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Broadening the capture of natural 
products mentioned in FAERS 
using fuzzy string‑matching 
and a Siamese neural network
Israel O. Dilán‑Pantojas 1*, Tanupat Boonchalermvichien 1, Sanya B. Taneja 2, Xiaotong Li 3, 
Maryann R. Chapin 3, Sandra Karcher 1 & Richard D. Boyce 1,2,3

Increased sales of natural products (NPs) in the US and growing safety concerns highlight the need 
for NP pharmacovigilance. A challenge for NP pharmacovigilance is ambiguity when referring to NPs 
in spontaneous reporting systems. We used a combination of fuzzy string-matching and a neural 
network to reduce this ambiguity. Our aim is to increase the capture of reports involving NPs in the US 
Food and Drug Administration Adverse Event Reporting System (FAERS). For this, we utilized Gestalt 
pattern-matching (GPM) and Siamese neural network (SM) to identify potential mentions of NPs of 
interest in 389,386 FAERS reports with unmapped drug names. A team of health professionals refined 
the candidates identified in the previous step through manual review and annotation. After candidate 
adjudication, GPM identified 595 unique NP names and SM 504. There was little overlap between 
candidates identified by each (Non-overlapping: GPM 347, SM 248). We identified a total of 686 novel 
NP names from FAERS reports. Including these names in the FAERS collection yielded 3,486 additional 
reports mentioning NPs.

Recently, there has been an increase in the sales and consumption of herbal supplements for complementary 
health1. However, there are gaps in the current understanding of the safety concerns from the use of herbal or 
natural products (NPs), including adverse effects from the NPs and from potential NP-drug interactions that can 
occur due to the co-consumption of NPs and pharmaceutical drugs2. For example, NPs such as garlic, green tea, 
and ginseng can modify the effect of the prescription anticoagulant warfarin, either potentiating or reducing its 
efficacy leading to an increased risk of bleeding or stroke from blood clots, respectively3–5. By natural products, 
we refer to products consisting of complex chemicals produced by living organisms. Our current focus is on 
botanical products intended for human consumption. The constituents of these products may interact across 
multiple biological systems in complex ways to contribute to their effects6.

A promising approach to assess safety concerns for NPs is a retrospective pharmacovigilance analysis of 
adverse event reports from spontaneous reporting systems such, as the FDA Adverse Event Reporting System 
(FAERS)7,8. A major challenge in pharmacovigilance for NPs is the need for more standardization for coding 
events involving NPs. The lack of standardization in adverse event reports related to NPs leads to challenges in 
parsing and identifying the products’ names and ingredients due to their non-uniform representation in the 
reports8,9. Therefore, researchers often encounter unfamiliar NP names or spelling variations when identifying 
reports for pharmacovigilance2. For example, the FAERS database includes more than forty-four (44) names 
referring to "Licorice" including "Liquorice", "Glycyrrhiza glabra", and "Glycyrrhiza laevis."

Equation (1) Gestalt Pattern-Matching ( GPM(X,Y))
s1 : Longest Common Substring between X&Y
sn : Subsequent Common Substring between X&Y

Equation (2) Normalized Levenshtein Distance ( Lev(X,Y))

(1)GPM(X,Y) =
2 · (|s1| + . . .+ |sn|)

|X| + |Y |
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Previous work has used fuzzy string-matching to overcome this limitation10. This approach helps mitigate 
the effects of similar name variations and misspellings but does not fully bridge the gap between the spectrum 
of names referring to the same product8,10; such as matching the common name “Liquorice” to its equivalent 
Latin binomial name “Glycyrrhiza glabra”.

Equation (3) Cosine Distance ( CD(X,Y))

