
1

Vol.:(0123456789)

Scientific Reports |          (2024) 14:680  | https://doi.org/10.1038/s41598-023-50991-8

www.nature.com/scientificreports

Optimizing strategy 
for the discovery 
of compositionally‑biased 
or low‑complexity regions 
in proteins
Paul M. Harrison 

Proteins can contain tracts dominated by a subset of amino acids and that have a functional 
significance. These are often termed ‘low-complexity regions’ (LCRs) or ‘compositionally-biased 
regions’ (CBRs). However, a wide spectrum of compositional bias is possible, and program parameters 
used to annotate these regions are often arbitrarily chosen. Also, investigators are sometimes 
interested in longer regions, or sometimes very short ones. Here, two programs for annotating LCRs/
CBRs, namely SEG and fLPS, are investigated in detail across the whole expanse of their parameter 
spaces. In doing so, boundary behaviours are resolved that are used to derive an optimized systematic 
strategy for annotating LCRs/CBRs. Sets of parameters that progressively annotate or ‘cover’ more 
of protein sequence space and are optimized for a given target length have been derived. This 
progressive annotation can be applied to discern the biological relevance of CBRs, e.g., in parsing 
domains for experimental constructs and in generating hypotheses. It is also useful for picking 
out candidate regions of interest of a given target length and bias signature, and for assessing the 
parameter dependence of annotations. This latter application is demonstrated for a set of human 
intrinsically-disordered proteins associated with cancer.

Despite being composed of an alphabet of twenty diverse amino acids, proteins can often demonstrate a composi-
tional bias (CB) for a small subset of this residue alphabet. For example, the sequence PPQPPSPPPSPPPPPQPPP 
is biased for the single residue P (proline), and the sequence ARG​GRA​RGARSRRG​AAA​GAG​GRA​GSAG is 
biased for A (alanine), R (arginine) and G (glycine). Simpler, more repetitive regions that tend to be shorter are 
often termed ‘low-complexity’ regions (LCRs). However, longer compositionally-biased regions (CBRs) can have 
quite a mild compositional skew, and LCRs can be considered a subset of CBRs. Many CBRs are composed of 
tandem repeats of sequence units several residues long. CBRs can be found in intrinsically disordered proteins, 
fibrous proteins, cell-structural proteins, functional amyloids and prions, or globular domains with specific 
functional roles such as metal binding1. They are also a significant component of the ‘dark proteome’ that has 
been chronically un- or understudied2.

Discovery of LCRs/CBRs in proteins has been actively researched, with several programs being developed. 
These include SIMPLE3,4, SEG5,6, 0j.py7, ScanCom8, CARD9, BIAS10, SARP11, LCD-Composer12,13 and LPS/
fLPS1,14–16. Lee, et al. developed a method for picking out low-complexity regions using image processing of dot 
plots17. Furthermore, servers pooling results of multiple methods have been produced, including LCT, LCReXXX-
plorer and PLaToLoCo18–20. SEG labels LCRs by scanning sequences with a fixed window length and applying 
thresholds for sequence entropy5. This algorithm has long been a component of the BLAST sequence alignment 
suite, wherein it can filter for false positive sequence matches arising because of simple, low-complexity sequence 
composition21. The program fLPS uses binomial probability to pick out low-probability sequence tracts14,15. It 
has been applied to studying the evolution of prions and prion-like regions22–26, and to characterizing the ‘dark 
proteome’2, and by many other investigators to aid in characterization of protein sub-domains15.

SEG and fLPS are particularly useful for large-scale automated analysis of CBRs, since they do not require 
specification of residue type lists. They can characterize regions made from multiple-residue bias; they can also 
delineate milder biased regions. The benefits of SEG include that background amino-acid frequencies do not 
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need to be considered, and its rapid calculations5. fLPS is a faster algorithm that works by detecting specific 
amino-acid biases14,15. Single-residue and multiple-residue CBRs are calculated explicitly, several options for 
background amino-acid frequencies are offered, and its two-window system is designed to capture a diversity 
of region lengths.

