
1

Vol.:(0123456789)

Scientific Reports |          (2024) 14:446  | https://doi.org/10.1038/s41598-023-50984-7

www.nature.com/scientificreports

Machine learning‑based 
radiomics strategy for prediction 
of acquired EGFR T790M mutation 
following treatment with EGFR‑TKI 
in NSCLC
Jiameng Lu 1,2, Xiaoqing Ji 3, Xinyi Liu 4, Yunxiu Jiang 4, Gang Li 5, Ping Fang 6, Wei Li 5, 
Anli Zuo 4, Zihan Guo 4, Shuran Yang 4, Yanbo Ji 3 & Degan Lu 1*

The epidermal growth factor receptor (EGFR) Thr790 Met (T790M) mutation is responsible for 
approximately half of the acquired resistance to EGFR‑tyrosine kinase inhibitor (TKI) in non‑small‑cell 
lung cancer (NSCLC) patients. Identifying patients at diagnosis who are likely to develop this mutation 
after first‑ or second‑generation EGFR‑TKI treatment is crucial for better treatment outcomes. This 
study aims to develop and validate a radiomics‑based machine learning (ML) approach to predict the 
T790M mutation in NSCLC patients at diagnosis. We collected retrospective data from 210 positive 
EGFR mutation NSCLC patients, extracting 1316 radiomics features from CT images. Using the LASSO 
algorithm, we selected 10 radiomics features and 2 clinical features most relevant to the mutations. 
We built models with 7 ML approaches and assessed their performance through the receiver operating 
characteristic (ROC) curve. The radiomics model and combined model, which integrated radiomics 
features and relevant clinical factors, achieved an area under the curve (AUC) of 0.80 (95% confidence 
interval [CI] 0.79–0.81) and 0.86 (0.87–0.88), respectively, in predicting the T790M mutation. Our study 
presents a convenient and noninvasive radiomics‑based ML model for predicting this mutation at the 
time of diagnosis, aiding in targeted treatment planning for NSCLC patients with EGFR mutations.

Lung cancer is one of the most commonly diagnosed cancers and the leading cause of cancer-related death 
 worldwide1. Non-small cell lung cancer (NSCLC) accounts for approximately 85% of primary lung  cancer2. 
Although considerable progress has been achieved in the treatment of NSCLC over the past two decades, the 
overall cure and survival rates for NSCLC remain low, particularly in patients with advanced/metastatic  disease3.

Epidermal growth factor receptor (EGFR) mutations are identified in approximately 20% of patients with 
NSCLC in the Caucasian population, and up to 40% in the Asian  population4,5. First-generation (gefitinib, erlo-
tinib) and second-generation (afatinib, dacomitinib) EGFR-tyrosine kinase inhibitors (TKIs) serve as standard 
first-line therapy for treatment-naive patients with sensitizing EGFR mutation-positive advanced/metastatic 
NSCLC patients because these TKIs have provided patients with clinical benefit, such as high response rate and 
prolonged progression-free survival (PFS) versus platinum-based doublet  chemotherapy6–10. However, most 
patients develop resistance within 10–14 months after initial  treatment11.
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The most frequently identified mechanism of acquired TKI resistance is an EGFR Thr790Met (T790M) 
point mutation within exon 20, which confers drug resistance by increasing ATP  affinity12. Osimertinib, a third-
generation EGFR-TKI which selectively inhibits both EGFR sensitizing mutations and EGFR T790M resistance 
mutations, had significantly greater efficacy than platinum-based doublet chemotherapy in T790M-positive 
advanced NSCLC patients who had progressed during first-line EGFR-TKI  therapy13. At present, osimertinib is 
a treatment choice for patients with EGFR mutation-positive advanced NSCLC in the first-line setting, and for 
patients with T790M positive NSCLC following disease progression after first-line EGFR-TKIs12,14.

