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Species‑specific allometric 
models for reducing uncertainty 
in estimating above ground 
biomass at Moist Evergreen 
Afromontane Forest of Ethiopia
Abu Mulatu 1*, Mesele Negash 2 & Zerihun Asrat 2

An allometric equation is used to convert easily measured tree variables into biomass. However, 
limited species‑specific biomass equations are available for native tree species grown in various 
biomes of Ethiopia. The available pantropic generic equation has resulted in biases owing to the 
uncertainty of the generic model estimation due to the difference in tree nature and response 
to growth conditions. The objective of the study is, thus, to develop a species‑specific allometric 
equation for reducing uncertainty in biomass estimation at the Moist Evergreen Afromontane Forest 
in south‑central Ethiopia. Five tree species were selected for model development, these selected trees 
were harvested and weighed in the field. The measured above‑ground biomass data related to easily 
measured tree variables: diameter at stump height, diameter at breast height (dbh), crown diameter, 
and total tree height. The developed model evaluated and compared with previously published model 
by using measures of goodness of fit such as coefficient of determination  (R2), total relative error, 
mean prediction error, root mean square error, and Akaike information criteria. The analysis showed 
that a model with dbh as a single predictor variable was selected as the best model for the estimation 
of above‑ground biomass. It gives the highest  R2 for Syzygium guineense (0.992) and the lowest 
for Bersama abyssinica (0.879). The additions of other tree variables did not improve the model The 
pantropic model by Brown overestimates the biomass by 9.6–77.8% while both Chave models resulted 
in an estimation error of 12–50.3%. Our findings indicated that species‑specific allometric equations 
outperformed both site‑specific and pantropic models in estimating above‑ground biomass by giving 
0.1% up to 7.9% estimation error for the respective tree species.

Moist Evergreen Afromontane Forest is one of the vegetation types in Ethiopia and it is located in the western 
highland, the patch of Wondo genet, and the southern slope of Bale  Mountain1. The Moist Evergreen Afromon-
tane Forest, as cited by Gole et al.2, serves as a habitat for wild coffee. Moreover, it plays a pivotal role in the con-
servation of highland forest birds and plant diversity. It provides various benefits for the local people like coffee 
production, honey, spices, fuel wood, construction wood, farm tools, and grazing land. Additionally, it has a role 
in climate change mitigation by sequestering and storing carbon. Despite this, it faces threats of deforestation 
and  degradation3 from agricultural expansion, illegal cutting, and overgrazing.

In Ethiopia, there is a high rate of Forest degradation and deforestation. from 2000 to 2013 the country lost 
a mean of 92,000 ha forest  annually4, and the majority of this share was taken by Moist Evergreen Forest next to 
Combretum-Terminalia woodlands. To address the problem, Ethiopia engaged in international initiatives like 
REDD + (reduction of deforestation and degradation; conservation and sustainable forest management; and 
enhancing forest carbon). Hence, measuring and determining the biomass and forest carbon stock is the center 
of attention. Besides, understanding the carbon balance of forest ecosystems is vital to minimize the impact 
of climate change, and exploring mitigation  options5. The biomass of the individual tree is determined in two 
ways. The first method involves cutting down the tree, weighing it all, and converting it into dry biomass. The 
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second method involves converting measured tree variables (Diameter, Height, and Crown) into biomass using 
an allometric equation. The second approach is feasible and environmentally sound.

An allometric equation is a method that establishes a relation between some easily measured tree dimen-
sions (height, diameter, and crown diameter) and the dependent variable, total above-ground biomass. It gives 
an insight into the carbon sequestration potential of woody vegetation. As well, it also helps to calculate the 
costs and benefits associated with forest carbon projects and improves bio-energy systems and sustainable forest 
 management6. It can be a generic, site-specific, or species-specific allometric equation. Some  scholars7–10 are in 
favor of using species-specific allometric equations. Additionally, studies indicate that the application of a generic 
equation leads to uncertainty in the estimation of  biomass11–15. Species-specific allometric equations can reflect 
biomass variance caused by differences in tree nature (number of stems, height to branches), age, diameter, stand 
density, cultivars, site environment (climate and soil), and management approach.

