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Quantifying changes 
in individual‑specific 
template‑based representations 
of center‑of‑mass dynamics 
during walking with ankle 
exoskeletons using Hybrid‑SINDy
Michael C. Rosenberg 1*, Joshua L. Proctor 1,2 & Katherine M. Steele 1

Ankle exoskeletons alter whole‑body walking mechanics, energetics, and stability by altering center‑
of‑mass (CoM) motion. Controlling the dynamics governing CoM motion is, therefore, critical for 
maintaining efficient and stable gait. However, how CoM dynamics change with ankle exoskeletons 
is unknown, and how to optimally model individual‑specific CoM dynamics, especially in individuals 
with neurological injuries, remains a challenge. Here, we evaluated individual‑specific changes in 
CoM dynamics in unimpaired adults and one individual with post‑stroke hemiparesis while walking in 
shoes‑only and with zero‑stiffness and high‑stiffness passive ankle exoskeletons. To identify optimal 
sets of physically interpretable mechanisms describing CoM dynamics, termed template signatures, 
we leveraged hybrid sparse identification of nonlinear dynamics (Hybrid‑SINDy), an equation‑free 
data‑driven method for inferring sparse hybrid dynamics from a library of candidate functional forms. 
In unimpaired adults, Hybrid‑SINDy automatically identified spring‑loaded inverted pendulum‑like 
template signatures, which did not change with exoskeletons (p > 0.16), except for small changes 
in leg resting length (p < 0.001). Conversely, post‑stroke paretic‑leg rotary stiffness mechanisms 
increased by 37–50% with zero‑stiffness exoskeletons. While unimpaired CoM dynamics appear robust 
to passive ankle exoskeletons, how neurological injuries alter exoskeleton impacts on CoM dynamics 
merits further investigation. Our findings support Hybrid‑SINDy’s potential to discover mechanisms 
describing individual‑specific CoM dynamics with assistive devices.

Ankle exoskeletons are used to improve walking function and gait  mechanics1–3. Personalized passive and pow-
ered ankle exoskeletons have shown promise to improve walking function and muscle coordination in some 
unimpaired adults and individuals with neurological  injuries2,4,5. However, changes in gait in response to ankle 
exoskeletons are highly individualized, especially following neurological injury, making device personalization 
critical to improving mobility. For example, in stroke survivors and children with cerebral palsy, ankle exoskel-
etons elicit diverse—and sometimes detrimental—impacts on gait mechanics, walking speed, step length, and 
the energetic cost of  walking1–4. Quantifying and characterizing these responses remain challenging and hinders 
clinicians’ and designers’ abilities to customize exoskeletons to support walking function.

Characterizing the changes in the neural and biomechanical processes governing center-of-mass (CoM) 
motion (i.e., CoM dynamics) with ankle exoskeletons may help explain heterogeneous exoskeleton impacts on 
task-level goals during walking. Despite observed changes in center-of-mass (CoM) mechanics and energetics 
with ankle exoskeletons, little is known about how CoM dynamics change with ankle exoskeletons to achieve 
task-level goals, like walking stably and  efficiently2,5–10. CoM energetics are altered in unimpaired adults walking 
with ankle exoskeletons and following neurological injuries (e.g., post-stroke, the paretic leg exhibits reduced 
power generation and changes in leg power with exoskeletons differ between individuals)2,5,11. However, whether 
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these changes in leg power are accompanied by changes in CoM dynamics or simply altered CoM kinematics 
is unclear.

Reduced-order representations of CoM dynamics, often termed template models, provide a foundation 
to quantify complex exoskeleton responses using interpretable mechanical  elements12–17. For example, Full & 
Kodistchek (1999) used template models of CoM dynamics, such as the spring-loaded inverted pendulum (SLIP), 
to quantify strategies to stabilize the CoM in response to  perturbations15. Such reduced-order representations of 
gait encode neural and biomechanical dynamics using a minimalist set of physics-based mechanisms. Specifically, 
common template models of CoM dynamics use a variety of mechanisms, such as SLIP leg springs or the rigid 
legs of an inverted pendulum walker, to describe relationships between leg kinematics and CoM accelerations 
during  gait10,13,15,16,18–22. Each mechanism within a model, therefore, encodes a hypothesis about how neural and 
biomechanical subsystems interact to achieve task-level walking goals.

However, determining which template mechanisms are needed to optimally describe an individual’s CoM 
dynamics remains challenging. Inverted pendulum templates have been useful in modeling CoM energetics, 
the transition from walking to  running16,18, and strategies for energetically efficient CoM  acceleration8,22,23 and 
lateral  stabilization10,24. Higher-dimensional template structures, such as the bipedal SLIP, were needed to more 
accurately predict sagittal-plane ground reaction forces (GRFs)20,25. Additional mechanisms applied to the bipedal 
SLIP template, such as leg dampers, rotary springs, or curved feet, have been used to further improve the accuracy 
of CoM dynamics models during  walking19,26. This breadth of templates proposed for human walking suggests 
that the mechanisms that best describe gait are individual-specific20,26. Selecting individual-specific template 
structures (i.e., the mechanisms included in the template) is, therefore, critical to quantifying exoskeleton impacts 
on CoM dynamics using template models.

To emphasize the individual-specific nature of templates, we denote the combination of mechanisms best 
describing individual-specific CoM dynamics as a template signature. Inter- or intra-individual differences in the 
template signature mechanisms that best describe CoM dynamics for an individual and walking condition, or the 
coefficients estimated for each mechanism, may provide insight into how exoskeletons impact CoM dynamics. 
For example, template signatures in children with hemiparetic cerebral palsy differed from typically developing 
children and were asymmetric, with increased stiffness—defined by the coefficient of the stiffness mechanism—in 
the paretic  leg27,28. Atypical and asymmetric CoM dynamics suggested that, following neurological injury, people 
may adopt individual- and leg-specific strategies to accelerate the CoM.

However, characterizing changes in template signatures with exoskeletons or following neurological injury 
requires addressing a major methodological challenge: Manually identifying optimal template signature structure 
is a slow, ad hoc process that relies on first-principles knowledge of the  system19. Using this manual approach, 
comprehensively comparing candidate template signatures for even a moderate number of template mechanisms 
is challenging: the number of comparisons increases combinatorially with the number of candidate mechanisms. 
New approaches are needed to select mechanisms rapidly and systematically from a literature-based library of 
candidate mechanisms.

