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Industrial camera model positioned 
on an effector for automated tool 
center point calibration
Jaromir Konecny *, Petr Beremlijski , Michaela Bailova , Zdenek Machacek , Jiri Koziorek  & 
Michal Prauzek 

The study presents a novel, full model of an industrial camera suitable for robotic manipulator tool 
center point (TCP) calibration. The authors propose a new solution which employs a full camera model 
positioned on the effector of an industrial robotic arm. The proposed full camera model simulates 
the capture of a calibration pattern for use in automated TCP calibration. The study describes an 
experimental test robot stand for producing a reference data set, a full camera model, the parameters 
of a generally known camera obscura model, and a comparison of proposed solution with the camera 
obscura model. The results are discussed in the context of an innovative approach which features a 
full camera model to assist the TCP calibration process. The results showed that the full camera model 
produced greater accuracy, a significant benefit not provided by other state-of-the-art methods. In 
several cases, the absolute error produced was up to seven times lower than with the state-of-the-
art camera obscura model. The error for small rotation (max. of 5 ◦ ) and small translation (max. of 20 
mm) was 3.65 pixels. The results also highlighted the applicability of the proposed solution in real-life 
industrial processes.

One of the pillars of Industry 4.0 is the widespread deployment of industrial robots in manufacturing. Mechanical 
assembly processes are key manufacturing stages, and the use of robots in these processes directly affects product 
quality by improving production efficiency and assembly performance1.

Industrial robotic manipulators have excellent repeatability and accuracy for precise positioning, but because 
they are used under intensive operating conditions, they must be repeatedly calibrated during the manufacturing 
process2. During calibration, the position and orientation of the tool center point (TCP) of a robot arm should 
be corrected with a highly accurate tracking device3. Numerous methods for calibration procedures have been 
published. Khaled et al.4 proposed an active disturbance rejection control scheme which calibrated path accuracy 
in real time. Fares et al.5 applied a sphere fitting algorithm to improve four point calibration accuracy.

The primary objective of this article is to develop a camera model capable of simulating the positions of anchor 
points within a calibration pattern as captured from various camera positions and orientations. This model can 
subsequently be utilized to resolve the inverse problem: determining the camera’s position and orientation based 
on the locations of the anchor points in the captured image. The accurate determination of the camera’s position 
can then aid in calibrating the TCP of a robotic arm.

This article presents a full model of an optical camera used in combination with the calibration procedure 
(Fig. 1). The proposed camera model is able to capture an image of a calibration pattern from a certain camera 
position. The calibration pattern has defined corners and a center point positioned according to the coordinate 
system of the working plane. The image depicts the calibration pattern point positions as equivalent as possible 
to an image captured by a real-life camera . The proposed camera model can be easily adapted to an effector for 
calibration of the robot TCP.

The study contributes the following: 

1.	 Design of a full camera model.
2.	 Comparison with a previously published camera obscura model.
3.	 Application of a full camera model in calibrating a robotic manipulator’s TCP.
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Calibrating robotic manipulators is an important aspect of any industrial robot deployment. The aim of TCP 
calibration is to determine the relationship between the TCP frame and working plane6. Calibration is performed 
using the camera in the robot’s end-effector. The camera captures an image and the calibration point positions 
are then calculated. However, the calibration procedure requires an inverse problem solver, where the TCP is 
actually calculated from the calibration points captured on the image. An inverse problem solver is obtained 
through an iteration process which determines the combination of input values (camera position and orienta-
tion), resulting in the calibration point positions in the modelled image, which is as close as possible to the real 
camera image captured by the robotic tool. A gradient method or difference evolution, for example, can be used 
as an optimization solver7,8.

The article is organized as follows: Section "Introduction" introduces the scientific challenge and novelty 
of the current study; Section "Related studies" summarizes the state-of-the-art; Section "Mathematical model" 
describes the camera and the full camera model; Section "Experiment" outlines the experiment, reference data 
set and evaluation criteria; Section "Results" reports the results of the experiment from absolute and relative 
error perspectives; Section "Discussion" discusses and evaluates the results in the context of the study’s novel 
contribution; Section "Conclusion" concludes the article and outlines potential future work.