In Ethiopia there is growing interest in developing allometric equations, for example, some researchers 
develop site-specific allometric  equations11–15 and species-specific12,16. In Moist Evergreen Afromontane Forest, 
only a limited number of tree species developed species-specific allometrics. For example, Olea europaea by 
Kebede and  Soromessa17; Diospyros abyssinica by Daba and  Soromessa18; Albizia grandibracteata and Trichilia 
dregeana by Daba and  Soromessa19. Even though the country has made significant efforts to develop allometric 
equations at site and species level. According to Sebrala et al.20, Ethiopia lacks sufficient national models for 
assessing forest biomass and carbon stocks and monitoring changes using Tier-2 and Tier-3 methodologies 
recommended by the IPCC. Additionally, there are issues with the developed model’s inclusion of wood basic 
density as a predictor variable in species-specific allometric equations, taxonomic naming issues, and the notion 
that models are best fitted when they have negative parameter estimators. So, the present study aims to develop 
allometric equations for estimating above-ground biomass for five selected tree species in the Moist Evergreen 
Afromontane Forest of South-Central Ethiopia. The specific objectives were to develop species-specific allometric 
equations for the estimation of above-ground biomass for five native tree species; to develop a biomass model for 
the tree compartment of this selected tree; to evaluate and compare the newly developed allometric equations 
with the existing site-specific and generic allometric equations.

Materials and methods
Study site location
The study site (or area) was located in the Wondo Genet natural forest on the southeast part of Ethiopia (Fig. 1), 
[N 7° 5.4′–N 7° 7.2′, and E 38° 38.4′–E 38° 40.4′]. The altitude ranges from 1850 to 2400 m.a.s.l. It is catego-
rized in the remnant Moist Evergreen Afromontane  Forest21 located in the protected and inaccessible mountain 
chains of Abaro. The area has a mean annual rainfall and temperature of 1200 mm and 22 °C  respectively22 with 
bimodal rainfall distribution with longer precipitation from June to October and lower from March to  April23. 
The topography of the study area has 43.5% mountains and hills, 36.25% flat areas, and 20.25% undulating parts 
of the  district24. The soils are young and of volcanic origin, characterized by well-drained loam or sandy loam. 
The soil pH of the study area is between 5.6 and 6.525.

Figure 1.  Map of the study area.
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Data collection
Sampling design and sample tree selection
To estimate the number of native trees to be included in the development of the allometric equation and to 
observe how tree species are distributed over the diameter range, tree inventory data collected by Asrat et al.26 
were used. Based on this inventory result, the dominance of tree species was calculated based on the following 
formula.

where “d’” is the diameter of the tree. Accordingly, five tree species (i.e.: Albizia gummifera, Bersama abyssinica, 
Croton macrostachyus, Vepris dainellii, and Syzygium guineense) were selected for the development of the allo-
metric equations. A total of 59 trees were harvested with a minimum diameter of 5 cm and a maximum diameter 
of 106.5 cm for the development of the allometric equation and covers 32.0% of the basal area. . The diameter 
classes were formulated with a 10 cm diameter interval for each tree species. Representative sample trees were 
distributed in diameter class based on the basal area proportion and sample trees were selected systematically 
within the diameter class. Trees having unusual forms such as broken crowns and stem knots were removed from 
the selection in model development unless they represent a significant portion of the forest, and trees grown in 
the unrepresentative site such as forest edge were not included. Hence, trees that are free from broken branches 
and defects were selected for  harvesting27. Before the tree felled, each sample tree from each species was identi-
fied and located with a GPS coordinate point and marked by the researcher and one local guide. Number and 
statistical summary of sampled trees; and distribution of the harvested tree with diameter class for each tree 
species presented in (Table 1).