What is a low-complexity region and what is not? When is a protein domain compositionally biased? The 
answer to these questions is not simple. Many different thresholds are possible for labelling these regions that 
will ‘cover’ smaller or larger amounts of protein sequences. Also, investigators might be interested in very short 
regions, or sometimes longer ones. Although, algorithms for their discovery have been published with ‘recom-
mended’ parameter sets for CBR annotation, there has been no systematic, thorough examination of what 
parameters are suitable, and how parameter choice relates to region length. Here, I examine the performance 
of SEG and fLPS across the whole expanse of their parameter spaces. In doing so, boundary behaviours are 
discovered that are used to derive an optimized strategy for annotation of LCRs or CBRs of given target lengths.

Methods
Data
Two sequence sets were downloaded from UniProt (uniprot.org)27 in June 2022. These are: (i) Saccharomyces 
cerevisiae strain S288C proteome (number UP000002311, 5879 sequences); (ii) UniRef50 representative protein 
set. The latter was reduced to a 0.1% random sample (52,523 sequences, i.e., every 1000th sequence). A data set 
of water-soluble non-membrane protein domain sequences < 40% identical to each other was generated from 
the ASTRAL sequence data available at SCOPe (scop.berkeley.edu)28. Atom record sequences were used to avoid 
including intrinsically disordered regions that have no electron density in crystallographic data.

A data set of 137 human intrinsically-disordered proteins (IDPs) associated by database curators with cancer 
was downloaded from the Uniprot database (uniprot.org) in October 2023.

Running the SEG and fLPS programs
The two programs SEG and fLPS were investigated across a thorough sample of their parameter spaces. Both 
programs use three main parameters for CBR discovery, but extract fundamentally different information from 
the sequences. Figure 1 details both algorithms. The fLPS program (Fig. 1A) works through a process of binomial 
probability minimization14. A binomial P-value can be calculated for the amino-acid biases of any sequence tract. 
SEG uses sequence entropy to search for CBRs/LCRs (Fig. 1B).

Figure 1.   Schematics of the algorithms. (A) fLPS algorithm. The three main parameters are maximum and 
minimum window lengths M and m, and an output P-value threshold t. Window lengths down from M to m are 
searched for single-residue biases with P-values less than a fixed high threshold (= 0.001 here). These are then 
used to form contigs out of which lowest-probability subsequences (LPSs) are calculated (multiple LPSs from 
the same contig are possible). Then, multiple-residue biased regions are tested for, which includes trimming or 
extending to obtain the multiple-residue LPS. Finally, the output is filtered with t, the threshold P-value. (B) 
SEG algorithm. Regions with low sequence entropy are more ‘ordered’ since they are dominated by a few of the 
possible amino-acid residue types. SEG works by scanning along sequences for windows of length L that have 
sequence entropy ≤ K1, a trigger threshold. Then, these ‘trigger windows’ are extended with further windows 
whose sequence entropy is ≤ K2, the extension threshold, to form a contig. SEG LPSs are then calculated from 
these contigs using recursion.
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The parameter spaces searched are tabulated (Table 1). For fLPS, default background ‘domains’ amino-acid 
frequencies were used. These were updated using the downloaded ASTRAL sequences (however, the frequencies 
have changed minimally indicating likely convergence). For both programs, there are recommended parameter 
sets to discover shorter low-complexity regions (Table 1). Also, there are SEG parameter sets to label longer 
biased regions, such as those made of longer tandem repeats, whose repetitiveness is only captured by longer L 
windows. The default fLPS settings are intended as a ‘catch-all’ set of very loose parameters that informs users of 
all CBRs in their sequences, even very mild short tracts. After a default run, the user is expected to home in on 
biases of interest with smaller t P-value thresholds. For example, t = 1e−10 was used to study prion-like proteins, 
since 1e-10 was the highest P-value observed for known prion-forming protein tracts (Table 1).

Metrics for assessing region discovery
To assess and compare parameter set performance, three metrics were derived: coverage (Cov), median (Med), 
and interquartile range (IQR) (Fig. 2).

Coverage (Cov) is the proportion of a protein sequence set that is annotated. More liberal parameters lead to 
greater coverage, and discern more, more mildly-biased regions. Cov is calculated taking account of any anno-
tated region overlap. So, residues that appear in multiple annotated regions are counted only once. Median region 
length (Med) and interquartile range (IQR) are also calculated from the distribution of region lengths (Fig. 2). 
IQR is an indicator of region length diversity, with smaller IQR values for more limited variance in region lengths.