Recent advances in data-driven modeling and machine learning provide powerful tools to identify template 
signatures from walking  data29–32. One such algorithm, Hybrid-SINDy (SINDy: Sparse identification of nonlinear 
dynamics29), identifies sparse nonlinear dynamics in hybrid systems from time-series data, making it particularly 
appropriate for identifying template models of walking, which have distinct dynamics based on foot contact 
 configuration28,31. Hybrid-SINDy automatically identifies and compares a large number of candidate dynamical 
models (e.g., template signatures) from an arbitrary library of possible functional forms (i.e., mechanisms). The 
algorithm uses information criteria to determine the relative plausibility of each candidate model and selects 
only those that are highly plausible (i.e., that are both parsimonious and highly representative of the system)33. 
When applied to human walking data this approach will, therefore, enable rapid, systematic identification of 
individual-specific template signatures.

The purpose of this study was to identify changes in template-signature-based representations of CoM dynam-
ics in response to ankle exoskeletons. We used the Hybrid-SINDy algorithm to identify physically interpretable, 
low-dimensional template signatures describing CoM dynamics during walking in unimpaired adults and evalu-
ated how template signature coefficients changed with hinged and stiff ankle exoskeletons. We hypothesized that 
the addition of ankle exoskeleton frame and stiffness would alter template signature coefficients. Additionally, 
to examine the potential of Hybrid-SINDy-based template signatures to reveal changes in CoM dynamics with 
ankle exoskeletons for individuals with neurological injuries, we present a case study evaluating altered template 
signatures in one individual with post-stroke hemiparesis.

Methods
Data collection
We collected 3D marker trajectories using a ten-camera motion capture system (Qualisys AB, Gothenburg, SE) 
and GRFs using an instrumented treadmill (Bertec Inc., Columbus, USA) in twelve unimpaired adults (6 M/6F; 
age = 23.9 ± 1.8 years; height = 1.69 ± 0.10 m; mass = 66.5 ± 11.7 kg) and one stroke survivor with lower-limb hemi-
paresis (sex not disclosed; age = 24 years; height = 1.70 m; mass = 68.0 kg). Participants walked at their self-selected 
steady-state speed on a fixed-speed treadmill in shoes-only and with bilateral passive ankle exoskeletons under 
two conditions: zero resistance to ankle flexion (i.e., zero stiffness;  K0) and high dorsiflexion resistance (i.e., high 
stiffness;  KH = 5.1 Nm/deg; Fig. 1). The order of walking conditions was randomized. A detailed description of 
the acclimatization protocol and data preprocessing can be found in Ref.34. Briefly, in a second session follow-
ing a practice session, data were collected while participants walked at their self-selected speed—determined in 
the practice session—for six minutes per condition, including two minutes to acclimate to the treadmill before 
data were recorded. Only the third and fourth minutes of data were used in this study. To mitigate fatigue, the 
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post-stroke participant walked under the same protocol, but for only three minutes per  condition35. This study 
was approved by the University of Washington Institutional Review Board (#47744). The study was performed 
in accordance with the approved protocol and University of Washington Institutional Review Board guidelines 
and regulations. All participants provided written informed consent prior to participating in the study.

Estimating template signatures with Hybrid‑SINDy
We used the Hybrid-SINDy algorithm to identify template signatures during walking with and without ankle 
exoskeletons, separately for each walking condition.

Kinematic variable extraction
For each exoskeleton condition, we used OpenSim’s Body Kinematics algorithm to estimate the CoM and foot 
 positions36,37. In this section, we describe the SINDy and Hybrid-SINDy algorithms in the context of identify-
ing template signatures, while more detailed explanations can be found in Refs.29,31. The 3D CoM accelerations, 
q̈(t) ∈ R

m×n (Fig. 1B), were described by continuous-time nonlinear dynamics, f
(
q(t), q̇(t)

)
 , where m denotes 

the number of samples and n = 3 denotes the output variables:

Figure 1.  Depictions of walking conditions, phase variables, and example template state variables. (A) Two-
dimensional depictions of template model applied to human walking without and with ankle exoskeletons 
(left). The phase portrait (right) defined a phase variable, ψ , used to cluster kinematically similar measurements 
for model fitting. Colors denote gait phases corresponding to first and second double-limb support, single-
limb support, and swing of the right leg. (B) Stride-averaged global CoM position, velocity, and acceleration 
for an exemplary unimpaired adult in the anterior–posterior, vertical, and mediolateral directions. The three 
exoskeleton conditions are shown in panels (B) and (C): shoes-only (solid lines), zero-stiffness exoskeletons  (K0; 
dashed lines), and stiff exoskeletons  (KH; dotted lines). (C) Template position and velocity states used to fit the 
template signatures were defined by sagittal- and frontal-plane leg angles, and leg length.
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where time is denoted by t ∈ R
m×1 , and q(t) and q̇(t) represent CoM positions and velocities relative to the feet, 

respectively, in Rm×n , in the anterior–posterior, vertical, and mediolateral directions. We assume that only a 
small number of functional forms (i.e., mechanisms) in f (q(t), q̇(t)) describe most of the system’s behavior. We 
omit the time notation in the remaining sections.