To address these shortcomings, we propose combining fuzzy string-matching and deep learning to broaden 
the capture of candidate NP names. A combination approach can leverage both the reliability of fuzzy string-
matching and the flexibility of deep learning to identify both spelling variations and alternative names for a 
given product name. For example, given a misspelled form of Licorice, such as "Likorice", the model will be able 
to map it to its Latin binomial name, "Glycyrrhiza glabra" and its other species by outputting a small distance 
between them. For this work, we utilized Gestalt pattern-matching11 (GPM) as the fuzzy string-matching com-
ponent to maximize the identification of candidate spelling variations (Eq. 1 and Fig. 1). The proposed deep 
learning approach relies on the cosine distance (Eq. 3 and Fig. 2) between learned embeddings to create a model 
that matches NP names. The deep learning approach is based on the Siamese model (SM) architecture (Fig. 3). 
The SM architecture facilitates learning the embeddings by comparison of the inputs through the contrastive 
loss function (Eq. 4). The Siamese neural network was chosen for this task because they have been shown to 
successfully address the challenge of identifying similarities over a considerable range of problems12. Given an 
unknown term and a set of alternatives, the model learns to embed the inputs to minimize the cosine distance 
between terms that are spelled similarly or that are semantically similar. Additionally, they have been successfully 
trained with relatively little data13.

Equation (4) Contrastive Loss ( CL(X,Y))

We also explored Levenshtein Edit Distance (LED) as another form of fuzzy string-matching. LED’s algorithm 
(shown in Eq. 2) presents a way to quantify the number of edits necessary to transform a query sequence into a 
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Figure 1.   Example of Fuzzy String-Matching (GPM): Finding the similarity between the terms S1: “ZINGIBER” 
and S2: “GINGER” using the Gestalt Pattern-Matching approach. The longest matching substring K1: “ING” 
servers as an anchor to align the inputs. Next, the recursion matching happens, matching substring to the 
left and right of K1, here K2: “ER” represents a second matching substring of characters to the right of K1. The 
calculation of a similarity score based on GPM is shown at the bottom of the figure.
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target sequence by recursively comparing the characters in each position of the sequence. We opted not to include 
LED in the experiment seeking novel spelling variations for the following reasons. First, LED is a default fuzzy 
string-matching algorithm in many query systems, meaning the variations it could identify might already be 
present in the query set. Second, the results from the comparison experiment indicated that LED was comparable 
to GPM. And third, including LED in the novelty experiment would increase the burden on the team perform-
ing the manual validation with terms that we would expect to have a high overlap with the results from GPM.

Methods
Data collection
The first data source was the Center for Excellence for Natural Product-Drug Interaction Research (NaPDI) 
Database, from which we collected the known product names of several NPs, some of the previously identified 
spelling variations, and their corresponding Latin binomial names14. A second data source was the FAERS data-
base, from which we identified additional product names or spelling variations using fuzzy string-matching for 
70 different NPs7. FAERS data from Q1 2004—Q2 2021 was loaded into a standardized database and manual 
annotation was used to map 5,358 drug name strings from adverse event reports that matched to NP names. 
The remaining 389,386 unmapped drug names from FAERS were used for the novelty experiment in this study.

Experiments
The data was used to train and evaluate the Siamese model (SM) by conducting several experiments to study 
the effectiveness of the SM at matching potentially relevant terms from the reports to the corresponding NP 
names. We initially explored the SM’s performance as a distance metric to relate NP names effectively. Then, we 
evaluated how the SM compared to fuzzy string-matching approaches in tackling the same problem, validating 
that the SM can match novel names or spelling variations from FAERS to the correct equivalent group of NPs. 
Finally, we combined both approaches to produce a set of candidate NP names to be manually validated and 
utilized during FAERS report collection.

Data pre‑processing & inclusion criteria
The training data consisted of pairs of spelling variations of the product names from the manual annotation 
and a distance label where "1" indicated distant terms and "0" indicated matching terms. An example row of a 
positive matching pair might be ("Likorice", "Liquorice", 0) and a negative matching pair ("Cinnamon", "Liquo-
rice", 1). This representation allows the Siamese Model to learn the associations between query and target terms 
and represent the associations as a distance between 0 and 1. For simplicity, we decided to reduce the variation 
across terms. To this end, the data was standardized such that any non-alphabetical characters were removed 
from the terms, with the only exception being the whitespace character. All characters in the terms were then 

Figure 2.   Example of Cosine Distance: This example shows the Cosine Similarity Θ between GIN and ZIN. The 
length of the string in the example has been reduced to three characters to allow a 3-dimentional representation. 
The Cosine Distance is calculated as 1 – Θ.
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capitalized. Due to limitations of the implementation of Keras’ Embedding Layer15, a fixed-sized cutoff for the 
maximum length of the terms is required, and inputs must be represented as positive integers. We chose our 
cutoff by choosing a number close to the sum of the average size of the terms in the data (30) plus one standard 
deviation (31). Therefore, terms longer than sixty-five (65) characters were discarded. The last step in this initial 
processing was to encode the terms into integer sequences, where each letter was mapped to its corresponding 
position in the English alphabet, so [A-Z] became [1–26], and the space character was mapped to the integer 
27. For sequences smaller than the sixty-five (65) maximum size cutoff, 0-padding was used to pad the rest of 
the sequence up to the sixty-five (65) elements.