Related studies
Precision robot guidance is a critical parameter in robotic manipulators. Robotic manipulators have inaccurate 
positioning yet excellent repeatability, which means that any error or inaccuracy in movement is also repeated9. 
The scientific literature contains many methods for improving precision during robot movement. Table 1 provides 
a summary of state-of-the-art studies which propose solutions for robot movement and detection of position, 
robot coordination sensors and camera obscura modelling methods.

Industrial producers devise calibration procedures generally based on manual positioning of various types 
of spike. To achieve greater precision than manual calibration or to calibrate robotic arms automatically, addi-
tional sensors must be used37. One option is to use a camera to observe manufactured pieces and discover fit-
ting patterns with subsequent image processing and then calibrate the robot’s coordination frame according to 
these patterns10. A camera can be also used to observe the robotic arm itself and provide visual feedback on its 
position11.

Another option is to use a 3D sensor, which, in contrast to a 2D camera, provides additional depth informa-
tion. RGBD cameras are suitable types12 that record depth information for each RGB pixel. An example of RGBD 
camera application is the detection of cardboard box position without any markings13.

For large areas requiring precise positioning, the combination of a global laser and local scanning system can 
be used14. Chen et. al.15 introduced visual reconstructions using a planar laser, two cameras and a 3D orienta-
tion board to verify the accuracy of an active vision system’s measurement fields and calibration. Other methods 
involve the use of visual-tactile sensors17 or optical fibers18.

Accuracy in robot guidance can be improved with various mathematical approaches. Lei et al. applied Lev-
enberg-Marquardt optimization for 3D pose estimation19. The robotic arm itself can be also used for inspection 
points. Tabu search can find the optimal base position, and the Lin-Kernighan method can optimize the order 
of inspection points20. Machine learning methods also provide promising solutions for positioning robotic arms. 
Eldosoky et al. applied a machine learning algorithm in a detection system used by in decoration robots for wall 
bulge endpoints regression and classification according to its orientation21. Choudhary et. al. introduced self-
supervised representation learning networks for accurate spatial guidance22. Gouveia et. al. described a smart 
robotic system which processed spatial data obtained from a 3D scanner and was capable of performing an 
autonomous pick-and-place task of injected moulded parts from one conveyor belt to another23. Image process-
ing can also enable automated calibration of robotic arms24. Specialized RGBD cameras allow robots to “see” 
objects like a human25. Image processing also solves the challenge of grip control in handling moving objects26.

Image processing methods often employ cameras such as a pinhole cameras and are widely used in industrial 
applications27. Table 1 provides a summary of improvements, practical implementations and calibration and 

Figure 1.   Camera model capturing a calibration pattern to estimate the position and orientation of the 
calibration pattern.
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positioning methods for camera obscura models. Camera obscura models assume that the camera’s parameters 
are correct and have a projection error of almost zero. Because all the camera parameters are known, any com-
puted results are considered true. However, the camera obscura model does not accurately represent camera 
behavior if an autofocus device is used28. Lens distortion is not a problem with camera obscura models29. Image 
projection errors can be minimized with backstepping-based approach which synthesizes the Lipschitz condition 
and natural saturation of the inverse tangent function30.

Camera obscura models have many practical applications, such as detecting and avoiding obstacles31, precise 
solar pointing32 or determining the distance and dimensions of a tracked object33. Camera obscura models can be 
also used in the calibration process for industrial robots34. Liu et al. devised a self-calibration camera algorithm 
for an active vision system which detects radial distortion35. Rendón et al. presented a method for positioning 
robots using camera-space manipulation with a linear camera model36.

Mathematical model
This section presents the optical equations for a thin lens camera and a camera obscura (pinhole camera) and 
two mathematical models based on these equations. A complicated mathematical model describes the thin lens 
camera, whereas a simplified state-of-the-art model characterises the pinhole camera.

Optical equations
To create the mathematical model of a camera with a thin lens, we used the optical equation

where the focal length is f, the symbol a denotes the distance of an object from the lens, h is the object’s height, 
and h′ is the image height.

A pinhole camera is a simple type of an optical device and predecessor to cameras with a thin lens. A camera 
obscura is a box with a hole in one of its walls. Light from outside passes through the hole hits and projects an 
image onto the opposite wall.

(1)
h′

h
=

f

a− f
,

Table 1.   Related state-of-the-art studies.

Topic Content

Sensors for robot coordination

 Camera  Detection of holes and calculation of position in 3D space10.
 Inflatable robotic arm with camera system for highly accurate positioning11.

