolite of interest and  Xmetabolite: the network demand) (b) Toy models to show how 
flux distributions differ based on the reaction score fold changes in control and disease states. The weight-based 
minimization strategy forces fluxes to pass through reactions with lower objective function coefficient values. 
(c) Network demand and production score calculations in modified TIMBR and TAMBOOR approaches. The 
summation of the internal fluxes is calculated as the network demand in the modified TIMBR whereas the 
number of active reactions is used to represent the network demand in TAMBOOR. Then, network demand 
differences between two conditions are used to calculate production scores.
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In the TIMBR algorithm, the sum of weighted reaction fluxes is minimized (Eq. 1) by setting the lower bound-
ary of the metabolite secretion reaction of interest to 90% of its maximum rate (Eq. 2). In this way, it is possible 
to calculate minimum network demand for the production of each metabolite. In this optimization, irreversible 
form of the metabolic model obtained by using convertToIrreversible function in the COBRA  Toolbox41 was used 
to calculate flux values. The weighted network demand is calculated as a result of the optimization.

In Eq. (1), W is the weight vector consisting of the reaction weights as fold changes from transcriptome data, 
and V is flux vector of reactions. In Eq. (2),  Vmetabolite is the secretion rate of the metabolite of interest. In Eq. (3), 
 Xmetabolite is the network demand. Based on these equations, network demands were calculated for both PD and 
control conditions separately for each metabolite. Human-GEM was used with the described constraints in the 
previous section to apply the TIMBR algorithm. Network demand differences between the two conditions were 
used to calculate production scores as in Eq. (4)16. The metabolites with a high production score were consid-
ered as biomarker metabolites with increased production potential in PD, whereas the metabolites with a low 
production score were accepted as metabolites with reduced secretion in PD.

The alternative versions of TIMBR considered here differs in terms of how network demand  (Xmetabolite) is 
represented. We used two different alternatives here (Fig. 2). The first one, also applied in our previous  study20, 
uses the sum of the internal fluxes as the network demand required for the production of the metabolite as shown 
in Eq. (5), where  Vinternal is the internal fluxes.

Assuming a correlation between enzyme levels and fluxes, a lower value of the sum of fluxes in the disease 
condition compared to the control condition implies a lower total enzyme requirement for the high-level produc-
tion of a metabolite in the disease condition (Eq. (2)). This can be interpreted as a higher tendency towards the 
production of the metabolite in the disease condition. The original TIMBR formulation (Eq. (3)), on the other 
hand, multiplies each flux with the transcriptome-based fold changes.

As a second alternative,  Xmetabolite was calculated based on the number of active reactions in the flux distribu-
tions predicted by the optimization defined in Eq. (1). Reactions with flux values higher than  10–5 were assumed 
to be “on” (active) reactions, while the others were assumed to be “off ” (inactive).  Xmetabolite was calculated as 
shown in Eq. (6).

In this alternative approach, we compared the path lengths for the high-level production of a metabolite in 
disease and control cases. A shorter path means a low number of enzymes. Thus, the shorter path in the disease 
state for the production of a given metabolite can be interpreted as an indication of higher production potential 
for that metabolite since its production is possible with a smaller number of enzymes (Fig. 2). The production 
score calculation and interpretation steps for this new modified version are the same as other versions of TIMBR 
as explained above. This reaction on–off based approach (Eq. (6)) led to the most promising results among the 
three versions (see results), and it was named as TrAnscriptome-based Metabolite Biomarkers by On–Off Reac-
tions (TAMBOOR).