Through exploratory data analysis, we identified two sources of imbalance in our data. We found some target 
labels were disproportionally represented in the data and discovered that there was an additional imbalance in 
the proportion of matching to non-matching sequences. After this initial data processing was done, two data 
balancing steps were performed to reduce label imbalance. First, we balanced the representation of each target 
name to approximately the same amount since no target label should be overrepresented in the dataset. The 
additional pairs were generated by using any names matching the target name; the names were modified by 
adding random modifications to the query term to create new unique pairs. These random modifications were 
performed by first randomly selecting 40% of the characters in the query sequence, then for each of these char-
acters a random sample was drawn from a standard uniform (0,1) distribution, the random sample determined 
the modification to be performed. If the sample was in the interval [0.0, 0.2), the character in that position was 
replaced with a new random character [A-Z] or space, if the sample was in the interval [0.2, 0.4), the character 
in that position was removed, if the sample was in the interval [0.4, 0.6), one random character or space was 
added after that position, if the sample was in the interval [0.6, 0.8), the character was transposed with the one 
in the previous position, and finally, if the sample was in the interval [0.8, 1.0], no modification was  performed 
to that position. The second balancing step was similar, in that it generated matching and non-matching pairs 
as necessary to balance the total number of matching and non-matching pairs in the complete dataset. After 
the balancing procedures were completed, the 70/30 train-validation split, and a separate test/holdout set were 
created. A description of the number of samples in each of the sets is provided in Table 1.

Figure 3.   Model Architecture: This Siamese model architecture diagram shows the inputs for the training 
forward passes within the solid box and the input for the inference forward passes inside the dotted box. Read 
from top to bottom, during the inference forward passes, the inputs are first mapped to integer values, then 
passed into the Embedding Layer to produce the embeddings, which serve as the input to the two Siamese 
towers, whose output is combined in the Merge layer using the Cosine Distance, whose value gets passed to the 
output layer producing an inferred distance between the input terms. Additionally, the solid box shows the label 
that would be used in the supervised training step to calculate the contrastive loss and backpropagation.
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Siamese model training
We utilized the SM architecture, as shown in Fig. 1. A SM comprises two identical neural network towers with 
the same architecture. In our implementation, each tower is made from 65 recurrent bidirectional Long Short-
Term Memory (LSTM) cells16. The outputs of the towers were combined using the cosine distance between the 
vectors of the embedded terms. The contrastive loss function was utilized during training to measure the model’s 
accuracy. The corresponding input to each tower was first embedded into a 30-dimensional space by an embed-
ding network comprised of two (2) layers of hundred-and-thirty (130) dense nodes each. The hyperparameters 
for the number of dense nodes, embedding dimensions, and the number of layers in the embedding network 
were chosen experimentally.

Comparison with fuzzy string‑matching
To evaluate the model’s usefulness in identifying the correct matching NP name, we compared the model’s per-
formance against a fuzzy string-matching approach. The algorithms utilized for fuzzy string-matching were the 
Levenshtein edit-distance (LED) (Eq. 2) as implemented in TensorFlow’s “edit_distance” and Gestalt pattern-
matching (GPM) as implemented in Python’s “difflib” library “get_close_matches” function11,17. The LED is a 
metric used for comparing the similarity between two sequences based on their “edit distance.” Gestalt pattern-
matching is an algorithm also used to compare the similarity between two sequences. The metric used for 
comparison was Mean Reciprocal Rank (MRR)18 (Eq. 5), with which we measured the top twenty (20) results 
predicted to be the most similar to the target value annotated in the dataset. Additionally, we also compared 
the top results to any of the product names equivalent to the target. These top twenty (20) results are used as 
candidate NP names to be validated further.