Sparse identification of nonlinear dynamics (SINDy)
The SINDy  algorithm29 recovers sparse nonlinear dynamics from a library of candidate functional forms, which 
may consist of arbitrary nonlinear functions of system measurements. Adopting the notation from Ref.31, we 
can rewrite the dynamics in Eq. (1) as:

where � ∈ R
p×n , is a linear map from nonlinear function library encoding mechanisms that may be useful in 

describing CoM dynamics, �(q, q̇) ∈ R
m×p , to CoM accelerations, q̈ . The coefficients in � , therefore, describe 

how each template signature mechanism accelerated the CoM, with non-zero coefficients denoting the active 
terms that define the template signature structure. In the context of the template model investigated here, non-
zero coefficients denote the mechanisms included in the model. We included p = 14 functional forms (mecha-
nisms) in the function library (7 per leg), described below. The SINDy algorithm promotes sparsity in the model 
using sequential least-squares regression with hard thresholding, with the threshold defined by the sparsity 
parameter, � (Eq. (3))31. This thresholding approach penalizes the zero-norm of � and solves:

Hybrid‑SINDy
Hybrid-SINDy extends SINDy in two important ways. First, Hybrid-SINDy uses clustering to generalize SINDy 
to hybrid systems. For human walking, clustering enables unique dynamics to be identified in each gait phase, 
defined by foot contact configuration (i.e., single- and double-limb support)9,14,18. We replace the term hybrid 
regime, used in the original Hybrid-SINDy manuscript, with gait phase for clarity in the context of human 
 walking31. Second, Hybrid-SINDy uses information criteria to automatically select the system dynamics that best 
describe the data. This approach enables competing hypotheses about the mechanisms describing CoM accelera-
tion to be rapidly and systematically compared, thereby highlighting mechanisms that are critical to describing 
CoM dynamics across individuals and mechanisms unique to a subset of individuals. Note that Hybrid-SINDy 
does not compare entirely distinct sets of governing equations (e.g., SLIP-like template vs. a passive dynamic 
walker with  knees12). Rather, the algorithm selects which mechanisms should be included in a SLIP-like template 
model to best describe CoM dynamics.

Applying hybrid‑SINDy to walking
We applied the Hybrid-SINDy algorithm to human gait using the following steps for each participant and walking 
condition (outlined in Fig. 2; example results shown in Fig. 3). Note that within each gait phase, we expanded 
upon the original Hybrid-SINDy algorithm by using multi-model inference to define a single template signature 
when multiple signatures were plausible (Step 5)31.

1. Clustering (Figs. 2, 3B): We used a clustering approach to increase robustness to measurement noise and 
identify frequently occurring template model  structures31,38. For the first 3600 samples (30 s; ~ 25–30 strides) 
in the training set (10,800 samples were available for clustering in each trial), we generated clusters of each 
sample’s 800 nearest neighbors and identified the centroid of each cluster (3600 clusters, total). These clusters 
were used to estimate template model coefficients (Step 2). During clustering, nearest neighbors were selected 
based on their continuous kinematic phase: the phase angle of the right/non-paretic leg angle and angular 
velocity relative to vertical (Fig. 1A; right)34,39. We also used this phase variable to normalize stride progres-
sion. The last 3600 samples of each dataset were withheld from training and used during model evaluation 
and selection (Step 3).

  Some clusters contained data in both single- and double-limb support phases. However, these clusters 
tended to have relatively large error during model evaluation, such that they would not be selected as plausible 
in Step 3,  below31. Further, we selected our cluster size to ensure that clusters were small enough to contain 
data from only one gait phase: the average cluster width (800 samples) spanned only 7.4% of the training 
data, smaller than the duration of double-limb support (10–12%)40.

2. Model estimation (Figs. 2, 3B,C): For each training cluster, we used SINDy to estimate the coefficients of 
multiple template signatures by sweeping 40 sparsity threshold values, ranging logarithmically from 1–100% 
of the largest magnitude coefficient in the full-dimensional model in each cluster. This approach typically 
produced 5–15 unique signatures per cluster.

3. Model evaluation and selection: Using the 3600 samples of held-out data, we evaluated the ability of each 
template signature to reconstruct CoM accelerations in the anterior–posterior, vertical, and mediolateral 
directions. We computed the average absolute reconstruction error of the held-out data over the gait cycle 
(Eq. (4)).

(1)d2

dt2
q(t) = q̈(t) = f

(
q(t), q̇(t)

)
,

(2)q̈ = �
(
q, q̇

)
�,

(3)min
�

||�
(
q, q̇

)
�− q̈||2 + ����0,
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where ψ represents the continuous phase of the gait cycle, from 0 to 100% of a stride.
  We selected template signatures based on two criteria: First, we discarded signatures that were identified 

in less than 1% of training clusters. Frequently occurring template signatures are more likely to be robust to 
measurement noise or stride-to-stride variability, making them better representations of an individual’s gait 
 dynamics31.

  Second, for each gait phase—single- and double-limb support—we selected the frequently occurring 
template signatures that had the highest likelihood according to the Akaike Information Criterion (AIC)33,41. 
The AIC is widely used to compare candidate representations of a system (e.g., template signatures) accord-
ing to their number of free parameters and log-likelihood33. According to the AIC, a candidate representa-
tion that has a lower AIC score than competing representations is considered the most plausible (i.e., best) 
candidate representation of the system. Adopting the formulation in Ref.31, assuming that model errors are 
independently, identically, and normally distributed, the AIC can be written in terms of the number of free 
parameters, k, number of samples, ρ , and the sum of squared residuals:

(4)errorψ =
∣∣�

(
q, q̇

)
�− q̈

∣∣
ψ
,

Figure 2.  Block diagram depicting data processing pipeline to calculate template signatures for each trial. Boxes 
with rounded corners denote data pre-processing steps. Black boxes with square corners denote steps using 
the Hybrid-SINDy algorithm. Gray boxes denote analysis steps. The process starts from template state variable 
calculation, followed by clustering of kinematically similar samples, model estimation, and model selection. 
Multi-model inference defines a single template signature in each gait phase if multiple signatures are plausible. 
Bootstrapping is then used to estimate final model coefficients and quantify uncertainty in each coefficient. 
Because shoes-only template signatures were plausible for exoskeleton conditions, we repeated the model 
coefficient estimation step for the exoskeleton conditions using the shoes-only template signature structure 
(dashed arrow). The resulting template signatures were used in analysis. Full details of each step are described in 
the section: Applying Hybrid-SINDy to walking.
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where in the outer summation is over ρ = 3600 samples and the inner summation, is over the I = 3 output 
states.