Metabolite‑based pathway enrichment analysis
Metabolite enrichment analysis was performed using the Metabolites Biological Role (MBROLE) 2.0 online  tool42 
(https:// csbg. cnb. csic. es/ mbrol e2/) for metabolites whose secretion behavior were predicted to be changed in 
PD. A merged list consisting of metabolites whose secretion rates were predicted to be increased or decreased 
in at least 7 comparisons out of 14 comparisons for the substantia nigra region was utilized for the enrichment 
analysis. All metabolites analyzed in this study were given in Supplementary Information S1 with the corre-
sponding number of times they were predicted as increased/decreased. The Kyoto Encyclopedia of Genes and 
Genomes (KEGG) pathway  database43 library was selected to identify significantly affected metabolic pathways. 
The KEGG IDs of metabolites were used to apply the enrichment analysis based on the KEGG pathway database 
library in MBROLE.

Results and discussion
In Human-GEM, 1036 metabolites can be secreted in silico based on our simulations on maximizing metabolite 
productions. For each of the fourteen PD-control comparisons, the production scores of 1036 secreted metabo-
lites in the model were calculated with TIMBR and the two modified versions (Fig. 2) to predict potential increase 
or decrease in their secretion rates in the disease condition. Metabolites detected in the first 25th percentile of 
production score ranking were assumed to have a high probability of secretion in PD patients while metabolites 

(1)objective function = min
∑

W |V |

(2)Vmetabolite ≥ 0.9Vmetabolite(max)

(3)Xmetabolite = min
∑

W |V |

(4)Xproductionscore =
Xcontrol − Xdisease

Xcontrol + Xdisease

(5)Xmetabolite =
∑

|Vinternal|

(6)Xmetabolite = number of active reactions

https://csbg.cnb.csic.es/mbrole2/
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detected in the last 25th percentile were considered to have a high probability of secretion in controls. These 
metabolites were defined as candidate biomarkers for the disease.

Comparative evaluation of biomarker prediction approaches
Biomarker prediction powers of the three approaches (original TIMBR, modified TIMBR and TAMBOOR) were 
initially compared based on three metrics: the number of true predictions based on well-known PD metabolite 
biomarkers, the number of PD-related pathways in the metabolite enrichment analysis, and the number of unique 
metabolites included in the PD-related enriched pathways.

The first metric is the number of true predictions, which is determined based on the number of comparisons 
in which the well-known PD-related changes in metabolite secretion rates were truly predicted. These changes 
are increase in  lactate44,  glutamate45,46 and decrease in  dopamine47,  eumelanin2 and serotonin  secretions48. The 
number of comparisons in which the well-known PD-related metabolite production changes were correctly pre-
dicted was given in Fig. 3a for each algorithm. Metabolites predicted as biomarkers in at least 7 comparisons out 
of 14 comparisons were assumed to have a high potential for being biomarkers and considered in further analysis. 
TIMBR and TAMBOOR could predict increase in lactate secretion and decrease in dopamine and serotonin 
secretions successfully whereas the modified TIMBR approach could predict only the decrease in eumelanin level.

The second and third metrics are related to enriched pathways. In order to compare metabolite enrichment 
analysis results, seven PD-related pathways, which are Parkinson’s disease, tyrosine metabolism, oxidative phos-
phorylation, TCA cycle, pentose phosphate pathway, glutathione metabolism and phenylalanine metabolism, 
were selected based on KEGG pathway annotation. Metabolite biomarker lists predicted by each algorithm 
were subjected to enrichment analysis to identify if they are commonly involved in these PD-related pathways. 
Significantly enriched PD-associated pathways were presented in Fig. 3b, with the number of pathway metabo-
lites whose secretion rates were predicted to be altered. All of the seven PD-related pathways were found to be 
significantly enriched with the metabolites captured by the TAMBOOR approach. Parkinson’s disease, tyrosine 
metabolism, oxidative phosphorylation and phenylalanine metabolism terms were enriched based on the original 
TIMBR predictions. Only Parkinson’s disease and tyrosine metabolism terms were enriched when the metabo-
lite enrichment analysis was applied to the metabolites predicted by the modified TIMBR. Different pathways 
identified to be enriched can be associated with the same altered metabolite. The main purpose of the biomarker 
prediction approaches applied here is to predict as many reliable metabolite biomarkers as possible. Therefore, 
the number of unique metabolites included in all of the significantly enriched PD-related pathways is also a 
critical metric for metabolite-level biomarker predictions, and it was used as the third metric in our analysis.