Equation (5) Mean Reciprocal Rank (MRR)

Novelty experiment
Finally, to evaluate the applicability of our methods for pharmacovigilance research, we extracted 389,385 drug 
name strings from the FAERS database that were not mapped to any drugs or NP names and might contain NPs. 
After processing the unmapped names, 7,751 were removed because they were longer than sixty-five (65) charac-
ters. Another 41,849 sequences were identified as duplicates and were also removed; the remaining 339,785 were 
utilized for this novelty experiment to identify unique NP names from unmapped reports. For this experiment, 
we utilized a subset of 70 NPs of interest (the 70 natural products chosen were mentioned by a 2020 Market 
Report19 and/or were of interest to the NaPDI Center) from the set of NP names used for training. This subset 
contains both the Latin Binomial and a known common name, referred to as the preferred term (PT) for each of 
the seventy (70) natural product name pairs. These hundred-and-forty (140) names were utilized as a query set to 
identify candidate mappings from terms found in the FAERS database. We then utilized GPM and SM to match 
the top twenty (20) unmapped FAERS strings with results predicted as the most similar to (least distant to) the 
query terms. In this experiment, we explore the combined results of GPM and the SM, LED was not included.

Manual validation
The candidate mappings between the query NP names and unmapped FAERS strings yielded by the novelty 
experiment were manually annotated by two health professionals to assess whether the candidate mappings 
were correct. This process aims to leverage their expertise with drug and NP names to validate the results from 
the model. We further corroborated the annotations through Cohen’s kappa interrater agreement metric (Eq. 6) 
and an adjudication process to resolve the points of disagreement20.

Equation (6) Cohen’s Kappa Interrater Agreement
p0 : Relative observed agreement among raters.
pe : Hypothetical probability of chance agreement

(5)MRR =
1

n

∑n

i=1

1

Ranki

(6)k =
(

p0 − pe
)

(

1− pe
)

Table 1.   Train-validation data summary. *In the columns for Matching and Non-Matching, the first number 
represents the actual count number, and the second number represents what percentage of set that first 
number accounts for.

Matching* Non-Matching* Total

Train 841,259 (0.503%) 830,348 (0.497%) 1,671,607

Validation 360,717 (0.504%) 355,687 (0.496%) 716,404

Test/Holdout 1,261 (0.504%) 1,239 (0.496%) 2,500
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Results
Model training results
After training the SM for up to five hundred (500) epochs, the model terminated early at seventeen (17) epochs 
(Fig. 4). The best-performing epoch in this training run achieved a validation accuracy of 0.97 (validation loss: 
0.03). The weights from that epoch were saved and utilized for the rest of the experiments.

A holdout set containing 2500 pairs was utilized to compare the MRR performance. For the MRR evalua-
tion, we were only interested in a subset of the matching pairs (n = 1,000) given that we used the first element of 
the pair as the query and the second element as an indicator of the correct answer. Using the top 20 NP names 
reported as the least distance to the query term by each approach, we looked for exact matches to the target pair 
and matches to terms equivalent to the target pair.

Figure 4.   Siamese Model Training Results: The accuracy and loss of the Siamese model during training and 
evaluation both followed a similar trend, reaching a maximum of 97% accuracy with the validation set. The blue 
line represents the performance of the model on the training set and the orange line represents the performance 
of the model on the validation set. The dotted line represents the maximum or minimum value in the graph.
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For the exact matching where X ∼ Y  , the LED approach performed best (MRR = 0.567). In the equivalent 
matching where X ∼ Y ′|Y ∈ Y ′ , the LED approach also performed best with (MRR = 0.903). In both cases, the 
GPM approach performed similarly to LED with slightly lower MRR scores (exact = 0.563, equivalent = 0.894.) 
In both tests, the SM achieved comparably lower MRR scores (exact = 0.438, equivalent = 0.672.) see Fig. 5 and 
Table 2.

Novelty results
The single-blind test evaluation showed strong agreement (Kappa = 0.86) between the annotators on the identified 
candidate mappings. The specificity of the identified terms was the primary cause of disagreements between the 
annotators. In the presence of disagreements, the rules in Table 3 were utilized for adjudication. After adjudica-
tion, evaluators reported that the SM identified 504 correct terms, and GPM identified 595 (Table 4). For the 70 
NPs of interest, we considered those where one or more correctly identified NPs were covered by the approach 
(Table 5). When comparing these results, the GPM and SM approaches performed similarly, respectively iden-
tifying an average of 6 and 5 reports for the products they covered. From this novelty experiment, we were able 
to identify a total of 158 novel NP names and spelling variations for 70 NPs.