These metrics behave consistently for the two programs and two data sets, Uniref50 and the yeast proteome, 
with distinct behaviour only for the third data set, the ASTRAL domains, which is to be expected, since it 
comprises structured regions only (Suppl. Table 1). IQR/Med and Cov are correlated in all cases, implying that 
increased coverage comes with an increased range of region sizes. For the UniRef50 data random samples of a 
third of the size of the sample studied yield highly correlated values for Cov, Med and IQR for both programs 
(Pearson R2 > 0.99), indicating sufficient sample size. The metrics are also highly correlated between the ASTRAL 
structural domain set and the UniRef50 sample and yeast proteome (Pearson R2 > 0.94).

Deriving curves indicating optimal strategies for CBR/LCR annotation
The behaviour of parameter sets was probed using plots of IQR/Med versus Med, for intervals of Cov. The fol-
lowing Cov intervals were used since they have approximately equal numbers of points: 0.015–0.025 (~ 2%), 
0.04–0.06 (~ 5%), 0.08–0.12 (~ 12%), 0.2–0.3 (~ 25%), 0.35–0.45 (~ 40%). Upper and lower boundaries for the 
point distributions were derived for each plot, with logarithmic equations almost universally best fitting (Fig. 2). 
Boundary points were defined as extreme relative to all the points above or below them within a margin added 
around the point along the Med axis, with different margins (in the range 3–9) being tried, with 3 discovered 
as optimal. Because of the characteristic banding on these plots, the margin was skewed to lower values for the 
lower boundary and higher values for the higher (e.g., x − 5 to x + 1 for the point x for the lower boundary). From 
the average of these two boundary equations, ‘middle curves’ were calculated (Fig. 2). The points nearest these 
boundary and middle curves (with a tolerance of ± 0.05 IQR/Med) were then analyzed for relationships between 
metrics and parameters. These relationships were also derived using appropriate line fitting, with characteristic 
power-law or straight-line relationships between parameters being discovered (discussed in detail in “Results 
and discussion”). These relationships are robust to missing points that are partitioned to different plots depend-
ent on the Cov intervals examined. These were analysed collectively to derive an optimal annotation protocol 
for LCRs/CBRs of a given target length.

Further fLPS parameters
There are extra fLPS parameters for: (i) expected amino-acid frequencies (−c option), (ii) initial search granu-
larity (−z option)15. The –c option can be: ‘equal’ (= 0.05 for each amino acid), ‘domains’ (frequencies from 
ASTRAL domains28), or ‘user’ (from input sequences). Cov shows a clear trend for ‘−c’, with all other parameters 

Table 1.   Parameter values analyzed for SEG and fLPS. *The minimum window m ≤ maximum window M. 
**The trigger information entropy threshold K1 is ≤ K2 for all runs. The maximum value for K1 and K2 in 
amino-acid sequences is log2(20) = 4.3. The recommended parameter sets are taken from the original reference 
for SEG5. † Refs.2,22,23,25,26.

Recommended parameter sets Parameter space tested

fLPS*

For shorter low-complexity regions:
m = 5, M = 25, t = 1e−05
m = 5, M = 25, t = 1e−06
To find most shorter low-complexity tracts, and longer compositionally biased regions (default), i.e., ‘catch-all’ default param-
eters:
m = 15, M = 500, t = 1e-03
Parameters used for identifying prion-like compositional biases or biased ‘dark matter’: †
m = 15, M = 500, t = 1e−10
m = 15, M = 100, t = 1e−10

5 ≤ m ≤ 100,
5 ≤ M ≤ 1000,
1e-03 ≥ t ≥ 1e-12

SEG**

For shorter low-complexity regions (default):
L = 12, K1 = 2.2, K2 = 2.5
For longer compositionally biased regions, such as those made of longer tandem repeats:
L = 25, K1 = 3.0, K2 = 3.3
L = 45, K1 = 3.4, K2 = 3.75

6 ≤ L ≤ 250,
0.2 ≤ K1 ≤ 4.2,
0.2 ≤ K2 ≤ 4.2
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set equal: > 99% of the time, ‘user’ yields greatest coverage, then ‘domains’, then ‘equal’. Option –z can be: ‘fast’ 
(default initial upper P-value = 1e−03), ‘medium’ (= 0.01), and ‘thorough’ (= 0.01). With higher values, biased 
regions made from longer lists of amino-acid types are detected. Indeed, with other parameters set equal, the 
mean number of residue types defining CBRs increases from 2.7 (fast) to 3.5 (medium) to 4.3 (thorough), with 
Cov trending similarly (83% of the time thorough > medium > fast).