Although 3 generations of EGFR-TKIs are currently available for the treatment of EGFR mutation-positive 
NSCLC, the optimal sequence of administrating these drugs to maximize the duration of the EGFR signal-
ing inhibition remains still  uncertain15,16. For patients who are likely to develop the EGFR T790M mutation, 
a sequencing strategy of the first- or second-generation TKIs followed by osimertinib has shown promising 
 outcomes16,17. For T790M-negative patients, osimertinib may be a first-choice  TKI14,18. Therefore, it is of great 
importance to identify patients at the time of diagnosis who would be likely to acquire T790M after treatment 
with a first- or second-generation EGFR-TKI, as this will enable appropriate screening for improved treatment 
outcomes.

Radiomics is a rapidly evolving field related to the computerized extraction and analysis of data from digital 
medical images, which offers unique potential to significantly improve the efficiency and accuracy of lung cancer 
screening, as well as enhance clinical decision-making19–21. By extracting imaging information from magnetic 
resonance imaging (MRI), computed tomography (CT), and positron-emission-tomography (PET), radiomics 
analysis can be performed to characterize histology and genotype of nodules, identify patient candidate for 
molecular targeted therapy and immunotherapy, predict treatment response and potential side effects of radia-
tion and immunotherapy, and even differentiate lung injury from  recurrence22–26. In a previous study, we built 
a model integrating radiomics and clinical variables for prediction of EGFR mutation and achieved an AUC of 
0.8627. Yang and colleague collected thoracic CT scans from patients who had confirmed progression on first- or 
second-generation TKIs and developed a model based on radiomics features and clinical data to detect acquired 
T790M  mutation28. They reported an AUC of 0.71 for predicting T790M mutation in patients with advanced lung 
adenocarcinoma who experienced progression after first- or second-generation EGFR-TKI therapy. However, it 
is even more important to identify acquired T790M mutation in untreated NSCLC patients in order to optimize 
the sequence of EGFR-TKI administration. Yet, to date, very few studies have investigated whether radiomics may 
be capable of predicting the likelihood of developing T790M in treatment-naïve NSCLC patients after a first- or 
second-generation EGFR-TKI therapy. Therefore, the aim of this study is to establish a radiomics-based model 
for predicting acquired EGFR T790M mutation in patients with advanced or metastatic NSCLC harbouring an 
EGFR-activating mutation.

Material and methods
Patients
The study population was retrospectively selected from patients with NSCLC at the First Affiliated Hospital of 
Shandong First Medical University (Jinan, China) between Jan. 2018 and Dec. 2021. This study received approval 
from the institutional review board of the First Affiliated Hospital of Shandong First Medical University, with a 
waiver for the requirement of informed consent. Patients who were: (1) histologically diagnosed with primary 
NSCLC, (2) with known EGFR sensitive mutation, (3) treatment-naïve subjects at the time of diagnosis of 
NSCLC, (4) classified as unresectable stage III or metastatic (stage IV) according to the Eighth Edition of the 
Lung Cancer Stage  Classification29, (5) receiving chest CT scan prior to biopsies, (6) treated with either gefitinib, 
erlotinib, icotinib, or afatinib as first-line EGFR-TKI therapy, (7) receiving re-biopsy after TKI failure and were 
tested for EGFR T790M mutation, met the inclusion criteria and were included. The exclusion criteria were given 
as follows: (1) lack of clinical and demographic data, such as age, gender, smoking status, stage, and levels of 
serum tumor marker, (2) difficulty in drawing regions of interest (ROIs), (3) poor quality of CT images. In the 
end, 274 patients were included and randomly assigned to a training cohort (n = 192) and a validation cohort 
(n = 82). The detailed process of screening and grouping of NSCLC cases is shown in Supplementary Fig. 1.

Analysis of EGFR Mutation
The tumor specimen was examined at diagnosis for EGFR mutations in exons 18, 19, 20, and 21 by an ampli-
fication refractory mutation system (ARMS) real-time technology using Human EGFR Gene Mutations Fluo-
rescence Polymerase Chain Reaction (PCR) Diagnostic Kit (Amoy Diagnostics Co., Ltd, Xiamen, China) or 
next-generation sequencing (NGS) (Xiansheng Medical Diagnosis Co., Ltd, Nanjing, China). The presence of 
T790M mutation was detected on relapsed tumor tissue or circulating free DNA (cfDNA) from plasma sample 
also by ARMS-PCR or NGS, as described  elsewhere30,31.