For a further examination of the predictive power of the three approaches, metabolites predicted as high-
potential biomarkers by each approach were searched in the literature to determine whether the predicted 
changes are compatible with experimental studies. The predicted high-potential biomarkers supported by at least 
two experimental studies were assumed to be high-confidence biomarkers. A total of 25 metabolite-level changes 
were identified as high-confidence biomarkers, as listed in Table 2. The list of high-confidence biomarkers and 

Figure 3.  Predictions of the well-known PD-associated metabolite secretion changes and PD-associated 
pathways by three algorithms. (a) The well-known PD-associated metabolite secretion changes and the number 
of comparisons in which these metabolite secretion changes were correctly predicted. (b) Significantly enriched 
PD-associated pathways and the number of related metabolites whose secretion rates were predicted to be 
altered by the given approach.
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the list of well-known PD-associated metabolite level changes (5 metabolites in Fig. 3a) add up to 30 metabolites 
in total, which were compared with the predicted metabolites by the three approaches to calculate statistical 
metrics: precision and recall. The number of predictions, true positive values, and calculated statistical metrics 
for each approach are given in Table 3. Precision was used to get information about how many positive predic-
tions overlap with the known positives (Fig. 3a and Table 2) whereas recall was used to get information about 
how many known positives could be correctly predicted. The calculated recall values show that TAMBOOR can 
predict more than half of the known positives.

The results of the metrics used to compare different biomarker prediction approaches were represented in 
Fig. 4 for each algorithm. The highest number of true predictions, the highest number of PD-related enriched 
pathways, the highest number of unique metabolites included in the PD-related enriched pathways, and the 
highest precision and recall values were obtained by TAMBOOR. Based on these metrics, TAMBOOR was sug-
gested as the most powerful approach to predict metabolite biomarkers for PD.

Table 2.  The high-confidence metabolite level changes for PD compiled from the literature, with references of 
the supporting studies.

Metabolites (Increased) Detected by Supporting references

Quinolinate Original TIMBR 49,50

Kynurenine Original TIMBR 51,52

Fe3 + Original TIMBR 53,54

Hydroxide Original TIMBR 55,56

Prostaglandins Original TIMBR 57,58

Salsolinol TAMBOOR 59,60

1,2-dehydrosalsolinol TAMBOOR 61,62

Acetone TAMBOOR 63,64

Vanil-Lactate TAMBOOR 65,66

Formate TAMBOOR 63,67

Urea TAMBOOR 68,69

(R)-mevalonate TAMBOOR 70,71

Biliverdin TAMBOOR 69,72

4-methyl-2-oxopentanoate Original TIMBR & TAMBOOR 73,74

Metabolites (Decreased) Detected by

ApoA1 (Apolipoprotein A1) Original TIMBR 75,76

5-hydroxyindoleacetate Original TIMBR 77,78

Lanosterol Original TIMBR 79,80

3-methoxytyramine Original TIMBR 81,82

Lysine Modified TIMBR 83,84

GSH (Glutathione) Modified TIMBR 85,86

Calcitriol (Vitamin D) TAMBOOR 87,88

Nicotinamide TAMBOOR 89,90

Carnosine TAMBOOR 91,92

Albumin Original TIMBR & TAMBOOR 93,94

Thiamin-P ALL 95,96

Table 3.  The number of predictions, true positive values, and calculated statistical metrics for each biomarker 
prediction approach considered in the study. TP true positive, FP false positive, FN false negative. *TP: 
Number of high confidence markers in predictions + Number of well known markers in predictions. **FN: 
(Number of high confidence markers + Number of well known markers = 30)—TP.