Biomass determination
The destructive method was employed for the determination of the biomass of individual trees. After the tree 
diameter at stump height (0.3 m), diameter at breast height (1.3 m) (if buttress occurred tree diameter measured 
above buttress 0.3), and crown diameter was recorded. The tree was cut down closest to the ground and the total 
tree height using a tape meter was measured. The felled tree is sorted into three main sections: stem (stump plus 
to top > 10 cm diameter), branches (tree parts apart from the main stem and diameter > 2 cm), and foliage (leaves, 
twigs, small branches diameter < 2 cm, and fruit part). The section of all felled trees weighed independently in 
the field using a hanging balance (200 kg capacity). The weight of the stump was determined by using the volume 
of the stump and the wood’s basic density.

For the determination of foliage dry to fresh ratio, the foliage 200-250 g sample was taken from each tree. 
Additionally, four disks constitute three from the stem part, and one from the branch to determine the dry-to-
fresh weight ratio of stem and branch. The fresh weight of the sample was measured immediately in the field to 
avoid moisture loss. Then after labeling, the sample was transported to the WGCF-NR laboratory for oven-drying 
at 72 C for foliage, and 103 C for the wood part until it reached a constant  weight27. The dry weight of the sample 
was determined by digital balance (± 0.1 g). Finally, the dry weight of each section was determined by taking the 
dry-to-fresh weight biomass ratio.

Data analysis
The data analysis was undertaken in R software version 4.0128 by using ’nlstools’  package29. Prior to conduct-
ing the analysis, an investigation was performed by plotting a scatter plot (Fig. 2) to examine the relationship 
between dependent variable (above ground biomass) and independent variable (diameter at breast height). 
Accordingly, nonlinear relationship between the independent and dependent variables were observed. As a 
result, nonlinear regression methods were established on power model. Consequently, power models used in 
several  studies14,15,26 were tested in the present study. Based on this we formulated six different model forms 
for testing the Species-specific biomass models, by using dbh and dsh as sole predictors and combined with a 
stepwise inclusion of ht and crw.

Additionally, weighted regression was employed to reduce the heteroscedasticity in nonlinear  regression30. It 
is the method of data transformation used in our data set to remove the error variance. Based on the procedure 

(1)Basel area =
(
πd2

)
/4

Table 1.  Summary (Range, Mean, and Standard error) of biometric attributes of the harvested sample trees.

Tree species N dbh(cm) dsh(cm) Ht(m) Cd (m) AGB (kg)

A. gummifera 13 5.8–106.5 (44.2)(8.4 8.6–117.5 (50)(9.4) 6.0–38.8 (20.9)(2.4) 2.0–25.0 (13.6)(2) 8.83–12,433.4 (2705)
(1060.9)

C. macrostachyus 14 5.0–81.0 (38.6)(5.9) 8.0–98.0 (45)(6.9) 6.5–27.8 (21)(1.9) 2.0–25.0 (12)(2) 5.9–5403.1 (1175)
(395.5)

V. dainellii 11 5.0–41.6 (22.1)(3.4) 6.0–61.3 (27)(4.6) 4.0–17.3 (11.7)(1.3) 2.0–19.0 (12.7) 12.3–1130.3 (389)
(226.7)

S. guineense 11 6.0–95.0 (41.9)(9.3) 10.0–110 (52)(10.7) 8.0–25.0 (16.9)(1.7) 3.0–26.0 (12.5)(2.7) 13.9–5738-5 (1551)
(587.6)

B. abyssinica 10 6.0–44.0 (23.1) 8.0–51.0 (26) 6.0–16.3 (12.2)(1.3) 1.5–13.0 (7.2)(1.7) 12.3–1130.3 (389)
(116.9)
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adopted by Picard et al.27, the weighting Factor (“c”) will be developed for each tree species. Finally, the weight 
will be =  1

(dbh)c
 ; where dbh, is the diameter of the tree, and “c” is the weight factor.

where: AGB is the biomass of the tree in (kg), dbh is the tree diameter at breast height (cm), ht is tree height 
in (m), dsh is the diameter at stump height (cm), cd is the crown diameter in (m) and a, b, c, d, are model 
parameters.