Figure 5.   Comparison between Siamese Model and Fuzzy String-Matching: The Gestalt Pattern-Matching 
(GPM) approach performed best with a higher Mean Reciprocal Rank score in the exact matching of terms, 
whereas the Levenshtein Edit-Distance (LED) approach performed better in the matching of equivalent terms. 
The blue dotted line represents the maximum exact MRR across the methods compared (LED, 0.567) and the 
orange dotted line represents the maximum equivalent MRR (LED, 0.903) across the methods.

Table 2.   Results from mean reciprocal rank comparison.

Exact Equivalent

Siamese model 0.438 (SD 0.416) 0.672 (SD 0.408)

Levenshtein distance 0.567 (SD 0.480) 0.903 (SD 0.254)

Gestalt pattern-matching 0.563 (SD 0.478) 0.894 (SD 0.269)

Table 3.   Adjudication rules.

Rules

If the query term was a Latin Binomial and the result was a general common name or only a Genus name, this was identified as a non-match.

​If the query term was a Common name and the result could potentially collide with another medical term, this was identified as a non-match.

Table 4.   Total products identified through each approach (including duplicates).

GPM SM Combined

Latin binomials 278 221 499

Common Names 317 283 600

Total 595 504 1,099
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Manual validation
It is worth noting that many of the terms did not overlap between the approaches (Table 6). The SM identified 
248 unique names, while GPM identified 347. The unique terms obtained from this mapping were incorporated 
into our quarterly data collection from FAERS data between Q1 2004 and Q2 202221. For mining reports contain-
ing mentions of NPs, we only looked at the reports involving the products for which the novel product names 
were identified; these 57 NPs are a subset of the original 70 NPs of interest. Including the novel terms from the 
experiments above resulted in the capture of 3,486 additional reports that were not previously identified in the 
database (Table 7).

Discussion
This study combined fuzzy string-matching and Siamese neural network approaches to identify NP names in 
adverse event reports in the FAERS database and successfully broadened the capture of NP reports by approxi-
mately 7.5%. Prior work in using string matching methods to identify NP strings in spontaneous reporting 
systems have used multiple sources of NP names to create a thesaurus to identify adverse event reports8,20. This 
requires maintenance of the thesaurus and regular updates to capture relevant NPs and name variations. This 
study expands upon the prior work that uses string matching using a manually annotated dataset from the FAERS 
database that can be used to train the model to identify NP variations. The approach can also be effectively uti-
lized to broaden the capture of reports in other spontaneous reporting systems and overcome challenges in NP 
pharmacovigilance, including lack of interoperability among NP data sources, lack of coverage of synonyms, 
scientific names and common names, and ambiguity in NP names in adverse event reports8. The manual annota-
tion results showed that both approaches contribute sufficient unique candidate mappings that help increase the 
number of reports identified in FAERS, which is essential considering that only 0.4% of the reports in FAERS 
involve NPs. Using a combination of fuzzy string-matching and a Siamese Neural Network, we increased our 
capture of relevant reports by approximately 7.5%.

Combined approach
We trained a SM to serve as a proxy distance metric for identifying potential spelling variations of NP names. 
Looking at the results from the training process, it is encouraging to see the potential of the method in tackling 
the problem of mining emerging variations in adverse event reports. In agreement to previous work that suggests 
natural language processing approaches can outperform current methods8, we expected SM to outperform fuzzy 
string-matching approaches. During our work, it was clear that this was not the case with our current implemen-
tation. Although the approach minimized the distance between similar terms, as seen during the training evalu-
ation, it did not effectively maximize the distance between dissimilar ones, as suggested by the MRR comparison. 
This may be due to potential overlaps between spelling and semantical similarities of the query and target space.

Potential limitations with the training of the SM includes the completeness of the data, shortcomings of 
the evaluation metrics, and the generalizability of the methods. Due to the nature of the problem, the data on 
spelling variations for NPs utilized for training was in no way complete or exhaustive. Our approach to data 
processing and augmentation lends itself to increasing the model’s capacity to generalize novel variations at the 
risk of saturating and confounding the embedding space. As implemented, the SM is learning two different tasks, 
one for "denoising" the spelling variations to the preferred term and another for matching equivalent terms as 
similar. Separating these tasks and creating a model architecture for the specialized handling of each task might 
prove advantageous. In the current work, the MRR metric only measures the top response and not the results’ 

Table 5.   Coverage of identified products of interest.