 3D sensors  Combination of depth sensor and camera data12.
 RGBD camera used as a depth sensor for spatial and object recognition13.

 Combinations and other methods

 Combination of a global laser and local scanning system14.
 Visual reconstruction using a planar laser, two cameras and 3D orientation board15.
 Planar-laser-guided solution with a unique reference point and sensor module mounted with 
a photoelectric position sensitive detector16.
 Visual-tactile sensor17.
 Optical fibers18.

Robot orientation and detection of position

 Optimization methods
 Optimization of 3D manipulator position by combining a camera and robot model 
algorithms19.
 Optimization of robotic manipulator movements for an inspection system20.

 Machine learning algorithms

 Detection system used by decoration robots for wall bulge endpoints regression and clas-
sification according to orientation21.
 Self-supervised representation learning networks for accurate spatial guidance22.
 Orientation and operation of a robotic system with variable products by processing 3D 
scanner data23.

 Image processing methods
 Vision-based guidance of a robotic arm for object handling operations24.
 Automated object sorting using a robotic arm with a Kinect sensor25.
 Dynamic proportional-fuzzy grip control for a robotic arm using a two-dimensional vision 
sensing method26.

Camera obscura modelling

 Improvement in model accuracy

 Eye camera obscura model augmented with geometric algebra to characterize eye position 
and rotation axes27.
 Camera obscura calibration using planar template images for focal length changes28.
 Combination of a camera obscura model and non-metric and self-calibration methods29.
 Vision-based adaptive control algorithm for positioning with a camera obscura30.

 Practical implementation
 Simplified camera modeling in overhead line navigation31.
 Creation of a camera for solar pointing to a precision of 0.01◦32.
 Detection of the distance and dimensions of a tracked object using an algorithm in combina-
tion with a camera obscura33.

 Calibration and positioning
 Calibration of industrial robots with an absolute position tracking system34.
 Self-calibrating camera algorithm for an active vision system which detects radial 
distortion35.
 Robot positioning using camera-apace manipulation with a linear camera model36.
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The mathematical model of a camera obscura is described by the equation

where a′ is the focal distance. This simple camera model is popularly used in many applications for its simplicity 
and ease of implementation.

Model implementation
In this section, we derive a model with a thin lens. This type of model is more complex than a camera obscura, but 
it takes advantage of the properties of modern cameras. Equation (1) was used to create the mathematical model.

Manufacturers do not usually provide a precise position of the lens, therefore , a displacement L is described 
in the mathematical model of the full camera. A camera lens can thus be positioned at a different point to the 
TCP since both points lie on the camera axis o (see Fig. 3). The distance between these points is denoted L. We 
thus obtain the Equation (1)

This optical equation is applied to a calibration square of prescribed geometric shape (Fig. 2).
In the mathematical model, the projected points of the calibration square (located in Euclidean space R3 ) 

must correspond to points on the camera chip (in the plane R2 ). The mapping is denoted F and must satisfy (3).
The calibration square contains five points described by

where A, B, C, D a E refer to the points indicated in the diagram (Fig. 2). Points SPi  belong to the plane ρ1 
( ρ1 : z = 0 in the case described in this paper). To correctly apply the optical Eq. (3), the calibration square must 
be projected orthogonally onto the plane ρ2 perpendicular to the camera axis o (defined by the rotation of the 
camera) and ρ1 . Figure 3 illustrates the orthogonal projection of a calibration square point onto a perpendicular 
plane.

The camera lens is positioned at a point shifted from the TCP by the distance L in the direction of the o axis 
and focused on the point Q ∈ ρ1 ∩ ρ2.

To define the plane ρ2 , its normal vector given by the camera axis o is required. It is assumed that the initial 
rotation of the camera is given by the vector �v . For example, if the camera in its initial position is rotated accord-
ing to a z-axis only, then

If the angles α , β a γ , describing the rotations with respect to the x, y and z axes are known, then vector o can be 
computed using the rotation matrix

(2)
h′

h
=

a′

a
,

(3)
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[
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0
−1

]

.

Figure 2.   Geometric pattern displayed by the camera.