Original TIMBR Modified TIMBR TAMBOOR

Number of predicted biomarkers (increased secretion) 184 178 118

Number of predicted biomarkers (decreased secretion) 185 121 156

Total number of predicted biomarkers 369 299 273

Number of high confidence markers in predictions 12 3 14

Number of well known markers in predictions 3 1 3

Total True Positives 15 4 17

Precision = TP/(TP + FP) 0.041 0.013 0.062

Recall = TP/(TP* + FN**) 0.484 0.133 0.567
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The performance of computational prediction approaches can differ based on the properties of the used 
model and data. In our previous  work20, the changes in the metabolite secretion rates for different experimental 
mouse models of PD were successfully predicted with the modified TIMBR approach while it did not perform 
well in this study. Whereas a brain-specific metabolic network model of mouse (iBrain674-Mm) with 992 reac-
tions controlled by 674 genes was used in that study for the production potentials of 44 secreted metabolites, the 
model used in the current study, Human-GEM, enabled the screening of 1036 secreted metabolites. The logic 
of the modified TIMBR relies on the sum of internal fluxes, and Human-GEM consists of numerous metabolite 
transport reactions between cell compartments. The sum of the fluxes of those transport reactions may have 
dominated the overall sum for the modified TIMBR approach, obscuring the differences between controls and 
patients in a larger metabolic network model.

Figure 4.  Metrics for the comparison of the biomarker prediction approaches. (a) Statistical metrics. (b) 
Metrics based on well-known metabolic changes.
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Altered metabolite productions in PD based on TAMBOOR predictions
Extracellular levels of 118 metabolites were predicted to be increased in at least 7 comparisons with TAMBOOR, 
whereas levels of 156 metabolites were predicted to be decreased in at least 7 comparisons out of 14 comparisons 
(Supplementary Information S1). The decrease in dopamine production, the well-known metabolic change in 
PD, was detected in 10 of 14 comparisons. Also, the level of dopamine precursors, tyrosine and L-dopa, were 
predicted to be decreased for 9 and 7 comparisons respectively. In addition, an increase in lactate production and 
a decrease in serotonin level, other well-known changes in PD, were detected in 9 and 7 comparisons respectively.

TAMBOOR predicted 14 out of 25 high-confidence biomarkers, with 11 of them predicted only by TAM-
BOOR. Three of them are salsolinol, 1,2-dehydrosalsolinol, and 4-methyl-2-oxopentanoate (ketoleucine), whose 
productions were predicted to be increased in 10 comparisons. Salsolinol is a dopamine-derived compound. Its 
structure is very similar to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), a compound used to create 
experimental PD models. It can be described as a neurotoxin that contributes to the loss of dopaminergic neurons 
in  PD60. Increased salsolinol levels were detected in the cerebrospinal fluid of PD patients with  dementia97,98. 
Besides, the increase in salsolinol levels was associated with visual hallucinations in  PD59. 4-methyl-2-oxopen-
tanoate, another metabolite predicted by TAMBOOR, inhibits mitochondrial complex I, and its levels were 
reported to be increased in the plasma and cerebrospinal fluid (CSF) of PD patients in metabolome  studies73,74. 
The productions of acetone, formate, urea and biliverdin were also predicted to be increased in 7–8 comparisons. 
Elevated serum levels of acetone and formate were reported in PD by a metabolome  study63. Both metabolites 
have roles in mitochondrial functions, which are affected in PD. Urea levels have also been reported as elevated 
for different brain regions in PD patients with  dementia68. It was demonstrated that increased serum level of 
biliverdin is correlated with reactive oxygen species (ROS) level and disease  severity69. Productions of carnosine, 
nicotinamide and calcitriol (vitamin D) were predicted to be decreased in 9, 8 and 7 comparisons, respectively. A 
reduced level of carnosine was suggested as a diagnostic marker for  AD91. Carnosine administration was tested 
as a treatment strategy in a mouse model of PD, and the results showed that daily carnosine intake can reduce 
PD symptom  progression92. It was shown that experimentally created nicotinamide deficiency caused dopamine 
reduction, cell loss, and consequently  parkinsonism90. It was also reported that elevated levels of nicotinamide 
N-methyltransferase reduces nicotinamide level and consequently Complex I activity in idiopathic  PD89. Vitamin 
D deficiency was observed in PD patients and calcitriol, which is the active form of vitamin D, was shown to be 
neuroprotective for PD animal  models87,88.