  The AIC favors parsimonious, highly representative models, which is ideal for identifying minimalist 
representations of gait dynamics. Like Mangan and  colleagues31, we used the AIC corrected for finite sample 
sizes (AICc):

(5)AIC = 2k + ρln




�ρ
j=1

�I
i=1

�
�f
�
q
�
− q̇

�
i,j
)
2

ρ


,

Figure 3.  Example of the Hybrid-SINDy algorithm, as applied to a ground-truth synthetic SLIP walking model. 
Details of model validation using a synthetic SLIP can be found in Supplemental S2. (A) Example of simulated 
CoM kinematics from the synthetic SLIP and a diagram of the full-dimensional template model used to estimate 
template signatures. Each coefficient in the diagram corresponds to one element of the function library, � , 
which maps between nonlinear template states, �

(
q, q̇

)
 to reconstruct CoM accelerations, q̈. Template state 

variables are described in Table 1. (B) Clustering of kinematically similar samples. The phase portrait (left) of 
simulated data from the synthetic SLIP (gray) is analogous to that shown in Fig. 1A for human walking data. 
Colors denote clusters in different gait phases. Example clusters (colors) are shown for each gait phase. Multiple 
candidate template signatures are estimated for each cluster (right; examples of signatures in two clusters). (C) 
In each gait phase, template signatures were compared using the Akaike Information Criterion (AIC). The plots 
show synthetic SLIP CoM accelerations (gray) and template signature reconstructions (colors) in single-limb 
(top) and second double-limb (bottom) support. Model errors were low only within the gait phase containing 
the model’s cluster centroid (purple). (D) Model coefficients (top) can be compared between walking conditions. 
Bar plots show ground truth synthetic SLIP parameters (gray) and the corresponding estimated template 
signature coefficients (colors). The range of percent errors in coefficients are shown above each plot; analogously, 
differences in human template signatures can be compared between walking conditions. The average (± 1SD) 
ground truth CoM accelerations from the synthetic SLIP (bottom; gray) and model predictions in each gait 
phase (colors). Model accuracies are quantified using the coefficient of determination  (r2).
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  The correction term approaches zero as the number of samples, ρ , increases. We then determined the 
relative plausibility of competing template signatures using their relative AICc score, �AICcj

31,33:

where �AICcj represents the relative AICc score for the jth model. AICcmin represents the AICc of the model 
with the lowest AICc among the models compared within a gait phase. The best model according to the rela-
tive AICc has a score of �AICcj = 0 and all other models had higher scores. Burnham and Anderson noted 
that models with �AICcj ≤ 2 have substantial support, while �AICcj > 7 have low  support33. We adopted 
the threshold  of31, deeming template signatures with �AICcj ≤ 3 to be plausible.

4. Multi-model inference (Fig. 2): Since human gait dynamics are not strictly hybrid and template models are 
approximations of CoM dynamics, multiple template signature structures may be plausible in each gait phase. 
To construct a single template signature for each gait phase, we computed a weighted-average signature using 
Akaike weights, ωj , where j is the jth plausible model in the gait  phase33. Note that we performed multi-model 
inference separately for each gait phase. Akaike weights are defined as:

where exp
(
−

�AICcj
2

)
 defines the likelihood of the jth template signature given the  observations33. The denom-

inator denotes the summation of exponentially scaled relative AIC scores over all R candidate models. This 
approach weighs each signature based on its likelihood relative to the other plausible signatures.

5. Uncertainty estimation and model accuracy (Figs. 2, 3D): To evaluate the robustness of the template signa-
tures to noise and stride-to-stride variations in the data, we performed 200 bootstrapped estimates of each 
template signature coefficient in each gait phase separately for each trial. Each bootstrapping iteration ran-
domly selected 3600 samples to estimate template signature coefficients, with replacement. We quantified the 
robustness of each template signature coefficient to variability in the data using the coefficient of variation 
(CV) of each participant and  condition27. Template signature coefficients for each participant, condition, 
and gait phase, were defined by the mean of the bootstrapped estimates. Figure 3D shows the estimated coef-
ficients of the bootstrapping procedure applied to a synthetic SLIP model (see Supplemental S2). Synthetic 
SLIP model parameters and simulation results (Fig. 3D; gray bars and trajectories, respectively) were used 
as ground truth to validate the algorithm’s ability to identify template models of walking (Supplemental S2).

Template signatures mechanisms and dynamics
To model three-dimensional CoM dynamics during walking, we created a function library of candidate mecha-
nisms based on prior literature (Fig. 3A; Table 1). We included leg springs13,19–21,25 and dampers26, which produce 
force along the leg. Leg springs are common energetically conservative mechanisms used to describe walking 
and running dynamics and enable a double-limb support phase. Leg dampers are less common, but have been 
used to capture non-conservative gait  dynamics26. We also included rotary springs13,19 and dampers in the sagit-
tal and frontal planes, which enable forcing transverse to the leg axis. The addition of rotary springs has been 
shown to improve reconstructions of anterior–posterior GRFs in a bipedal  SLIP19. We did not identify rotary 
damping elements in prior literature but included them as candidate mechanisms describing non-conservative 
forcing transverse to the leg.

(6)AICc = AIC +
2(k + 1)(k + 2)

ρ − k − 2
.

(7)�AICcj = AICcj − AICcmin,

(8)ωj =
exp

(
−

�AICcj
2

)

∑R
r=1exp

(
−�AICcr

2

) ,

Table 1.  Template signature functional forms. cL leg damping, cs sagittal-plane rotary damping, cf  frontal-
plane rotary damping, g gravitational acceleration, kL leg stiffness, ks sagittal-plane rotary stiffness, kf  frontal-
plane rotary stiffness, Lbio biological leg length, M body mass.

Term Symbol Normalized form

Leg stiffness κL
kLLbio
Mg

Leg resting length L̃0 L0/Lbio

Leg damping ζL
cL

2
√
kLM

Sagittal-plane rotary stiffness κs
ks

MgLbio

Sagittal-plane rotary damping ζs
cs√

κsML2bio

Frontal-plane rotary stiffness κf
kf

MgLbio

Frontal-plane rotary damping ζf

cf√
κf ML2bio
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We included only passive mechanical elements in the mechanism library because these elements can be used 
in a hybrid modeling framework to approximate active control of walking, such as for lateral stabilization or to 
inject and dissipate  energy19,42–44. Active mechanisms or state-based controllers could produce more parsimoni-
ous models but would be more challenging to interpret.

The mechanisms selected by the Hybrid-SINDy algorithm define the template signature structure, which 
describes characteristic strategies to accelerate the CoM. The identified template signature coefficients describe 
each mechanism’s contribution to CoM accelerations.