Results and discussion
How do ‘recommended’ parameter sets perform?
What is a low-complexity region (LCR)? What is a compositionally biased region (CBR)? These questions are 
typically answered by applying the recommended or default parameter sets of programs that annotate them. 
For example, often LCRs are defined through default application of SEG simply because researchers have always 
tended to define them that way. However, these default parameters have been quite arbitrarily chosen. Indeed, 
LCRs and CBRs exist on a spectrum of compositional bias, with LCRs generally shorter and more repetitive, but 
some cases may also be long (Fig. 3). The most extreme LCRs are, of course, homopeptides29.

Also, different parameters can yield widely differing results. Some ‘recommended’ or default parameter sets 
tend to annotate longer regions, others shorter ones (higher or lower median (Med) values in Table 2). Coverage 
(Cov) values vary widely, with default SEG annotating ~ 9% of proteins, but with alternative SEG parameters 
for longer regions covering > 3 times as many residues. fLPS parameter sets demonstrate a corresponding range 
of Med and Cov. Default ‘catch-all’ fLPS parameters yield high coverage (> 60%), since they are designed to 
comprehensively capture regions with a compositional perturbation; for these parameters, any remaining un-
annotated sequence regions can be considered ‘high-complexity’. In general, annotations made by fLPS have a 
greater diversity of lengths (wider IQR), than those made by SEG.

The annotations made by Lee et al. are derived from an image-processing algorithm applied to dot plots17. 
These annotations for budding yeast are short with very low length diversity (Med = 13; IQR/Median = 0.385), 
and have very low coverage = 2.3%.

Low-complexity or compositionally-biased sequence in structured protein domains is clearly rarer and less 
diverse lengthwise, regardless of the parameters chosen (Table 1). The ASTRAL set stands out as always having 
lower IQR/Med values, and having much lower Cov values generally. Thus, sequence complexity is higher at every 
resolution in the structured parts of proteins.

The recommended parameters located in parameter space
How do these default or recommended parameter sets compare to the rest of their parameter spaces? How are 
these parameter sets special? To gain answers to these questions, the plots of IQR/Med versus Med containing the 

Figure 2.   Analyzing the algorithm parameter spaces. A set of protein sequences is analyzed for each parameter 
set to extract three metrics: (i) the coverage (Cov), which is the proportion of the protein data set annotated by 
the algorithm; (ii) the median length of annotated regions (Med); (iii) the interquartile range of the distribution 
of regions lengths (IQR). Plots of IQR/Med versus Med are derived for intervals of Cov, and upper and lower 
boundary curves are fitted, then average ‘mid-line’ trends calculated. The parameter sets that yield the lower and 
mid-line bounds are extracted, as described in Methods.
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data points for the recommended sets for short LCRs were examined (Fig. 4). Each point in such plots represents 
a set of parameters. Upper and lower boundaries and mid-lines were calculated as described in Methods. The 
mid-line trend indicates an ’average’ or ‘half-way’ degree of length diversity.

The default SEG parameters are situated very close to the mid-line trend, with a median length of 15 (Fig. 4A). 
Points near the lower bound can be considered the most narrowly focused around a particular median, and those 
near the upper bound the most spread out. A typical lower-boundary point just below the default SEG point is 
highlighted and indicates the typical solution for this extreme of focus, i.e., K1 trigger entropy threshold = K2 
extension threshold. A similar style of lower-bound solution is indicated for fLPS, with m set equal to M (Fig. 4B).

The patterning of points on these plots morphs in a distinct way for either algorithm as Cov increases (Suppl. 
Fig. 1). However, at very high Cov values (> 0.7 for SEG and > 0.5 for fLPS) they converge to a similar scattering 
of points and a common limiting behaviour. For such high Cov, a lot of proteins are being annotated over their 
full lengths, and lower Med values (and concomitantly higher IQR values) simply arise as progressively smaller 
window lengths pull in annotations of shorter proteins.

Figure 3.   Low-complexity regions (LCRs) can be considered a subset of compositionally biased regions (CBRs). 
Examples of LCRs and other CBRs are shown that were discovered by fLPS.