In addition to the well-known metabolite level changes and the high-confidence biomarker list, several 
other metabolites predicted by TAMBOOR were associated with Parkinson’s metabolism and neurodegenera-
tion, and, they can be considered as candidate biomarkers. The increase in the production of hexanoic acid 
(hexanoylcarnitine), a medium-chain acylcarnitine, was predicted in 11 of 14 comparisons. In an experimental 
 study99, the contribution of hexanoylcarnitine accumulation to oxidative stress in rat brains was demonstrated. 
Hexanoylcarnitine accumulation debilitates the antioxidant defense of the brain by decreasing glutathione lev-
els. Hexanoylcarnitine increase has also been reported as an age-related change in rat brain medial prefrontal 
 cortex100. Consequently, hexanoic acid/hexanoylcarnitine can be considered as a candidate biomarker for PD. 
Acetyl-threonine production was predicted to be increased in 10 comparisons. In a study, almost a two-fold 
change in acetyl-threonine level was detected between control cells and cells exposed to 100 nM rotenone, a 
chemical used to create experimental PD  models101. It is also known that acetyl-threonine has roles in neuronal 
growth and different neuronal  functions102. Therefore, a change in its level is supposed to be related to neuro-
degenerative diseases. The productions of heparan sulfate proteoglycans, glycan, glycochenodeoxycholate and 
leukotriene D4 (LTD4) were predicted to be increased in 9 comparisons in this study. Cell surface heparan 
sulfate proteoglycans promote neuronal internalization of α-synuclein and also other amyloid forming proteins 
in neurodegenerative diseases by contributing to neuronal binding and uptake of protein  fibrils103. Therefore, 
the predicted increase in heparan sulfate proteoglycans production is in line with the main pathology of PD, 
α-synuclein aggregation. Glycan was suggested as a potential biomarker for neurological  diseases104. An elevated 
level of glycochenodeoxycholate was reported for mild cognitive impairment (MCI) and Alzheimer’s disease 
(AD)105. Leukotriene D4 is a subgroup of cysteinyl leukotrienes produced by  the oxidation of arachidonic acid. 
Cysteinyl leukotrienes, inflammatory lipid mediators, have been associated with neurodegenerative diseases, 
including  PD106. An increase in xanthurenate level was reported in serotonin  deficiency107. The decrease in 
serotonin levels is one of the well-known metabolic changes in PD. Therefore, predicting increased xanthurenate 
production in 8 comparisons is consistent with the experimental studies.

Production of histamine was predicted to be decreased in 11 comparisons. Histamine has important roles in 
modulating striatal synaptic transmission and  behavior108. Since striatum is one of the most affected brain regions 
in PD, reduced histamine secretion in PD should be confirmed in further studies. Production of chloride was 
predicted to be decreased in 10 comparisons. Chloride is an electrolyte that has an essential role in controlling 
neuronal excitability. Low levels of chloride have been associated with dyskinesia in PD  patients109. Cysteinyl-
glycine and arginine productions were predicted to be decreased in 8 comparisons. Reduced cysteinyl-glycine 
was detected as a marker for levodopa-induced oxidative stress in PD  patients110. Arginine level in the CSF of 
PD patients was reported to be low compared to the  controls84.