Image acquisition
All CT scans were performed prior to any treatment for lung cancer using two CT scanners (GE Healthcare, Mil-
waukee, WI, USA; United Imaging, Shanghai, China). The scanning parameters were as follows: the tube voltage, 
120 kVp; tube current, 160–300 mA; detector collimation, 64 or 128 × 0.625 mm; field of view, 350 × 350 mm; 
the pitch, 0.992:1; and matrix of 512 × 512. All images were reconstructed with a section thickness of 2 mm and 
subsequently stored in DICOM format in the Picture Archiving and Communication Systems (PACS) using 
mediastinal (width, 360 HU; level, 50 HU) and lung (width, 1500 HU; level, -650 HU) window settings.
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Image preprocessing
Due to the use of different CT scans in the present study, image preprocessing prior to segmentation and feature 
extraction was performed to make the radiomic features more robust and more suitable for further  analysis32. A 
resampling method was used in this process according to the modified protocol reported  previously33. In brief, 
the CT image pixel values were first converted from radiodensity to Hounsfield Units (HU) using the metadata 
attributes of the scans. Then, the entire dataset, including tumor masks, was resampled to standardize image 
representations. The spacing between slices and pixel spacing were set to 1 mm and [1.0, 1.0] mm, respectively. 
Each slice dimension was adjusted accordingly to match the new spacing, and the resampled image was obtained 
through interpolation.

Tumor segmentation
Tumor regions of interest (ROI) were manually segmented slice by slice by a senior radiologist with over 10-year 
experience of CT interpretation using ITK-SNAP (Version 3.6, www. itksn ap. org)34,35. The ROI segmentation was 
subsequently verified by another chest radiologist with 15-year experience. Both radiologists had no knowledge 
of the clinical data and mutational status. When one patient has multiple lesions, the radiologist only delineates 
the tumor area where the biopsy was performed. To assess the consistency of segmentation between the two 
radiologists, the intra-group correlation coefficient (ICC) for each feature was  calculated36,37. Only features with 
an ICC greater than 0.85 were deemed to have high stability and were remained for the further analysis.

Radiomic feature extraction
In this study, radiomics features were extracted from each three-dimensional (3D) ROI using Pyradiomics library 
(http:// pyrad iomics. readt hedocs. io/ en/ latest/ index. html), which was in conformance with the Image Biomarker 
Standardization Initiative 38. These features can be classified as 3 categories: first-order statistics, shape-based, 
and textural  feature39. The textural feature category consists of gray level co-occurrence matrix (GLCM), gray 
level run length matrix (GLRLM), gray level size zone matrix (GLSZM), gray level dependence matrix (GLDM), 
and neighboring gray tone difference matrix (NGTDM). Moreover, two filters (including wavelet and Laplacian 
of Gaussian were also utilized to obtain transformed images from the original CT images. By decomposing the 
image with wavelet transform, high (H) or low (L) pass filter in 3D were used and 8 kinds of combinations were 
obtained: LHL, HHL, HLL, HHH, HLH, LHH, LLH, and LLL. To emphasize areas of gray level change, the LoG 
filter was applied to the input image and yield a derived image for each sigma value  specified40. Five filters with 
different sigma values (sigma = 1.0 mm, 2.0 mm, 3.0 mm, 4.0 mm, 5.0 mm) were applied in the present study.