Table 2.   Metrics for recommended parameters sets for fLPS and SEG. *Used for identifying prion-like 
regions or compositionally biased dark matter2. For prion-like composition, biases for Q and/or N residues are 
considered specifically. **Used for identifying prion-like regions22,23, but applied generally to any biases here. 
***Parameters for labelling longer CBRs such as those made from tandem repeats with repeat lengths longer 
than.

Program Type of annotation

Parameters

Metrics

Cov Med IQR/Med

m M t UniRef50 Yeast ASTRAL UniRef50 Yeast ASTRAL UniRef50 Yeast ASTRAL

fLPS

Low complexity 5 25 1e−05 0.10 0.07 0.02 25 22 22 1.04 1.05 0.95

Low complexity 5 25 1e−06 0.08 0.05 0.01 32 27 29 0.94 1.0 0.79

Default ‘catch-all’ 15 500 1e−03 0.68 0.62 0.42 49 43 40 2.43 2.37 1.83

‘Prion-like’ threshold* 15 100 1e−10 0.19 0.09 0.02 175 122 162 1.05 1.24 0.73

‘Prion-like’ threshold** 15 500 1e−10 0.35 0.20 0.04 268 195 254 1.32 1.86 0.77

L K1 K2 UniRef50 Yeast ASTRAL UniRef50 Yeast ASTRAL UniRef50 Yeast ASTRAL

SEG

Default low complexity 12 2.2 2.5 0.09 0.07 0.02 15 15 13 0.47 0.40 0.31

Longer biased regions*** 25 3.0 3.3 0.22 0.17 0.07 39 37 34 0.54 0.49 0.41

Longer biased regions*** 45 3.4 3.75 0.32 0.25 0.11 102 99 88 0.68 0.61 0.49
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Discovery of trends in program parameters
Depending on their specific proteins of interest and their biological contexts, researchers may have an interest 
in regions of a particular target length, e.g., very short regions that may be motifs, or much longer ones, such as 
the prion-like regions22,23,30. The Med value of LCRs/CBRs calculated here can be considered such a target length.

What program parameters are producing the trend lines in Fig. 4, and how is this related to a specific target 
length? To answer this, the points near these lines were extracted and the relationship between Med and program 
parameters discerned (as described in Methods) (Fig. 5).

Figure 4.   Recommended parameters located within parameter space. Plots of IQR/Med versus Med for the Cov 
interval 0.08–0.12 (~ 10% coverage) for: (A) default SEG parameters, and (B) fLPS parameters that have been 
recommended for annotating shorter, low-complexity regions. The Uniref50 protein sequence data were used. 
The recommended parameters are labelled in light blue. Examples of parameter sets that are below these and 
close to the lower boundary are labelled in magenta, while those above and close to the upper boundary are in 
green.
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For both programs there are standard relationships between this Med target length and chosen parameters for 
the mid-line trends. All correlations for these trends are significant (P < 0.0001). For example, there are power-
law relationships between window lengths (M for fLPS and L for SEG) and Med target lengths, with Pearson 
R2 > 0.92 for fLPS and > 0.99 for SEG for all Cov ranges studied (Fig. 5A,B). An example of this is shown for SEG 
and the ~ 10% coverage interval (Fig. 5C). This power-law may thus be an inherent property of such window-
based algorithms. Also, logarithmic relationships are standard for the second parameter that determines bias 
levels (namely the thresholds K2 for SEG with R2 values > 0.95 and t for fLPS with R2 values > 0.92). An example 
is shown in Fig. 5D.

The lower-bound trends yield the narrowest focus around a particular target length. The solution of these 
trends is very simple. For fLPS, m = M and M and log(t) are proportional to Med and to each other (R2 val-
ues > 0.89). For SEG, K1 = K2, and K2 and the window length L are proportional to Med, and to each other (R2 
values > 0.92).

However, parameter sets extracted from near the upper bound of these plots for SEG demonstrate that it is 
not meaningful to consider these solutions. They only exhibit a logarithmic correlation between Med and K2 
(e.g., R2 = 0.8 for the ~ 10% coverage interval) with both L and K1 being un-correlated with Med, and there no 
subsets with regular patterning of K1–K2, as are observed for the other trends (Fig. 5B). This implies that the 
value of the K1 trigger threshold is arbitrary, and the annotations thus have no biological meaning, since they 
are an arbitrary subset of what is possible. This highlights a key feature of the SEG algorithm to be aware of, in 
that the LCRs/CBRs it annotates are all based on a core region that can have lower sequence entropy than the 
rest of the LCR. For the fLPS algorithm, these upper bounds are meaningful, with maximum IQR given by m 
set equal to the lowest value 5 and M and t correlated with target length (Med) (e.g., Med vs. M, R2 = 0.98; Med 
vs. log(t), R2 = 0.97 for the 10% Cov interval). However, in general, for simplicity, we decided not to use upper-
bound trends in these analyses.