Metabolites that were predicted to have altered secretion behavior in PD were searched on Human Metabo-
lome Database (HMDB)111 to check if they were previously associated with any disease. Many of them were found 
to be linked to colorectal cancer in different studies. In recent years, impairments in the gut and neurological 
disorders have been closely associated with the gut-brain axis theory. It has been known that gut microbiota 
affects both PD and colorectal cancer (CRC) pathogenesis. Different studies have reported that PD patients have 
a significantly decreased risk for CRC 112,113.
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Most of our predictions are compatible with the experimental evidence in the literature. However, there are 
also some predictions conflicting with literature reports. For instance, a decline was reported for most of the 
amino acids, including lysine and taurine, in  PD84,114. Contrarily, lysine and taurine productions were predicted to 
be increased by TAMBOOR. Most of the metabolites whose levels were predicted to be decreased by TAMBOOR 
are the metabolites of arachidonic acid metabolism, such as prostaglandins, lipoxins, hydroxyeicosatetraenoic 
acids (HETEs), and thromboxane A2. We could not link all of those alterations directly to PD based on litera-
ture survey. However, it was reported that the daily intake of arachidonate increases the PD  risk115. Also, it was 
suggested that prostaglandins promote protein aggregation in  PD57. Therefore, a decrease in the levels of ara-
chidonic acid metabolism-related metabolites is not expected. Fe3 + production was predicted to be decreased 
for 8 comparisons, although elevated iron levels were associated with  PD116.

Most of the TAMBOOR-based predictions with strong evidence could not be predicted by the original and 
modified TIMBR approaches. Decreased dopamine and serotonin production and increased lactate production 
capacities could not be predicted by the modified TIMBR. Decreased production capacity of dopamine precur-
sors, tyrosine and L-dopa, was only detected by TAMBOOR. Modified TIMBR and original TIMBR, on the 
other hand, wrongly predicted increased production of L-dopa. Vitamin D deficiency, nicotinamide deficiency, 
reduced carnosine level, which is previously suggested as a diagnostic biomarker for neurodegenerative diseases, 
and elevated urea and salsolinol levels, which are previously detected as a metabolic change in neurodegenerative 
diseases including PD, were also only predicted by TAMBOOR. On the other hand, there are also some high-
confidence metabolite level changes having strong literature evidence such as an increase in hydroxide level, 
and a decrease in glutathione and Apolipoprotein A1 levels, which could not be captured by TAMBOOR, but 
correctly predicted by the other algorithms.

GEM-based prediction algorithms like TIMBR and TAMBOOR have some limitations. For example, they 
assume that reaction activities are directly correlated with the expression levels of genes coding for the enzymes 
that catalyze the reactions. Another assumption is the scoring of the secretion tendency of a metabolite based 
on the number of active reactions or the weighted sum of fluxes through active reactions. Although these 
assumptions are biologically relevant, they cannot be exactly true for all cases. Still, it is important to develop a 
GEM-based metabolite biomarker prediction algorithm with a high predictive power to pave the way for novel 
PD biomarkers that can be useful for early diagnosis. The most common molecular-level biomarker prediction 
strategy in literature is discovering gene biomarkers using differential gene expression analysis. However, TIMBR 
and TAMBOOR predict metabolite biomarkers, which are easier to measure compared to gene biomarkers by 
taking samples from blood or CSF.

Pathway‑based changes in PD based on TAMBOOR predictions
Functional enrichment analysis was applied to the metabolites predicted to have altered secretion by TAM-
BOOR to identify metabolic pathways significantly enriched with those metabolites. Many PD-related and brain 
function-related terms were detected as significantly enriched (The False Discovery Rate (FDR) < 0.05). The list 
of significantly enriched pathways is given in Table 4 (All enrichment results are available in Supplementary 
Information S2). The comprehensive literature survey presented in this section shows that the majority of the 
enriched terms/pathways are associated with PD.