The dynamics of a three-dimensional bipedal SLIP augmented with damping and rotary mechanisms may 
be written as

where M is body mass, g  is the gravity vector, φ describes the traverse-plane leg angle, and θ describes the leg 
angle from vertical in the direction defined by φ (Fig. 1C)19,25. The summation represents the total force generated 
by the legs on the CoM. The left-most brackets contain mechanisms that impart forces radially along the leg: kL 
is the leg stiffness, L is the instantaneous leg length (Fig. 1C), L0 is the leg resting length, cL is the leg damping, L̇ 
is the instantaneous leg velocity. We henceforth denote L0 as leg length for clarity. The middle bracket contains 
mechanisms that impart forces transverse to the leg axis in the sagittal plane: ks and cs are the sagittal-plane rotary 
stiffness and damping, respectively. Ls denotes the sagittal-plane leg projection. Analogously in the right-most 
brackets, kf  and  cf  represent the frontal-plane rotary stiffness and damping, respectively, and Lf  denotes the 
frontal-plane leg projection. The derivation of system dynamics can be found in Supplemental S1.

Normalized template mechanisms
To account for inter-individual differences in walking speed and body size during analysis, we normalized the 
template signatures (Table 1). Leg stiffness was normalized as in Refs.17,19,31. Leg resting length was normalized to 
the measured leg  length19,26. Rotary stiffness was normalized according  to19. All damping terms were converted to 
damping  ratios26. The normalized leg, sagittal-plane, and frontal-plane stiffness mechanisms are denoted by κL, κs , 
and κf  , respectively. The normalized leg, sagittal-plane, and frontal-plane damping mechanisms are denoted by 
ζL, ζs , and ζf  , respectively. Normalized leg length is denoted L̃0 . We can rewrite Eq. (9) as a linear combination 
of our normalized coefficients and nonlinear transformations of our states:

The CoM position and velocity relative to the feet were used to compute candidate template signature states: 
leg lengths and lengthening velocities, sagittal-plane leg angles and angular velocities relative to vertical, and 
frontal-plane leg angles and angular velocities relative to vertical. The complete function library can be found 
in Supplemental S1.

Evaluating Hybrid‑SINDy’s ability to select template signatures
We evaluated the Hybrid-SINDy algorithm’s ability to accurately identify walking dynamics in the presence of 
noise and an incomplete mechanism library (i.e., missing functional forms relative to the true system dynam-
ics) using forward simulations of a bipedal SLIP walking model (example shown in Fig. 3)25. The synthetic SLIP 
model analysis and results are described in Supplemental S2.

Identifying template signatures in human gait
To quantify how well template signatures captured COM dynamics, we computed coefficients of determination 
(r2) between the measured CoM accelerations and those predicted by each participant’s template signatures, 
averaged over the anterior–posterior, vertical, and mediolateral directions.

To evaluate the extent to which each mechanism described CoM accelerations in unimpaired adults, we 
determined the proportion of participants for whom each template signature coefficient was selected and the 
average number of non-zero mechanisms in each gait phase. Template signature terms that are identified across 
individuals may represent mechanisms fundamental to CoM dynamics, while infrequently identified mechanisms 
may describe individual-specific features of CoM dynamics.

To determine if unimpaired CoM dynamics during shoes-only walking generalized to walking with ankle 
exoskeletons, we evaluated the ability of shoe-walking template signature structures to reconstruct CoM accelera-
tions in the  K0 and  KH conditions. We used least-squares regression to estimate template signature coefficients 
for the  K0 and  KH conditions using the shoes-only template signature structure. We compared the AICc scores 
between these signature structures and those of the signature structures specific to the  K0 and  KH trials. To 
determine if shoes-only template signatures were less plausible than signature structures selected for the  K0 and 
 KH conditions, we used one-sample right-tailed t-tests (α = 0.05) to test if differences in the average relative AICc 
scores were greater than three (e.g., AICcShoe − AICcK0 > 3 for the  K0 condition)33.

To determine if the ankle exoskeleton frame or mass impacted CoM dynamics, we compared template sig-
nature coefficients between the  K0 and Shoe conditions. Similarly, to evaluate the impacts of exoskeleton stiff-
ness on CoM dynamics, we compared template signature coefficients in the  KH and  K0 conditions. For both 
comparisons, we used paired independent-samples t-tests with Holm-Sidak step-down corrections for multiple 
comparisons (α = 0.05)45. Because shoes-only template signature structures were plausible for most unimpaired 
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participants, we re-estimated template signatures in the exoskeleton conditions using the shoes-only template 
signature structure before comparing coefficients across walking conditions.

To determine if CoM dynamics may be altered post-stroke, we computed the percent difference in the non-
paretic and paretic leg template signature coefficients during shoes-only walking in one individual with post-
stroke hemiparesis. We also evaluated changes in post-stroke CoM dynamics with ankle exoskeletons by com-
puting percent changes in template signature coefficients for the  K0 condition compared to the shoes-only and 
 KH conditions.

Results
When walking in shoes-only, template signatures reveal common and more individual-specific representations 
of CoM dynamics across unimpaired participants. Unimpaired template signatures were not significantly dif-
ferent between legs (paired 2-sample t-test; p > 0.080). In all gait phases, SLIP mechanisms—leg stiffness and 
leg length—were selected (i.e., had non-zero coefficients) in 100% of legs ( κL and L0 in Fig. 4). Rotary stiffness 
and damping mechanisms were selected in less than 30% of legs in single-limb support and swing. On average 
across participants and legs, 2.3 ± 0.8 and 2.9 ± 1.3 terms had non-zero coefficients in the stance and swing legs, 
respectively. More mechanisms were selected during double-limb support phases: Rotary stiffness terms were 
selected in 79–83% of legs in the leading leg and 67–79% of legs in the trailing leg. Damping mechanisms were 
selected most frequently (33–67%) in the double-limb support phases ( ζ terms in Fig. 4). On average, 5.0 ± 1.8 
and 4.6 ± 1.6 terms had non-zero coefficients in first and second double-limb support, respectively.