Latin binomial Common name Total

Gestalt pattern-matching 44 53 97

Siamese model 45 49 94

Table 6.   Unique products identified by each approach (excluding overlap). Significant values are in bold.

GPM SM Combined

Latin binomials 163 107 270

Common names 184 141 325

Total 347 248 595

Table 7.   FAERS reports collected before and after the inclusion of novel names.

Before After Difference

Reports 48,694 52,180 3,486
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completeness. Tweaking this aspect of how we measured MRR might provide a more accurate assessment of the 
applicability of the approaches.

We chose the SM architecture for this work because it possesses the following qualities. It can easily be used 
for distance metric learning between pairs. Siamese models have been shown to successfully learn distance met-
rics even with little data. The SM approach was, at most, only comparable to approaches such as LED and GPM. 
Nonetheless, such an approach proved helpful in mining adverse event reports for mentions of NPs, as seen in 
the novelty experiment. The novel NP names identified in the novelty test (supplementary material) will help 
refine the task of mining natural products from adverse event reports (AERs) in the future.

Limitations
We encountered some limitations in our implementation, such as the need for a fixed input size. Since the average 
length of the name of the NPs considered for the study was thirty (30) characters with a standard deviation of 
thirty-one (31), we chose a value close to the mean plus the standard deviation for our sequence length cutoff. In 
turn, the current model targets sequences of up to sixty-five (65) characters, approaches that might enable us to 
generalize applicability past this threshold are desirable. This means that currently, we cannot process sequences 
longer than sixty-five (65) characters. A second limitation was identified in the MRR comparison experiment. 
For the current problem, the orthographical and semantical spaces are not mutually exclusive; overlaps between 
spelling similarity and semantical dissimilarity and vice-versa can hurt the model’s performance. Another limita-
tion of our work is that candidate names were mined for only 70 NPs of interest. Another area for improvement 
is that, as implemented, our model did not prioritize semantic similarity over spelling similarity, leading to 
increased misidentified candidate NP names. Finally, the scalability of the manual validation process presents a 
hurdle as the amount of candidate names increases.

Future work
Our future work will involve assessing how different elements, such as the amount of noise used in data pro-
cessing and the size of the train/validation data split, impact the model’s training performance. We also plan to 
investigate alternative ways of handling data processing, including adding features to the data and creating model 
architectures that separately consider orthographical and semantic similarity. Moreover, we aim to expand our 
candidate identification process by mining candidates for a broader range of natural products. We will prioritize 
semantic similarity over spelling similarity to improve accuracy. Additionally, we will focus on enhancing the 
reliability of our methods to reduce the need for manual validation. We believe it is important to continue this 
work. As our methods of identifying the mention of NPs in AERs improve, we expect to pick up more NaPDI 
signals, enhancing patient safety through NPs pharmacovigilance.

Conclusion
A SM was trained to identify potential spelling variations of NP names. The SM model training terminated early 
at seventeen (17) epochs, achieving a validation accuracy of 0.97. In MRR evaluation, the SM performance was, 
at most, comparable to that of the fuzzy string-matching approaches. In the novelty experiment, GPM and SM 
performed similarly in identifying correct terms. The unique terms obtained were incorporated into the quar-
terly data collection process, resulting in the capture of 3,486 additional reports. By combining both the SM and 
GPM, a broader capture of NP names was achieved. Nonetheless, careful manual validation is still required for 
validation of the identified candidate names. Through this process of novel NP name discovery and interaction 
detection, we can help further research on natural product drug interactions.

Data availability
The full list of natural product names identified in FAERS for the 70 NPs of interest can be found in the supple-
mentary material. The data utilized for both training the Siamese Model and the identification of NP candidates 
through the combined approach is available as open access data through Zenodo: https://​doi.​org/https://​doi.​
org/​10.​5281/​zenodo.​81557​59.

Code availability
The code and data utilized for this work are available from the following GitHub: https://​github.​com/​dbmi-​pitt/​
np_​name_​finder. The repository includes the code, configuration files, and data required to reproduce the work.
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