Software
Figure 6 shows how program parameters scale as the implied coverage of annotations increases. Parameters for 
shorter and longer LCRs/CBRs clearly behave very differently. Also, we can see examples of parameter settings 

Figure 5.   Discovering trends in program parameters. Points near the trendlines in the IQR/Med versus Med 
plots are extracted and examined. For both programs (A) fLPS and (B) SEG, there are power-law relationships 
between window size and Med, and logarithmic relationships with Med for a second parameter that measures 
the degree of bias. Different sets of solutions for the third parameter (m for fLPS and K1 for SEG), then arise in 
the data. In (C) and (D), there are examples of plots of Med versus L and Med versus K2 for a coverage interval 
of ~ 10% (Cov 0.08–0.12).
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that yield short median lengths and higher coverage, or vice versa. The default SEG parameters re-emerge in the 
table (blue highlights); equivalent fLPS parameters are also highlighted.

A pair of programs fLPSparameters and SEGparameters to choose parameters to perform such analysis 
are available at: https://​github.​com/​pmhar​rison/​param​eters. They allow for either a ‘diverse’ focus (the mid-line 
trend) or a ‘narrow’ focus (the lower boundary trend), i.e., with the least possible diversity of region lengths. The 
discussion below just uses the default ‘diverse’ focus, for greater simplicity.

An optimized strategy: progressive parsing of CBRs/LCRs annotated across multiple target 
lengths
So, what is an optimized strategy for annotating regions of a given target length? The best answer is to examine 
the results from all these progressive program runs (Fig. 6), and assess the biological relevance at each stage. Such 
an approach may be productive for large-scale bioinformatical analyses involving cross-referencing with other 
information about function. It may also be useful in directing the parsing of domains to fashion experimental 
constructs. Thus, what is a meaningfully defined LCR/CBR is determined by such progressive analysis within 
the relevant biological context for a specific protein under experimental study.

An example of applying these scaled parameter sets is shown (Fig. 7). Human prion protein PrP (UniProt 
accession P04156) is dissected with parameters for ‘short’ and ‘long’ target lengths (15 and 150 residues). PrP 
underlies mammalian prion diseases, through amyloid formation, and functions in copper metabolism and 
circadian control31. For fLPS, the ‘long’ parameters annotate the protein’s repetitive copper-binding tract, which 
converges to a maximum length for parameters with estimated coverage >  ~ 10%. The same tract is also found 
by ‘long’ SEG parameters, but it is lengthened to include the A/G-rich tract that is transmembrane in some PrP 
isoforms, and is implicated in conversion to amyloid32,33. This region is annotated separately by fLPS for the ‘short’ 
parameters, along with two other tracts that may be biologically significant. The ‘short’ SEG analysis evidences 
a slow, gradual filling-in of the whole sequence as estimated coverage rises (Fig. 7).

Further examples of this progressive CBR parsing show that some CBRs are detected regardless of target 
length, but some are only detected with short target length (Suppl. Fig. 2). For a human collagen (Suppl. Fig. 2B), 
short proline-rich tracts appear at target length = 15, which then expand into longer regions as estimated coverage 
is increased. In Saccharomyces cerevisiae MRN1 RNA-binding protein (Suppl. Fig. 2C), a putative intrinsically-
disordered region up to residue 195 (predicted by AlphaFold, in UniProt entry Q08925) is parsed into distinct 
sub-regions. Arguably, in general, such results based on parsing CBRs according to compositional biases, rather 
than sequence entropy, are more meaningful biologically, since sequence entropy per se is less likely to be under 
selection than, say, a bias for glutamine or glutamate residues linked to specific functional roles.