Figure 3.   Orthogonal projection of a point on the calibration square onto a plane perpendicular to the camera 
axis – 2D view.
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where

For the direction vector o, we have

where �v = [v1, v2, v3]
T . The general equation of the plane ρ2 can be derived from the conditions

Figure 4 illustrates the projection of a geometric pattern onto a plane perpendicular to the camera axis.
Orthogonal projection of SPi ∈ ρ1 onto a point SP′i ∈ ρ2 is possible. Using analytical geometry, the orthogonal 

projection SP′i  can be written as

where

In optical Eq. (3), let a : R3 → R denote the distance between the TCP with coordinates [x, y, z] and the 
calibration square (Fig. 5).

To apply (3), a, h and h′ must be calculated for each point of the calibration square. The value of a for the 
position [x, y, z] can be computed from

(6)R = Rx(α)Ry(β)Rz(γ ),

(7)Rx(α) =

[

1 0 0
0 cosα − sin α
0 sin α cosα

]

, Ry(β) =

[

cosβ 0 sin β
0 1 0

− sin β 0 cosβ

]

, Rz(γ ) =

[

cos γ − sin γ 0
sin γ cos γ 0
0 0 1

]

.

(8)�o = R · �v,

(9)ρ2⊥o ∧ Q ∈ ρ2, where Q ∈ o ∩ ρ1.

(10)
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(11)�u = R(α,β , γ )�v.

(12)a(x, y, z) =
∥

∥Q − [x, y, z]
∥

∥.

Figure 4.   Orthogonal projection of a geometric pattern onto a plane perpendicular to the camera axis.

Figure 5.   Orthogonal projection of a geometric pattern onto a plane perpendicular to the camera axis and its 
display on the camera’s graphics chip.
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Again, we have the condition

to express the coordinates of Q; substituting into (12), we obtain an expression for a with respect to the camera’s 
position [x, y, z] and its rotation described by matrix R:

where Ri , i ∈ {1, 2, 3} denotes an i-th row of matrix R.
The value of the object’s height h for each point SP′i  is computed from

Substituting the value of (15) into (3), we have

It is worth mentioning that h′i is the height of the image displayed by the camera chip and therefore belongs 
to R2 ; thus

where Q′′ ∈ R
2 is the center of the camera chip’s display plane (here, Q′′ = [0, 0] ) and SP′′i  is an image of SP′i  in 

the camera chip).
Finally, we obtain the function F : R6 → R

10 , where

The vectors

can be obtained using the orthogonal direction vectors of the plane which contains the camera chip’s display 
plane.

It is important to recognize that when utilizing a static camera, a linear relationship exists between the size 
of the object and the size of its image. Conversely, in our proposed model featuring a non-stationary camera, 
the function F – which characterizes the image output on the camera sensor in relation to the camera’s position 
and orientation – exhibits a nonlinear nature. This nonlinearity arises because the angles defining the camera’s 
orientation are not sufficiently small to permit linearization of the model.

Implementation of reference model
The current study discusses the use of a camera obscura as a reference model. A camera obscura is typically 
defined as a linear system described by matrix multiplication38,39. However, this type of model is used for static 
cameras and changing images only. The camera investigated in the current study is not static, therefore we derive 
camera obscura model from general optical equations.

As with the full camera model, the distance between the TCP and the lens is denoted L for the camera obscura, 
giving the equation

For the camera obscura model, we also need to derive a vector function F : R6 → R
10 to describe the relation-

ship between the calibration square’s image and the camera’s position and rotation. To formulate the mathematical 
model of the camera obscura, it is again necessary to describe the projection of the calibration square onto the 
camera chip. We obtain the camera obscura equations as follows: 

1.	 Determine the plane ρ2 perpendicular to the camera axis and which intersects the calibration pattern plane 
on the camera axis (Fig. 4 and Eq. (9)).

2.	 Obtain an orthogonal projection of the calibration square onto the plane ρ2 (Fig. 4 and equation (10)).
3.	 Calculate the distance from the object a (Eqs. (12, 13, 14)).
4.	 Calculate the image height h′ from the camera obscura optical Eqs. (15) and (20). This results in: 

(13)Q ∈ o ∩ ρ1

(14)a(x, y, z) =

∥

∥

∥

∥

[

−
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z,−
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R3�v
z,−z

]∥

∥

∥

∥

,
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′

i − Q�.

(16)h′i =
f

a+ L− f
hi =

f

a+ L− f
�SP

′

i − Q�.