Model evaluation and comparison
For evaluating the models’ performance, cross-validation specifically leave one out cross-validation (LOOCV, 
where a model fitted to the ‘n-1’ dataset and then performance is assessed on the single observation left out and 
repeats the procedure n times until all observations covered by the process) was used. It is an efficient method 
of model validation, where every data set is used for training and test  data31. This kind of model validation is 
important when a small data set  exists36. Furthermore, it has no randomness since each observation is used as a 
training and validation. Then the developed allometric models were evaluated through goodness-of-fit measures 
such as mean prediction error (MPE), root mean square error (RMSE), Akiaka information criterion (AIC), True 
Relative Error (TRE), and R-square. Thus, models that recorded the lowest value of MPE, RMSE, AIC, and the 
higher values −  R2 were selected. Paired t-tests were used to see the difference between observed and predicted 
values. Pearson’s correlation test was also used for testing the correlation between AGB and independent vari-
ables (dbh, dsh, crown diameter, and height).

AGB = a∗(dbh)b (Model 1, M1)

AGB = a∗(dbh)b∗(ht)c (Model 2, M2)

AGB = a∗(dsh)b (Model 3, M3)

AGB = a∗(dsh)b∗(ht)c (Model 4, M4)

AGB = a ∗ (dbh)b ∗ (cd)c (Model 5,M5)

AGB = a∗(dbh)b∗(ht)c∗(cw)d (Model 6, M6)

Figure 2.  Scatter plot dbh (cm) against Total above-ground biomass (TAGB) (kg).
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where: MPE is the mean prediction error, RMSE is a root mean square error, yi is the observed value of the ith 
sample tree, ŷi is the predicted value of the ith sample tree, y is the mean observed value and n is the number 
of observations.

To compare model performance, the best-ranked model in the present study was used to compare it with 
previously developed  pantropic32–34 and site-specific  models26. The models used in the comparison are presented 
in Table 2.

Ethical approval and consent to participate
The collection of plant material and the performance of experimental research on such plants complied with the 
national guidelines of Ethiopia.

Results
Correlation between tree variables and different biomass components of the tree
Spearman correlation between the independent and dependent tree variables is presented (Table 3). For all tree 
species tree dependent variable, has a strong relationship with dbh. For the C. macrostachyus tree, height has a 
weak relationship with the tree-dependent variable. Regarding crown diameter, B. abyssinica doesn’t strongly 
correlate with all tree’s dependent variables except merchantable stem biomass. One of the factors for the vari-
ation of the correlation between tree species and different biomass compartments nature of species and growth 
conditions. Based on the nature of the tree species and growing conditions the relation between the tree variable 
and the biomass component of the tree will be  affected35.

Species‑specific allometric equation for the selected tree species
The best-performed allometric equation with a measure of goodness-of-fit for the five tree species for all compart-
ments is presented (Table 4) and all tested models are presented (Appendix A and B) The selected model holds 
the highest R-square, lowest RMSE, MPE, and AIC. The model that gives negative and insignificant parameters 
is not considered a valid model. Accordingly, for the total above-ground biomass (TAGB) model (M1), with 
dbh sole predictor gives significant parameter estimates for all tree species. And explained 99.3% of biomass 
variation for S. guineense whereas the lowest by B. abyssinica 89.3%. Whereas M3 with dsh as a single predictor 
variable explained 97.8% of the variation in the case of A. gummifera followed by C. macrostachyus (97%), and 
V. dainellii (72%). The addition of other tree variables in the model didn’t improve the model performance and 
resulted in a negative regression coefficient in some cases.