For each unimpaired participant, shoes-only template signature coefficients were reliable, having low boot-
strapped coefficients of variation (CVs), during single-limb support and swing: stiffness and leg length CVs were 
less than 0.02 and 0.06, respectively (Fig. 5A). In both double-limb support phases, coefficient estimates were 
less reliable: CVs ranged from 0.06–4.34 across coefficients. During swing, coefficient estimates were generally 
reliable (CV = 0.03–0.10).

Figure 4.  The percentage of unimpaired legs whose template signatures contained each mechanism in each 
gait phase. For 24 legs, the percentage of legs for which each template signature mechanism was selected by the 
Hybrid-SINDy algorithm. Colors denote each gait phase. Mechanisms selected in a larger percentage of legs 
suggest common representations of CoM dynamics, while less frequently selected mechanisms reflect more 
individual-specific template features describing CoM dynamics.
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Across unimpaired participants, single-limb support leg length was the least variable coefficient (0.97 ± 0.03), 
while leg stiffness values were more variable between participants (16.7 ± 5.8; Fig. 5A). Interindividual vari-
ability in double-limb support leg and rotary stiffness was larger than single-limb support coefficients. For 
example, leg stiffness (1.7 ± 6.0 in first double-limb support) was lower and more variable than in single-limb 
support. During swing, leg stiffness was relatively small (− 1.5 ± 0.8) compared to single-limb support. Template 
signatures explained 83 ± 7% (range: 67–94%) of the variance in participants’ CoM (Example reconstruction of 
experimental data in Fig. 5B).

Passive ankle exoskeletons elicited only small changes in unimpaired template signatures: in single-limb sup-
port, the shoes-only template signature structures reconstructed CoM dynamics with similar accuracy to template 
signature structures selected specifically for the  K0 condition (mean difference in AICc = −1.5± 8.4; p = 0.99) 
and the  KH condition (mean difference in AICc = 6.8± 14.6; p = 0.10; Fig. 6A). Negative AICc scores indicate 
that the shoes-only template signature structure was more plausible than the exoskeleton-specific signature struc-
ture, which can occur if the shoes-only template signature structure is not identified in individual clusters for the 
exoskeleton conditions. In double-limb support, shoes-only signatures were not statistically less plausible than 
 K0 or  KH CoM template signatures (p > 0.657). However, the relative AICc scores were highly variable, ranging 
from − 258 ≤ �AICc < 282, such that double-limb support did not reliably indicate the plausibility of shoes-
only template signature structures for the exoskeleton conditions. Because shoes-only template signatures were 
reliably plausible for gait with exoskeletons in single-limb support, we constrained each participant’s template 
signature structures to their shoes-only signature structure. Therefore, we compared template signature coeffi-
cients between exoskeleton conditions using coefficients fit to each participant’s shoes-only signature structures.

Using this approach, we found that the only significant difference in unimpaired template signature 
coefficients was in the leg length coefficient during single-limb support, which differed between walking in 

Figure 5.  Unimpaired template signatures of walking in shoes-only. Normalized template signatures (top) 
and reconstructed CoM accelerations (bottom) for shoes-only walking in each gait phase. (A) Bars denote the 
average template signature (+ 1SD) in single- and double-limb support. For unimpaired adults, the left and 
right leg coefficient estimates were grouped in each gait phase (small circles; up to 24 samples per bar). The 
single-limb support and swing plots contain coefficient estimates from single-limb support or swing of each leg, 
respectively. The first and second double-limb support phases show the coefficients of the leading/trailing leg, 
respectively. Note that we omitted mechanisms that were selected in less than 25% of participants for clarity. 
The dashed lines truncate large terms for clarity. (B) Experimental (gray) and reconstructed (colors) CoM 
accelerations from the test dataset of an example unimpaired participant.
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Figure 6.  Changes in template signatures with ankle exoskeletons. (A) Differences in AICc scores between 
template signatures identified specifically for the  K0 and  KH conditions, and signatures constrained to the shoes-
only signature structures. Positive �AICc values indicate that shoes-only signature structures were less plausible 
than those identified specifically for each condition. �AICc scores are shown for single-limb support and swing 
(left) and double-limb support (right). �AICc ≤ 3(green lines) denote that shoe template signature structures 
were plausible for the exoskeleton conditions. For double-limb support, large �AICc scores are truncated at 
�AICc = ±75 for clarity. (B) Template signatures of walking in shoes only (solid colored bars), zero-stiffness 
( K0 ; dashed bars) exoskeletons, and high-stiffness exoskeletons ( KH ; solid black bars) during single- and double-
limb support. Bars represent the average (+ 1SD) template signature across participants. Leg stiffness ( κL ) is on a 
separate subplot for clarity.
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shoes-only and the zero-stiffness exoskeletons  (K0; p = 7.9e − 4; αSidak = 9.2e − 4). However, this change was 
small ( �L̃0 = −0.01± 0.01) , with leg length being slightly longer in the shoes-only condition. Neither ankle 
exoskeleton mass and frame  (K0) nor stiffness  (KH) altered other template signature coefficients in any gait phase 
(p > 0.16; αSidak = 9.3e − 4) (Fig. 6B).

One stroke survivor’s shoes-only template signature was symmetric in single-limb support, swing, and first 
double-limb support, but was asymmetric in second double-limb support (Fig. 7). In single-limb support and 
swing, leg stiffness and leg length mechanisms were selected and reliably estimated for both legs, with sagittal-
plane rotary stiffness also selected in swing (all CV < 0.02). In single-limb support the paretic leg ( κL = 11.0; 
white bars in Fig. 7) was slightly (6%) stiffer than the non-paretic leg ( κL = 10.4; colored bars in Fig. 7). During 
first double-limb support, template signature coefficients differed between legs, but only the paretic leg coef-
ficients were reliably estimated (CV = 0.00–0.06). Conversely, in second double-limb support, the sagittal- and 
frontal-plane rotary stiffness mechanisms were selected for the paretic, but not the non-paretic leg. Unlike first 
double-limb support, non-paretic leg stiffness and resting length coefficients were more reliable (CV = 0.00–0.26) 
than those in the paretic leg (CV = 0.34–8.01).