(17)SP
′′

i = Q′′ +
(SP

′

i − Q)

�SP
′

i − Q�
h′i ∈ R

2,

(18)F(x, y, z,α,β , γ ) = [SP
′′
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 where a′ is constant.
5.	 Obtain the mathematical model of the camera obscura by substituting Equation (21) into (18).

Deriving the mathematical model of the camera obscura, we obtain the function F from Equation (18), although 
h′ is obtained from Eq. (21). Function F is a common derivation, therefore it is not presented here in detail.

Experiment
The proposed model was set up in Matlab, and its functionality and accuracy were tested with experimental 
measurements and a comparison to previously published camera obscura models.

Experimental setup
To evaluate the functionality of the proposed camera model, we designed the experimental setup illustrated in 
the scheme in Fig. 6.

A calibrated robotic arm and camera were first set to a known position and an image of the calibration pat-
tern on the work plane was captured. The image was processed in LabVIEW to determine the positions of the 
pattern’s anchor points. The image processing procedure encompasses image calibration to eliminate radial and 
tangential distortion, along with the detection of anchor points. Radial and tangential distortions are removed 
through camera calibration, which is determined prior to capturing the reference data set in accordance with 
the national instrument calibration procedure. The anchor point (A–E) x and y coordinates, calibrated robotic 
arm position (and orientation) and camera image formed a reference data set.

The reference data set was then used as input for other camera models. In the experiment, we tested and 
evaluated a commonly used, state-of-the-art camera obscura model and a mathematical model for a full camera 
and then compared the results to determine any difference in behaviour. The mathematical models used the 
robotic arm’s reference position and estimated the coordinates of anchor points A–E. These coordinates were 
then compared to the real measurements from the camera in the evaluation block.

Reference data
For evaluation purposes, we assembled a test robot stand and experimentally measured a reference data set.

Figure 7 shows a photo of the test robot stand. This experimental setup consisted of a Staubli TX2-60 indus-
trial 6-axis robotic manipulator (controller CS9 s8.12.2-Cs9_BS2561)40 and a Basler acA2500-14gm camera41 
with a Computar M0814-MP2 2/3” 8 mm f1.4 lens42, a work table and additional hardware to permit manual 
calibration.

The calibration procedure for the test robot stand consisted of two consecutive steps: rough calibration and 
fine calibration. Rough calibration involved a three point TCP calibration method using spikes, designed in 
cooperation with engineers from Staubli. Fine calibration involved precise positioning of the pattern at the center 
of the camera image and setting the camera axis perpendicular to the calibration pattern plane. The pattern was 
then replaced with a mirror and the camera aligned so that its reflection was in the exact center of the lens and 
middle of the image.

The accuracy of robot positioning was estimated at ±0.1 mm. An error of 1 pixel in detecting the anchor point 
and an error of approximately 0.1 mm related to the camera’s resolution and calibration pattern size were also 
accounted for. The total error was estimated as a Euclidean norm at 0.14 mm.

(21)h′i =
a′

a+ L
hi =

a′

a+ L
�SP

′

i − Q�,

Figure 6.   Schematic drawing of the experimental setup.
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The reference data set consisted of 100 positions and TCP orientations plus a base position. The camera’s 
initial placement was 300 mm above the center of the geometric figure. Figure 8 illustrates the TCP and camera 
coordinate systems. The robotic arm was progressively moved along the x, y and z axes, − 50 mm to 50 mm on 
the y and z axes and − 20 mm to 20 mm on the x axis. Movement along the x axis was tested on a limited range 
because the camera’s field of view in the horizontal direction was limited. The data set also contained various 
orientations for the base point from − 20◦ to 20◦ . The range of rotation on the y axis was limited to -20◦ to 10◦ 
due to possible collision with robot’s fourth axis. The reference data set also contained several additional meas-
urements of combinations of rotation and translation of the TCP.

Table 2 lists the parameter values used in the experiment. The parameters, including focal length (f) and 
camera resolution, were specified by the manufacturer of the camera. Additionally, the calibration square was 

Figure 7.   Photo of test robot stand with fixed camera on the effector and printed calibration pattern.

Figure 8.   Coordinate system definition: TCP coordinate system and camera image coordinating system.

Table 2.   Camera parameters used in the experiment.