Based on the analyzed result, M3overestimated the foliage biomass by 8.6 kg for A. gummifera, while M1 
underestimated by 13.7 kg for S. guineense. For B. abyssinica including height with dbh results in better estimation 

(2)RMSE =

√√√√ 1

n
(

n∑

i=1

(yi−ŷi)
2

(3)RMSE% =

RMSE

y
∗ 100

(4)MPE =

1

n

n∑

i=1

(yi − ŷi)

(5)MPE% =

MPE

y
∗ 100

(6)TRE% =

∑
ŷi − yi∑

yi
∗ 100

(7)R2
= 1−

∑n
i=1

(yi −
︷︸︸︷
yi )2∑n

i=1
(yi − y)2

Table 2.  Selected previously published model for comparison.

Reference Model

Brown36 ABG (kg) = 42.69–12.800*(dbh) + 1.242*(dbh)^2

Chave, et al.34 AGB (kg) = 0.0509*wbd*dbh^2*ht

Chave, et al.33 AGB (kg) = 0.0673*(wbd*dbh^2*ht) ^0.976

Asrat et al.26 AGB = 0.21765 × (dbh)^1.77660 × (ht)^0.33242 × (crw)^0.65575 × (wbd)^1.07739
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Table 3.  Correlation Matrix between dependent and independent tree variables. dsh, diameter at stump 
height; dbh, diameter at breast height; ht, total tree height; and cd; crown diameter; Significance level: *p < 0.05; 
**p < 0.01; ***p < 0.001.

Species Compartment

Tree variable

Dsh dbh ht cd

A. gummifera

Foliage biomass 0.97*** 0.97*** 0.87*** 0.87***

Branch biomass 0.88*** 0.91*** 0.75*** 0.70**

Merchantable Stem biomass 0.93*** 0.95*** 0.8*** 0.76***

Total Above ground biomass 0.91*** 0.94*** 0.78*** 0.74***

C. macrostachyus

Foliage biomass 0.91*** 0.93*** 0.72* 0.59

Branch biomass 0.95*** 0.94*** 0.73* 0.43

Merchantable Stem biomass 0.98*** 0.97*** 0.83** 0.45

Total Above ground biomass 0.98*** 0.97*** 0.79** 0.45

S. guineense

Foliage biomass 0.93*** 0.92*** 0.63 0.93***

Branch biomass 0.90*** 0.88*** 0.54 0.85***

Merchantable Stem biomass 0.90*** 0.88*** 0.60 0.86***

Total Above ground biomass 0.91*** 0.90*** 0.59 0.87***

V.dainellii

Foliage biomass 0.94*** 0.95*** 0.86*** 0.91***

Branch biomass 0.91*** 0.94*** 0.81** 0.89***

Merchantable Stem biomass 0.95*** 0.98*** 0.87*** 0.92***

Total Above ground biomass 0.94*** 0.96*** 0.85** 0.91***

B. abyssinica

Foliage biomass 0.94*** 0.89*** 0.76** 0.69

Branch biomass 0.93*** 0.85*** 0.72 0.64

Merchantable Stem biomass 0.91*** 0.94*** 0.87 0.76*

Total Above ground biomass 0.94*** 0.90*** 0.79** 0.70

Table 4.  Selected species-specific biomass model for all tree compartments and model performance 
evaluation. M.stem, Merchantable stem Diametr > 10 cm; TAGB, Total above-ground biomass; Significance 
level: *p < 0.05; **p < 0.01; ***p < 0.001; RMSE, root mean square error, AIC, Akaike information criterion; Adj. 
R, adjusted R square; MPE, mean prediction error.