The exoskeleton mass and frame (Shoe vs.  K0) primarily impacted the stroke survivor’s non-paretic and paretic 
leg stiffness in single-limb support, and paretic leg rotary stiffness in second double-limb support (Fig. 8). Note 
that these coefficients were reliably estimated by Hybrid-SINDy. In single-limb support, the zero-stiffness  (K0) 
exoskeleton template signatures had 33% greater leg stiffness in the paretic leg and 19% lower leg stiffness in the 
non-paretic leg compared to shoes-only signatures (Fig. 8; dashed bars vs. solid color bars). In second double-
limb support, sagittal and frontal plane rotary stiffness were 37 and 50% greater, respectively, in the paretic limb 
in the  K0 condition compared to shoes-only. Exoskeleton stiffness  (K0 vs.  KH) had smaller impacts on paretic leg 
template signatures: in single-limb support, paretic leg stiffness was 22% less than in the  K0 condition (Fig. 8; 
solid black vs, dashed bars). Conversely, non-paretic leg stiffness was 85% lower in double-limb support. Paretic 
leg sagittal- and frontal-plane rotary stiffness were both 33% lower in second double-limb support than in the 
 K0 condition.

Figure 7.  Inter-leg differences in template signatures in one stroke survivor. Non-paretic (colored bars) and 
paretic (white bars) template signatures for one individual with post-stroke hemiparesis. Each plot represents a 
different gait phase.
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Discussion
We evaluated the impacts of passive ankle exoskeletons on individual-specific template-based representations of 
CoM dynamics—described by template signatures—using a recently developed data-driven modeling framework, 
Hybrid-SINDy. Despite balancing model accuracy with parsimony, template signatures captured CoM dynamics 
with similar accuracy to prior work using pre-defined 2D template  structures20,26. The symmetric and SLIP-like 
unimpaired template signatures automatically selected by Hybrid-SINDy during walking in shoes-only were 
consistent with prior template models of CoM dynamics during walking, but suggest that dynamics described 
by rotary mechanisms represent more individual-specific structures describing CoM  accelerations19,25. Contrary 
to our hypothesis, template-based representations of unimpaired CoM dynamics were robust to the mechanical 
constraints of passive ankle exoskeletons: frame and mass  (K0), and dorsiflexion stiffness  (KH). Conversely, in 
our post-stroke case study, asymmetric shoes-only signatures and changes in template signatures with exoskel-
etons support Hybrid-SINDy’s potential to identify interpretable representations of pathological CoM dynamics, 
motivating future investigation into how neurological injuries impact template-based representations of CoM 
dynamics with ankle  exoskeletons28.

Unimpaired and post-stroke template signatures highlight potential inter-individual differences in CoM 
dynamics. The selection of leg stiffness and resting length as active mechanisms (i.e., terms with non-zero coef-
ficients) in 100% of legs and their selection as the only mechanisms in single-limb support for most participants is 
consistent with common template walking models and supports the perspective that elastic legs are foundational 
mechanisms for describing CoM accelerations during unimpaired  walking12,20,21,25,46. Conversely, our finding 
that rotary mechanisms were selected to describe CoM dynamics in only 33–83% of legs is consistent with their 
less frequent application in template walking  models13,19. One interpretation of individual differences in selected 
mechanisms is that leg stiffness and resting length describe coordination patterns necessary for stable or efficient 
walking, while rotary mechanisms describe coordination patterns that have more individual-specific impacts on 
 gait47. Alternatively, differences in the selected mechanisms may be due to covariation among template signature 
state variables. We observed moderate covariation between some variables, particularly in double-limb support 
(Supplemental S2: Covariation of template signature state variables). However, Hybrid-SINDy penalizes the selec-
tion of strongly covarying states, such that both variables would not likely be selected unless they independently 
increased model  likelihood31,41.

Contrary to our primary hypothesis, unimpaired CoM dynamics are robust to altered ankle constraints due 
to passive ankle exoskeletons, despite observed changes in kinematics and muscle  activity34. Similarly, Collins 
and colleagues (2015) observed small changes in total CoM power with passive ankle exoskeletons compared to 

Figure 8.  Template signatures of one stroke survivor walking with and without ankle exoskeletons. Bars denote 
template signatures in the shoes-only (solid color bars), zero-stiffness ( K0 ; dashed bars), and high-stiffness ( KH ; 
solid black bars) ankle exoskeleton conditions for the non-paretic (left) and paretic (right) legs. Bars represent 
each leg’s average template signatures over 200 bootstrapped model fitting iterations. Colors correspond to each 
gait phase.
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walking in shoes-only5. Our findings suggest that, if changes in CoM dynamics in single-limb support and swing 
are captured by the template-based mechanisms in our function library, these small changes in CoM power are 
driven by changes in CoM kinematics, rather than changes in the underlying CoM dynamics. Note that these 
findings may not generalize to powered ankle exoskeletons, which elicit larger changes in gait kinematics and 
kinetics than did our passive exoskeletons and may yield larger changes in template-based representations of 
CoM  dynamics2,6,34. Note that we limit our interpretation of template signature coefficients in double-limb sup-
port, as they were not reliably estimated. More data may be needed to robustly estimate model coefficients in 
shorter gait phases.

However, changes—or a lack thereof—in template signature coefficients may be biased by an incomplete 
function library. Because template models are incomplete representations of gait, they may be sensitive to both 
measurement noise and unmodeled dynamics. Our analysis of a synthetic SLIP (Supplemental S2: Effects of 
measurement noise on algorithm performance) suggests that Hybrid-SINDy can accurately identify template sig-
nature coefficients at measurement noise levels comparable to marker-based motion capture. However, changes 
in true CoM dynamics with exoskeletons are not completely represented by our mechanism library: template 
signatures accounted for less than 94% of the variance in human CoM accelerations. For example, our mechanism 
library did not include torso dynamics, which are known to contribute to angular momentum regulation dur-
ing post-stroke gait and may be altered with  exoskeletons48,49. Omitting functional forms from the mechanism 
library induces at least 5–10% differences in template signature coefficient estimates (Supplemental S2: Effects of 
missing physics on algorithm performance). While we encoded common functional forms from literature, larger 
function libraries or novel functional forms may increase the robustness of inter- or intra-individual differences 
in template signatures to variations in kinematics between  trials13,19–21,25,26,50. However, even if a complete set of 
mechanisms is included in the library, Hybrid-SINDy may not select small but important mechanisms needed 
to reconstruct CoM dynamics across  tasks31,41. Future studies should consider the tradeoff between the improved 
interpretability of more-parsimonious models with decreased model accuracy across the tasks of interest.