Parameter Value

Focal length f 8 (mm)

Distance L 9.5 (mm)

Calibration square size 100× 100 (mm)

Camera resolution 2592× 1944 (px)
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precisely fabricated by an industrial partner. The sole parameter determined through experimental methods was 
the distance (L). A detailed sensitivity analysis of the parameter L is discussed in Section "Discussion".

Evaluation criteria
The study applied three evaluation criteria to compare the results from the mathematical models of the full 
camera and camera obscura. The first criteria is the difference in distance between the anchor point positions 
obtained from each camera model; these figures are independent of the calibration pattern size and camera 
properties. The difference was calculated from the average Euclidean distance between the real anchor points 
positions and the mathematical model anchor point positions:

where A–E are anchor points, ref  are reference anchor points, and Abs. Err is the absolute error in pixels.
The second criteria is the absolute error in millimeters produced by the test robot stand with the specific pat-

tern size and camera model. The absolute error in millimeters directly relates to the calibration pattern size. The 
calibration pattern was printed on paper with a laser printer, the edge of the calibration pattern being 100 mm 
in length. To analyze the absolute error in millimeters, a projective transformation was applied. The absolute 
error in millimeters was calculated from

where T is a projective transformation which transfers the image plane in pixels to the calibration pattern plane 
in millimeters.

The third and final evaluation criteria is the relative error, which relates to the diagonal distance of the calibra-
tion pattern; this figure is independent of the pattern size and camera model. The relative error was calculated 
from

Results
This section discusses the results of the comparison between a commonly used camera obscura model and the 
proposed full camera model. Both models are compared to a reference real camera solution.

Figure 9 compares the results for the models’ overall accuracies. The box plots indicate absolute errors in 
millimeters . Figure 9A shows a comparison of the absolute errors in millimeters for the entire dataset, which 
includes the reference data and various translations, rotations and combinations of translation and rotation. 

(22)Abs. Err. (px) =
1

5

∑

A,B,C,D,E

√

(Arefx − Ax)2 + (Arefy − Ay)2,

(23)Abs. Err.(mm) =
1

5

∑

A,B,C,D,E

√

[T(Arefx)− T(Ax)]
2 +

[

T(Aref y)− T(Ay)
]2
,

(24)Rel. Err. =
1

5

∑

A,B,C,D,E

√

(Arefx − Ax)2 + (Aref y − Ay)2

√

(Cx − Ex)2 + (Cy − Ey)2
.

Figure 9.   Box plots of absolute errors in millimeters : (a) entire data set; (b) subset containing translations not 
greater than 20 mm and rotations not greater than 5 ◦.
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Figure 9A indicates a significantly lower absolute error from the full camera model than the camera obscura 
model. For calibration of the robotic manipulator, we assume that the operator manually places the effector in the 
approximate desired position. This position is assumed to be no greater than the translation distance (20 mm) 
or rotation (5◦ ) on each axis. Figure 9B plots a comparison of the camera obscura model and full camera model 
for small translations and rotations. Significantly, the median absolute error from the full camera model is 
approximately seven times lower than absolute error from camera obscura model.

The box plots in Fig. 10 indicate the absolute errors in millimeters for each subset. The first two box plots 
(Translation) indicate the absolute error in millimeters for robotic arm translation only. The difference between 
the absolute errors for translation was significant, the full camera model producing an error six times lower 
than the camera obscura model. The two box plots in the middle indicate the absolute errors for TCP rotation. 
Improvement in the full camera model was not so significant as in the case of translation, but it is still lower 
than the error produced by the camera obscura model. Similar results were obtained for the combination of 
translation and rotation (box plots Translation & Rotation), showing an absolute error 1.82 times lower in the 
full camera model.

Table 3 summarizes the results for the camera obscura and full camera models, indicating averages for vari-
ous input data sets. The first row states the results for the entire data set. Comparing the results, that full camera 
model produced absolute and relative errors approximately 2.65 times lower than the camera obscura model. 
The second row indicates the results for small rotation and translation. As mentioned above, we assumed that an 
operator manually navigates the robotic arm near the desired TCP during calibration process. For small rotation 
and translation, the full camera model produced errors 5 times lower than the camera obscura.