Species Tree compartment Model

Parameter estimates

Adj. R

RMSE MPE

AICa b c Kg % Kg %

A. gummifera

Foliage M3 0.08* 1.87** 0.85 57.29 36.73 − 8.63 − 5.53 118

Branch M2 0.013* 3.21*** 0.54* 0.92 454.14 40.23 − 14.46 − 1.28 141

M. stem
M1 0.15** 2.29*** 0.97 273.12 19.23 − 49.4 − 3.48 158

M3 0.099* 2.32*** 0.94 428.08 30.14 − 130 − 9.19 159

TAGB
M1 0.145 ** 2.440*** 0.99 384.194 14.202 − 26.43 − 0.97 161.26

M3 0.086* 2.49 *** 0.98 547.76 20.25 50.34 1.86 169.13

S. guineense

Foliage
M1 0.202* 1.62*** 0.88 42.54 35.50 13.65 11.39 102

M3 0.05** 1.87*** 0.90 37.89 31.62 7.73 6.45 91

Branch M1 0.02*** 2.53*** 0.98 101.0 15.85 17.60 2.76 96

M. stem
M1 0.24* 2.07*** 0.93 213.14 26.86 − 76.19 − 9.60 165

M4 0.14* 2.72*** 0.74* 0.97 145.59 18.35 − 31.29 − 3.94 125

TAGB M1 0.287*** 2.18*** 0.992 158.129 10.198 − 62.702 − 4.04 125.50

V. dainellii

Branch
M1 0.012* 3.09*** 0.89 143.36 43.84 19.20 5.87 103

M3 0.006** 3.13*** 0.51 298.45 91.26 − 55.28 − 16.9 100

M. stem M1 0.063** 2.50*** 0.83 81.44 39.20 − 6.33 − 3.04 77

TAGB M1 0.099** 2.65*** 0.918 198.517 30.604 52.423 8.082 109.85

M3 0.073** 2.61 *** 0.69 389.02 59.97 − 0.70 − 0.11 119.73

B. abyssinica
M. stem M2 0.05* 1.67*** 1.14** 0.98 21.73 10.49 − 0.61 − 0.29 85

TAGB M1 0.254* 2.25*** 0.879 114.95 29.58 − 17.04 − 4.38 98.46

C. macrostachyus TAGB
M1 0.085* 2.49*** 0.918 392.90 33.445 43.721 3.722 170.11

M3 0.085* 2.39*** 0.97 245.29 20.88 31.18 2.65 172.82
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by explaining 98.6% of the variation in Merchantable stem biomass. Correspondingly, M4 with dsh and height 
results in a better estimation of Merchantable stem biomass, by overestimating the biomass with 31.3 kg for S. 
guineense. In C. macrostachyus, all tested models for the tree like Foliage, Branch, and Merchantable stem resulted 
in insignificant regression coefficients.

The observed and predicted AGB for the selected model were plotted in (Fig. 3). The result showed that there 
is no significant difference between the observed AGB and predicted AGB for the best-selected model. Based on 
the P-value there is no proof to reject the null hypothesis (intercept = 0 and slope = 1). However, the discrepancy 
between observed and predicted varies between tree species.

Biomass model comparison with the previous study
The comparisons were made by applying the previously published generic allometric model, site-specific model, 
and selected model M1 of the current study on our data, and the result is shown in (Table 5). The model by 
 Brown36 overestimates the AGB For S. guineense (77.8%), C. macrostachyus (66.4%), B. abyssinica (43.2%), and 
A. gummifera (9.6%). On the other hand, a model developed by Chave et al.33,34 underestimate the AGB for A. 
gummifera (17.8% and 17.4%), V. dainellii (50.3% and 47.4%), and B. abyssinica (21.2% and 16.4%), respectively, 
whereas overestimate the AGB for S. guineense (15.8% and 17.1%) and overestimate for C. macrostachyus (9.7% 
and 12.4%), respectively. The site-specific model developed by Asrat et al.26 overestimates the biomass for C. 
macrostachyus (37.4%) and S. guineense (71.9%). In all tree species, the currently developed model M1 has the 
least prediction error with the highest for V. dainellii (7.3%) whereas the lowest is B. abyssinica (0.1%). The 
comparison based on the value of Total relative Error (TRE) and Mean prediction Error (MPE) indicates that 
for all tree species, the developed model in the current study outperformed the previously developed model.