Application to searching for CBRs of a given target length
Parameter choice focused on CBR target length can also be used to pick out a data set of CBRs with a similar bias. 
This is illustrated for the M domain of Sup35 protein from S. cerevisiae, a domain which mediates pH sensing 
during reversible condensate formation in response to stress34. A ~ 90-residue {KE}-rich CBR that corresponds to 
the M-domain was discovered using intermediate target lengths and > 5% estimated coverage (Suppl. Fig. 3A,B); 

Figure 6.   Optimal parameters for a given target length. Considering the median Med to be a target length, 
parameters can be selected to aim at this target. These are listed for a ‘short’ target length (15 residues) and a 
longer one (150 residues). They are taken from the ‘mid-line’ analysis, which is termed a ‘diverse’ focus in the 
distributed software fLPSparameters and SEGparameters. The approximate coverage expected for each parameter 
set is listed in the middle.

https://github.com/pmharrison/parameters


9

Vol.:(0123456789)

Scientific Reports |          (2024) 14:680  | https://doi.org/10.1038/s41598-023-50991-8

www.nature.com/scientificreports/

the yeast proteome was then scanned for {KE}/{EK}-rich CBRs of target length = 90 with estimated coverage of 
5% (Suppl. Fig. 3C). Significant Gene Ontology category enrichments were observed for these CBRs that are 
linked to rRNA and ribosomal processing (Suppl. Fig. 3C). Interestingly the Lee et al. annotations do not contain 

Figure 7.   How fLPS and SEG can parse a protein progressively using short and long target lengths. The 
examples of ‘short’ (15-residue) and ‘long’ (150-residue) target lengths from Fig. 6 are employed on the human 
prion protein PrP as an example, using a ‘diverse’ focus. The sequence parts that add in at each level are coloured 
progressively. The definitions of LCRs from Lee et al.17 are underlined.
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this biased M domain, nor most of the repetitive prion-forming domain (Suppl. Fig. 3A), and only cover ~ 36% 
of the extent of the {KE}/{EK}-rich regions analyzed here.

Application to checking parameter dependence of annotations in a large data set
Examining CBR prevalences across a wide range of target lengths can be used to pick out CBR types that are 
prevalent regardless of parameter choice, and to home in on regions that are only detectable with shorter or 
longer target lengths, or with lower or higher estimated coverage. This is illustrated for a data set of 137 cancer-
associated human intrinsically disordered proteins (IDPs). The top five bias signatures for CBRs are listed for 
sets of fLPS parameters for target lengths ranging from 10 to 200, and estimated coverage between 2 and 40%.

We can see that some bias signatures are prevalent regardless of parameter choice, e.g., {P}, whereas others 
are only detected at lower target lengths, e.g., {R} (Suppl. Fig. 4A). {K}-rich regions are only numerous at higher 
coverage values, i.e., many of them are more mildly-biased. The {R}-rich regions detected are linked to Gene 
Ontology categories such as protein kinase activity and adenyl nucleotide binding, with {P}-rich regions being 
associated with enzyme binding and β-catenin binding (Suppl. Fig. 4B). The {R}-rich regions are only detected 
as prominent, if lower target lengths and medium to high coverage levels are applied.

Conclusions
An optimized strategy for discovering LCRs/CBRs of a given target length has been derived. Such an approach is 
suitable for large-scale bioinformatical analyses, for fishing out similar regions of similar length, and in guiding 
experimental hypotheses about functionally significant protein tracts. We saw how the CBR annotation problem 
could generally be simplified by choosing specific boundary or mid-line trends. Also, clear highly correlated 
power-law and logarithmic relationships between target lengths and program parameters were discovered, that 
were indicated to be general features of window-based algorithms such as fLPS and SEG. This sort of analysis 
could be combined with application of other tools that can further dissect the character of the CBRs that are 
discovered, e.g., the LCR server for visualizing repetitiveness20, or LCD-Composer, which can assess the disper-
sion of residue types within a CBR13.

The results here are of utility for the development of further improved algorithms for characterization of 
LCRs and CBRs, and for informing the combination of different algorithms to provide insights into biologically 
relevant features.

Data availability
The data sets analyzed here are available from the public databases UniProt (https://​ftp.​unipr​ot.​org/​pub/​datab​
ases/​unipr​ot/​uniref/​unire​f50/ and https://​www.​unipr​ot.​org/​prote​omes/​UP000​002311) and SCOPe (http://​scop.​
berke​ley.​edu/​astral/). Results of the research are available in code on GitHub at: https://​github.​com/​pmhar​rison/​
param​eters.
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