In our case study of one stroke survivor, asymmetric template signatures suggest that inter-leg differences in 
the mechanisms describing CoM dynamics can be automatically identified from data. Consistent with template-
based studies in children with cerebral palsy, the post-stroke participant’s paretic leg was slightly (6%) stiffer 
than the nonparetic leg in single-limb support, and rotary stiffness mechanisms were selected only in the non-
paretic leg in double-limb  support27,28. These mechanisms may reflect a more rigid paretic leg or reliance on 
proximal muscles for  propulsion51,52. However, as discussed above, the small difference in stiffness may be driven 
by unmodeled torso  dynamics48. While only a case study, these results highlight the potential interpretability of 
subject-specific template signatures to understand how the legs contribute differentially to CoM accelerations 
following neurological injury.

Changes in our post-stroke case study’s template signatures with exoskeletons support Hybrid-SINDy’s ability 
to identify interpretable impacts of ankle exoskeletons on template-based representations of CoM dynamics. For 
example, increases in paretic leg stiffness  (K0 vs. shoes-only) may stem from the exoskeleton frame restricting 
inversion of the paretic ankle, which the participant noted during data collection. Conversely, reduced non-
paretic leg stiffness and paretic leg rotary stiffness with stiff exoskeletons  (KH vs.  K0) may reflect a compensatory 
strategy to avoid reliance on the paretic leg, if it did not adapt effectively to the stiff  exoskeleton2. Note that these 
findings represent a proof-of-concept that will not generalize across stroke survivors. Larger studies are needed 
to understand how individual-specific neural or biomechanical constraints may alter exoskeleton impacts on 
CoM  dynamics2,5,7,28,34,53.

The Hybrid-SINDy  algorithm31,32 was essential to discovering individual-specific and leg-specific changes in 
CoM dynamics with ankle exoskeletons in the present study. Manually testing all possible template signatures for 
our fourteen-dimensional mechanism library would require a combinatorially large number of models to be fit 
and compared. Conversely, Hybrid-SINDy automatically selected mechanistic representations of CoM dynam-
ics that are consistent with the literature in a fraction of the time required to manually compare each candidate 
 model13,19–21,25,26. While Hybrid-SINDy has largely been applied to synthetic systems, this work supports its ability 
to capture dynamics from human gait  data31,32,54.

While alternative modeling approaches, such as principle components analysis (PCA) or non-negative matrix 
factorization (NMF), could identify low-dimensional representations of CoM dynamics, Hybrid-SINDy provides 
immediately interpretable insight into the structure of these  dynamics55,56. Hybrid-SINDy facilitates the interpre-
tation of CoM dynamics by selecting a sparse set of readily interpretable template variables derived from expert 
knowledge of human  gait12,13,19–21,25,26. PCA or NMF-based template signatures would be harder to interpret, as 
they would not be sparse in the space of the template variables: each mode of PCA or NMF would likely contain 
non-zero coefficients for all state  variables13,19–21,25,26. More-similar approaches to ours used stepwise regression 
to model ankle quasi-stiffness using mechanics-based functional  forms57 or multi-layer optimization to identify 
human-like template dynamics for robot  controllers58. Hybrid-SINDy is distinct from these approaches in its use 
of clustering and the AIC to evaluate the relative plausibility of competing representations of CoM dynamics, 
a limitation of stepwise  regression41,59,60. For all participants, Hybrid-SINDy identified a single plausible shoes-
only template signature structure in each gait phase, providing confidence that the identified signatures have 
strong statistical support compared to alternative signatures (see Supplemental S1: Comparison to alternative 
modeling frameworks).

Additional limitations should constrain the interpretation of template signatures. First, human gait dynamics 
are continuously phase-varying rather than hybrid, such that template signatures may vary continuously over 
the gait cycle. Our preliminary analyses found that predicted CoM dynamics became less accurate near the 
transitions between single and double-limb support. Further, our prior work shows that phase-varying models 
of gait have higher predictive accuracy, but quantifying changes in the coefficients of continuously phase-varying 
models is  challenging34,50. Because our goal was to quantify changes in dynamics rather than predict CoM motion 
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with maximal accuracy, defining gait phases based on contact configuration was reasonable and consistent with 
existing hybrid template models of  walking19,20,25,31. Second, we assumed that CoM dynamics were time-invariant, 
though they may change with adaptation to  exoskeletons61. We included a two-minute adaptation period for 
each walking condition, but additional adaptation may elicit larger changes in participants’ template signatures. 
Identifying the plausibility of template signatures across or within trials could improve our understanding of 
how template-based representations of CoM dynamics change during  adaptation26. Third, our test set—90-120 s 
of each trial recording—contained 25–30 strides of data per trial and was not a rigorous evaluation of model 
generalizability. Our approach identifies template signatures specific to a task and walking condition, and we 
do not expect these signatures to generalize across tasks or to overground walking. However, because template 
signature coefficients are known to vary with  speed26 and kinematics (Supplemental S2: Effects of missing phys-
ics on algorithm performance), testing on withheld speeds or walking conditions was not practical. Finally, our 
limited sample size may have masked exoskeleton impacts on unimpaired gait.

Conclusions
We quantified changes in individual-specific template model-based representations of CoM dynamics in response 
to passive ankle exoskeletons using an interpretable physics-informed data-driven modeling framework, Hybrid-
SINDy. The template mechanisms describing salient features of unimpaired CoM dynamics were insensitive to 
ankle exoskeleton frame or stiffness. Interpretable ankle exoskeleton impacts on template representations of CoM 
dynamics in a case study of one individual post-stroke support the utility of template signatures in quantifying 
CoM dynamics with exoskeletons in people with neurological injuries. These findings also support the potential 
of data-driven frameworks like Hybrid-SINDy to accelerate the investigation of individual-specific representa-
tions of CoM dynamics during walking.

Data availability
All experimental data and modeling code used in this study are freely available at https:// simtk. org/ proje cts/ 
ankle exopr ed.
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