Discussion
Species‑specific allometric equation for the selected tree species
A considerable proportion of variations in the total above-ground biomass (TAGB) are explained by the dbh as a 
sole predictor variable in each tree species case. The highest explaining potential of dbh is present in S. guineense 
(99.3%), and the lowest in B. abyssinica (89.3%), This finding is similar to those reported in several  studies12,17,37,38.

The addition of tree height in the model results in a negative regression coefficient and doesn’t improve model 
performance. This finding is inconsistent with some  studies39–41. Tree allometry is affected by differences in tree 
nature (number of stems, height to branches), age, diameter, stand density, cultivars, site condition (climate and 
soil), and management  practice42. For example, a tree that grows in an open forest will have a shorter height than 

Figure 3.  The relationship between the observed and predicted total ABG of the five tree species. The red line 
represents the line that best fits the residuals, while the black line represents the 1:1 line.
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a tree that grows in a closed forest for the given diameter. This also affects the relationship the biomass and tree 
 height43,44. Due to this diameter is the most important tree variable in the estimation of biomass.

Regarding crown diameter, the inclusion of this predictor variable in the model did not improve the biomass 
estimation. This finding is inconsistent with some  studies14,15,26. The forest ecosystem of Wondo Genet was 
exposed to disturbance from fuelwood collectors, illegal logging, and man-made  fire21,23. This reduces competi-
tion for the upper canopy and in this type of forest, trees invest more in diameter than  height45 and tree allometry 
will be changed. In this case, dbh will be an important predictor for the estimation of above-ground biomass. 
Besides, dsh is another important tree variable explaining the variation existing in biomass and performed bet-
ter than dbh for tree species like C. macrostachyus, but because of the measurement difficulty in natural forests, 
models that include dsh are not recommended as the best option for further application.

Species‑specific biomass model comparisons with previous study
The best-ranked selected model was compared with one site-specific developed generic allometric equation 
and three pantropic allometric equations. Additionally, different statistics are used as performance indicators to 
evaluate the performance of each model. A pantropic model developed by  Brown36, overestimates the biomass 
by 9.6–77.8%. As well, Chave et al.33 gave a prediction error range of 12.4–47.4%; and Chave et al.34 resulted in 
an error range from 15.8—50.3%. This finding is in line with some  reports12,15. However, for some tree species, 
the pantropical model performs well; for example, Chave et al.34 and  Brown36 did not show a significant bias for 
tree species C. macrostachyus and V. dainellii respectively. This suggests that the bias of the pantropic generic 
allometric equation varies between tree  species16. The tested site-specific allometric equation overestimated the 
biomass for tree species such as S. guineense (71.9%) and C. macrostachyus (37.4%) and did not exhibit significant 
bias towards the other tree species. The performance of the site-specific and pantropic generic model in the forest 
biomass estimation leads to some  uncertainties46. Species-specific allometric equation plays an important role in 
reducing the uncertainty associated with the estimation of biomass. Whenever there is a lack of species-specific 
allometric equation site-specific model is more  important47 for the estimation of above-ground biomass than 
a pantropical model. Tree allometry is affected by the environmental conditions and nature of the tree, while 
the pantropic model data was collected from outside the Ethiopia;  Brown36, collected from Central and South 
America and Southeast Asia; Chave et al.34 collected Tropical America and Asia; but Chave et al.33 incorporated 
some tree species as part of Africa. Due to the above-mentioned factor, the application of the pantropical model 
leads to uncertainty, and using a species-specific allometric model reduces the uncertainty in biomass estimation.