Phenylalanine metabolism, tyrosine metabolism, glutathione metabolism, and, arachidonic acid metabolism 
terms were listed as significantly enriched pathways in Table 4. Phenylalanine and tyrosine are precursors for 
the synthesis of catecholamines, including dopamine synthesis. Besides, dopaminergic neuron loss is one of the 
main pathological features of  PD65. Hence, significant alterations in phenylalanine, tyrosine, and catecholamine 
metabolisms are expected in PD. Glutathione acts as an antioxidant and a redox regulator in brain metabolism. 
Glutathione level reduction is known as the first sign of oxidative stress during PD  progression117. Therefore, 
affected glutathione metabolism is also one of the expected results for PD. Intermediate products of arachidonic 
acid metabolism have essential roles in the central nervous system, such as neurotransmitter transfer, synaptic 
signaling, and neuronal firing. Altered arachidonic acid metabolism was associated with different brain-related 
disorders, including  PD118. Studies have reported that arachidonic acid consumption increases the risk of  PD115 
and suggested enzymes in the arachidonic acid metabolism as drug  targets119.

Mitochondrial dysfunctions in energy metabolism and oxidative stress are important factors in PD 
 pathogenesis6. The terms oxidative phosphorylation, pentose phosphate pathway, and ATP-binding cassette 
transporters, presented as significantly enriched pathways in Table 4, are also directly related to energy metabo-
lism and oxidative stress. ATP-binding cassette (ABC) transporters are highly active in the brain, and their roles 
in some neurodegeneration-related processes were  reported120. Riboflavin is an essential B vitamin in the nervous 
system because of its role in myelin synthesis. The oxidative state impairments related to riboflavin deficiency 
have been reported. Riboflavin intake was tested as a treatment for PD and other neurodegenerative  diseases121. 
Also, thiamine is another type of vitamin B whose deficiency is related to  PD95. Both riboflavin and thiamine 
metabolisms were identified in the enrichment analysis (Table 4).

PD is typically characterized by tremors and muscle stiffness. The term vascular smooth muscle contrac-
tion in the enrichment analysis results (Table 4) is directly related to this symptom. Vascular smooth muscle 
cell dysfunction was considered as a crucial marker to interpret alterations in vascular function at the onset 
and progression of neurodegenerative diseases, including Parkinson’s  disease122. Also, the relationship between 
vascular smooth muscle contraction and PD was demonstrated in another enrichment-based  analysis123. Pan-
tothenate and CoA biosynthesis is also one of the significantly enriched pathways. Variations in pantothenate 
kinase (PKAN) causes interruptions in coenzyme A (CoA) biosynthesis and consequent iron accumulation in 
the brain. This phenomenon is related to many neurodegenerative clinical symptoms, including rigidity, loss of 
ambulation, and cognitive and visual  impairment124.
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Alanine, aspartate and glutamate metabolism was found to be enriched in the enrichment analysis results as 
shown in Table 4. The relation between the changes in glutamate metabolism and neuronal metabolic dysfunc-
tions is known to play an important role in the pathophysiology of  PD125. Glutamate is an excitatory transmitter 
whose excess levels are neurotoxic. Mechanisms for reducing glutamate toxicity, like removing excessive synaptic 
glutamate by excitatory amino acid transporter (EATT), are known to be affected in  PD45. Glutamate aspartate 
transporter is an important EATT for the synaptic reuptake of  glutamate126. Thus, it can be concluded that the 
enriched alanine, aspartate and glutamate metabolism term is directly related to altered glutamate toxicity and 
transport mechanism in PD. Epithelial cell signaling in Helicobacter pylori infection was reported as an enriched 
pathway in Table 4. It was previously reported that bacterial overgrowth and Helicobacter pylori infection in the 
small intestine affected motor fluctuations by interfering with the absorption of antiparkinsonian  drugs127. The 
enriched term, epithelial cell signaling in Helicobacter pylori infection, is most probably related to this phenom-
enon. Asthma is another significantly enriched term in the enrichment analysis. It was also previously reported 
that asthma patients are at higher risk of developing PD in later  life128.