The remaining rows in Table 3 state the results for the full camera and camera obscura models under specific 
conditions. The second row indicates the errors for translation in specific directions; translation generally pro-
duced an error of approximately 4 pixels with the full camera model and approximately 19 pixels with the camera 
obscura model. Regarding rotation, the full camera model behaved differently in z-axis rotation than rotation 
on the other axes. z-axis rotation produced a very low error of 2.71 pixels, while rotation on the x and y axes 
produced an absolute error of approximately 25 pixels. The causes of this behaviour are discussed in Section 6. 
The last row of results in the table shows errors for translation, rotation and concurrent rotation and translation. 
The results for these data sets correspond to the previously mentioned properties. The translation error produced 
by the full camera model (4.12 pixels) is less than error produced by the camera obscura model. The errors for 
rotation and concurrent translation and rotation time are greater than the errors for translation error, however 
the full camera model still produced better results than the camera obscura model.

Figure 11 graphically compares the average absolute errors of the two camera models, clearly indicating a 
lower absolute error (in pixels) produced by the full camera model in every case.

Figure 12 graphs the absolute errors in pixels for translation, indicating that the absolute error was lower with 
the full camera model than the camera obscura model. It is clear that the error produced by the camera obscura 

Figure 10.   Box plots of absolute errors in millimeters : Translation – subset contains translations only; Rotation 
– subset contains rotations only; Translation & Rotation – subset contains a combination of translations and 
rotations.
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model is largely independent of translation, while full camera model produced greater absolute errors for larger 
translations and a lower errors for smaller translations.

Figure 13 plots the absolute errors in pixels for translation in three dimensions. Figure 13a and b respectively 
indicate the absolute errors produced by the camera obscura model and the full camera model. The absolute 
errors on the x and y axes are roughly symmetrical, indicating that the errors produced are not dependent on 
the direction of movement left or right. The absolute error on the z axis is asymmetrical, becoming lower as the 
camera moved nearer to the pattern (the image of the calibration pattern is larger) and larger when the camera 
moved away (the image of the calibration pattern is smaller). It is also clear that with the full camera model, 
the points with smallest absolute error are concentrated near the base point, i.e. very small distances from the 
zero position.

Figure 14 plots the absolute errors in pixels for rotations in three dimensions. Figure 14a and b respectively 
indicate the absolute errors produced by the camera obscura model and the full camera model. Both camera 
models produced a similar distribution of absolute errors, but the full camera model’s absolute error was lower. 
Both algorithms produced the lowest absolute error in z-axis rotation. In this case, the calibration pattern image 
was affected by rotational transformation only, whereas x and y axis rotation affected the calibration pattern 
image with projective transformation, and the resulting absolute error was greater.

Discussion
The study raises several discussion questions. The first question concerns the accuracy of the presented results.
The full camera model was compared with the widely recognized camera obscura model, and an input data set 
was obtained experimentally from a real robot and camera equipment. To obtain the most accurate results as 

Table 3.   Summary of results for the camera obscura and full camera models, indicating averages for each 
input data subset. CO camera obcura, FCM full camera model.

Case

Abs. Err. (px)
Abs. Err. 
(mm) Rel. Err. (%)

CO FCM CO FCM CO FCM

Overall 21.43 8.06 1.76 0.68 1.30 0.49

Small rot. and trans. 19.64 3.65 1.63 0.32 1.18 0.22

Translation x 19.23 2.98 1.59 0.27 1.16 0.18

Translation y 19.51 4.16 1.59 0.37 1.17 0.25

Translation z 18.61 3.93 1.56 0.34 1.12 0.23

Rotation x 29.08 20.63 2.40 1.75 1.81 1.29

Rotation y 25.94 14.88 2.14 1.26 1.60 0.92

Rotation z 19.10 2.71 1.59 0.23 1.15 0.16

Translation 19.05 4.12 1.56 0.35 1.14 0.24

Rotation 25.55 14.97 2.11 1.27 1.57 0.93

Rotation and translation 26.24 15.66 2.14 1.31 1.60 0.96

Figure 11.   Comparison of absolute error in millimeters produced by the camera obscura and full camera 
models for various input data sets.
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possible, the robotic arm was calibrated with an an advanced procedure. The total error in the input data set was 
estimated at 0.14 mm. The estimated data set error was less than the resulting errors produced by the camera 
obscura and full camera models, therefore the input data set was suitable as a reference data set to compare the 
camera models.