Table 5.  Comparison of the selected general models and previously published both generic and for each 
species. M1, The best selected model in the present study; SE, Standard Error; Significance level: *p < 0.05; 
**p < 0.01; ***p < 0.001.

Species Previously developed models predicted AGB mean in (Kg) SE

RMSE MPE

TRE (%)Kg % Kg %

A. gummifera

Chave et al.33 2233.5 900.74 951 35.2 471.8* 17.4 − 17.4

Asrat et al.26 2576.9 887.43 567.2 21 128.3 4.7 − 4.7

Chave et al.34 2223.2 949.08 936.7 34.6 482.0* 17.8 − 17.8

Brown36 2964 1074.33 434.9 16.1 − 258.8* − 9.6 9.6

M 1 2716.6 1067.48 284.4 10.5 − 11.4 − 0.4 0.04

C. macrostachyus

Chave et al.33 1320 377.97 318.6 27.1 − 145.2* − 12.4 12.4

Asrat et al.26 1614.2 379.83 697.1 59.3 − 439.4** − 37.4 37.4

Chave et al.34 1289.1 521.24 296.1 25.2 − 114.3 − 9.7 9.7

Brown36 1955.4 562.35 1038.5 88.4 − 780.6*** − 66.4 66.5

M 1 1190.4 372.84 207.8 17.7 − 15.7 − 1.3 1.07

S. guineense

Chave et al.33 1815.4 703.59 483.1 31.2 − 264.8* − 17.1 17.1

Asrat et al.26 2664.9 701.36 1913.4 123.4 − 1114.3* − 71.9 71.9

Chave et al.34 1795.7 1067.79 479.2 30.9 − 245.1* − 15.8 15.8

Brown36 2757.6 1061.76 1930.2 124.5 − 1207.0* − 77.8 77.8

M 1 1601.1 616.78 130.8 8.4 − 50.5 − 3.3 2.5

V. dainellii

Chave et al.33 341.2 98.37 16.8 79.7 307.5* 47.4 − 46.9

Asrat et al.26 632.8 102.51 219.6 33.9 15.9 2.5 1.0

Chave et al.34 322.1 179.04 322.1 82.9 326.6* 50.3 − 49.8

Brown36 545.5 160.18 263.4 40.6 103.2 15.9 − 15.0

M1 601 185.09 158.5 24.4 47.7 7.3 − 8.2

B. abyssinica

Chave et al.33 324.9 102.42 89.3 23 63.8** 16.4 − 16.4

Asrat et al.26 393.2 106.67 64.1 16.5 − 4.5 − 1.2 1.2

Chave et al.34 306.2 113.55 108.3 27.9 82.4** 21.2 − 21.2

Brown36 556.7 183.85 271.2 69.8 − 168.0* − 43.2 43.2

M1 389.2 117.25 59.4 15.3 − 0.6 − 0.1 0.02
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Conclusions
Interest in the estimation of the biomass and carbon sequestration potential of the forest increased because of 
the result-based incentive in forest management and conservation. In this regard, allometric equations give an 
insight into the potential of an intervention, and how much biomass and carbon are stored in the forest. Species-
specific allometric equations for the estimation of above-ground biomass were developed for five tree species. 
The developed models have a great role in improving the accuracy of biomass estimation. Models that used only 
dbh will have importance in reducing cost in the measurement. The best-ranked allometric equation compared 
with the allometric equation developed as a site-specific and pantropic generic equation; however, the developed 
species-specific allometric equation showed better accuracy in the estimation of aboveground tree biomass. The 
developed biomass model was applied to a Moist evergreen Afromontane Forest, considering the diameter range 
for each species. However, to improve the model further, it is necessary to include sample trees from various 
locations within the forest ecosystem.

Data availability
The datasets used and/or analyzed during the current study are available from the corresponding author upon 
reasonable request.
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