Conclusion
The constraint-based modelling approaches are effectively used to investigate disease metabolism by integrat-
ing omics data. Here, we compared the prediction capabilities of the original TIMBR, the modified TIMBR and 
TAMBOOR approaches to identify potential metabolite biomarkers for Parkinson’s disease using 13 different 
transcriptome datasets. A high-confidence metabolite biomarker list for Parkinson’s disease was compiled by a 
literature survey for the predicted metabolite level changes by different algorithms. Different metrics covering 
the prediction of well-known and high-confidence metabolite level changes and the prediction of metabolites 
belonging to PD-related metabolic pathways were used to measure biomarker prediction abilities of the three 
approaches. TAMBOOR reached the highest scores for these metrics.

Metabolites predicted to have altered secretion rates by TAMBOOR and enriched pathways corresponding 
to these metabolites are mainly related to PD-related metabolisms. Majority of the predicted alterations are con-
sistent with the literature. However, an experimental study that reports secretion rates of all of the metabolites 
predicted in this study is not available for healthy and disease subjects. Well-designed comprehensive metabolome 
analyses will be valuable for a complete validation of our results.

The metabolites whose secretion behavior were predicted to be changed by TAMBOOR are candidate bio-
markers. Moreover, the metabolites predicted to have increased production capacity can be potential drug 
targets while the metabolites predicted to have decreased production capacity have the potential to be used as 
supplementary therapeutics in PD. Those potentials should be validated with experimental studies to identify 
novel diagnostic biomarkers and treatment strategies for PD.

Table 4.  Significantly enriched pathways (FDR < 0.05) based on the enrichment analysis applied to the 
metabolites predicted to have altered secretion by TAMBOOR.

Enriched KEGG pathways p-value FDR correction

Arachidonic acid metabolism 3.62 ×  10–21 3.40 ×  10–19

Metabolic pathways 3.64 ×  10–12 1.71 ×  10–10

Neuroactive ligand-receptor interaction 9.07 ×  10–8 2.84 ×  10–6

Asthma 5.25 ×  10–6 1.23 ×  10–4

Vascular smooth muscle contraction 1.13 ×  10–4 2.13 ×  10–3

Tyrosine metabolism 1.44 ×  10–4 2.26 ×  10–3

Fc epsilon RI signaling pathway 2.98 ×  10–4 4.00 ×  10–3

Phenylalanine metabolism 6.12 ×  10–4 6.40 ×  10–3

Parkinson’s disease 6.13 ×  10–4 6.40 ×  10–3

Oxidative phosphorylation 1.45 ×  10–3 1.36 ×  10–2

Valine, leucine and isoleucine biosynthesis 1.83 ×  10–3 1.56 ×  10–2

Cysteine and methionine metabolism 2.03 ×  10–3 1.59 ×  10–2

ABC transporters 2.36 ×  10–3 1.70 ×  10–2

Pentose phosphate pathway 3.37 ×  10–3 2.27 ×  10–2

Gap junction 4.61 ×  10–3 2.61 ×  10–2

Riboflavin metabolism 4.19 ×  10–3 2.61 ×  10–2

Glycine, serine and threonine metabolism 4.71 ×  10–3 2.61 ×  10–2

Glutathione metabolism 7.20 ×  10–3 3.56 ×  10–2

Alanine, aspartate and glutamate metabolism 6.90 ×  10–3 3.56 ×  10–2

Thiamine metabolism 9.23 ×  10–3 4.34 ×  10–2

Epithelial cell signaling in Helicobacter pylori infection 9.90 ×  10–3 4.43 ×  10–2

Pantothenate and CoA biosynthesis 1.06 ×  10–2 4.52 ×  10–2
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