The next question concerns the applicability of the proposed full camera model. The study used a test robot 
stand and 100 mm calibration pattern. Pilot testing indicated an average absolute error of 0.3 mm to 0.7 mm. The 
absolute error in pixels is generally independent of the camera type and calibration pattern size. If we consider 

Figure 12.   Comparison of absolute error in millimeters for translation o then x, y and z axes.

Figure 13.   Graphical representation of absolute error in millimeters in three dimensions for translation: (a) 
camera obscura; (b) full camera model.



13

Vol.:(0123456789)

Scientific Reports |          (2024) 14:323  | https://doi.org/10.1038/s41598-023-51011-5

www.nature.com/scientificreports/

a calibration pattern ten times smaller used in combination with telephoto lens, the absolute error will also fall 
in the range of 0.03 mm to 0.07 mm, which is sufficient for current robotic manipulators.

The final question for discussion concerns the inaccuracy encountered in rotation on the x and y axes. The 
full camera model expects the TCP to be in the center of the lens. The position of the sensing element was also 
required, but unfortunately, the camera manufacturers do not specify the parameter L , and it therefore had to be 
determined experimentally. To conduct a sensitivity analysis of the parameter L, we estimated the derivative of the 
absolute error (in millimeters) with respect to L using the finite difference method, as detailed in Equation (23). 
Our numerical experiments revealed that at L = 9.5 mm, the computed average derivative is approximately 
0.0024 mm. This finding suggests that the selected value of L is near-optimal. Deviations from L = 9.5 mm 
resulted in a marked increase in the magnitude of the derivative, indicating heightened sensitivity to changes in L.

An important consideration of the proposed solution is computational cost. Both algorithms were executed 
in Matlab software on a Dell Inspiron 7306 2n1 computer with a 2.4 GHz i5-1135G7 processor, which has a 
computational power similar to the target platform, which is an industrial computer. The entire calculation for 
the full camera model is a long mathematical expression which could be easily optimized (and parallelized) and 
implemented in another programming language such as C++, C# or a specific robot programming language. 
Table 4 compares the computational costs of the camera obscura and full camera models. The computational cost 
of the full camera model is significantly higher than camera obscura model. Although the calibration procedure 
is iterative, the full camera model requires only approximately 100–1000 iterations. The full camera model is 
therefore suitable for industrial processes because an industrial computer is able to process millions of numerical 
operations in hundreds of milliseconds, and especially because it is expected that a robot is calibrated at least 
once per day, usually after warming up.

Table 5 summarizes the overall characteristics of the camera models. A comparison of the full camera model 
with the camera obscura model clearly indicates its major advantage in greater precision. Implementation of both 
models is simple. The full camera model requires the calculation of a lengthy, single mathematical expression, 

Figure 14.   Graphical representation of absolute error in millimeters in three dimensions for rotation: (a) 
camera obscura; (b) full camera model.

Table 4.   Summary of the computational costs for the camera obscura and full camera models. CA  camera 
obscura, FCM full camera model, Mult. multiplication, Div. division, Add. addition, Sub. subtraction.

Sin Cos Mult. Div. Add. Sub.

CA 3 3 83 20 42 17

FCM 3 3 1.3 ths 20 1.5 ths 1.2 ths
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but this could be easily optimized. The camera obscura model involves calculation of a sequence of mathemati-
cal expressions. The computational costs for the full camera model are higher than the camera obscura model, 
however they are acceptable for both. The full camera model demonstrates two more advantages in variable image 
distance and variable focal length. The camera obscura has a fixed image distance, and focal length is considered.

Conclusion
The study proposed a full mathematical model of an industrial camera and measured a reference data set with 
an experiment for comparison to a generally known camera obscura model.

The results of the experiment indicated that the proposed mathematical model of a full camera produced a 
significantly lower absolute error than the camera obscura model. The absolute error was approximately 2.65 
times lower, and for small translations and rotations, up to 5.38 times lower. The novelty of the proposed solution 
was discussed in relation to other state-of-the-art methods.

Future studies will test the hypothesis that the proposed mathematical full camera model is able to obtain a 
lower absolute error with smaller calibration patterns and a telephoto lens. Other potential work is the applica-
tion of the full camera model to provide precise calibration in a real industrial application.

Data availability
The data supporting the findings of this study are available upon request. These data have been collected and 
are accessible for further analysis and validation. Please contact Jaromir Konecny at jaromir.konecny@vsb.cz to 
request access to the data.
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