Radiomic feature selection
Although numerous radiomic features were extracted and quantified, not all of them showed an association with 
the status of T790M mutation. Therefore, feature selection is of great importance to improving the generalization 
ability and optimizing the model. In this study, the z-score method was initially used to standardize all radiomics 
features in order to reduce the redundancy between these features. Subsequently, the Wilcoxon rank sum test was 
used to retain features with a P-value < 0.0541. Then, the least absolute shrinkage and selection operator (LASSO) 
algorithm, which was suitable for high-dimensional, small-sample size data with the problem of  collinearity42,43, 
was employed to select potential features related to T790M mutational status. LASSO can identify the most pre-
dictive features while minimizing overfitting and selection bias. Finally, backward stepwise logistic regression 
analysis was conducted to select the variables for model building. The termination rule for this process was based 
on the likelihood ratio test with Akaike’s information criterion (AIC) minimum  method44.

Models establishment and performance evaluation
After feature selection, 7 machine learning (ML) methods were imported from the scikit-learn library in Python 
software to construct  models45. These algorithms included decision tree (DT), k nearest neighbors (KNN), logistic 
regression (LR), naïve Bayes (NB), random forest (RF), support vector machines (SVM), and extreme gradi-
ent boosting (XGBoost, XGB). The performances of these models were first assessed by analysis of area under 
the curve (AUC) of receiver operating characteristic (ROC) curve, sensitivity, and specificity in the validation 
cohort. Fivefold cross-validation was simultaneously applied to evaluate all results. Then, the optimal model 
was selected for further analysis.

Several clinical features are associated with mutant EGFR status in NSCLC  patients46,47. Therefore, some 
clinical factors were included in the analysis. They consisted of age, gender, smoking status, performance status 
(at biopsy), stage of disease, serum level of tumor markers, and the initial response to first- or second-generation 
EGFR-TKI. The Chi-square and Student’s t-tests were first used to screen clinical factors related to EGFR T790M 
mutation and those with a P-value lower than 0.05 were retained for further analysis.

To enhance the prediction accuracy even further, the optimal classifier and significant clinical features cor-
related to EGFR T790M mutation were integrated to establish the combined models. The predictive performances 
of these models were also evaluated based on the AUC of ROC curve analysis.

Nomogram construction
Nomograms utilize multiple prognostic and determinant variables to establish a statistical prognostic model 
which can generate an individual probability of a clinical event, thus aiding clinical decision  making48. In the 
present study, a nomogram model was developed based on a multivariable logistic analysis. For each patient, a 
radiomics score (Rad-score) was calculated by assigning weights to discriminating radiomic features based on 
their respective coefficients. The radiomics signature and clinical factors were incorporated into a nomogram 
model designed to predict EGFR T790M mutation in the training cohort. The predictive accuracy of the model 

http://www.itksnap.org
http://pyradiomics.readthedocs.io/en/latest/index.html
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was evaluated by a calibration curve. Decision curve analysis (DCA) was conducted to examine the performance 
of a model to predict EGFR T790M mutation by quantifying the net benefits of 2 models in both the training 
and validation  cohorts33. The workflow of the radiomic analysis is depicted in Fig. 1.

Statistical analysis
Statistical analysis was conducted using PRISM version 6 (GraphPad, La Jolla, CA, USA). Quantitative data were 
compared using Student’s t-test, and categorical data were compared using the χ2 test to identify any baseline 
differences. The discrimination performance of models was assessed by the ROC curve and the AUC, sensitiv-
ity, and specificity of the model were calculated. All statistical tests were two-tailed, and statistical significance 
was set a priori at 0.05.

Ethics statement
The study was reviewed and approved by the Institutional Review Committee of the First Affiliated Hospital 
of Shandong First Medical University (Jinan, China) (approval no. 2019-S-306). Written informed consent for 
participation is not required for this study in accordance with national legislative and institutional requirements.

Results
Clinical characteristics of patients
The baseline clinical characteristics of the enrolled patients were shown in Table 1. No evident differences were 
found with respect to the age, smoking status , performance status (at biopsy), stage of disease, pathological 
type, EGFR mutation status, and serum level of CEA, NSE, CYFRA 21-1, and Pro-GRP between patients with 
the EGFR T790M mutation and those without (P > 0.05). However, a substantial difference was observed in the 
initial response to first- or second-generation EGFR-TKI between T790M-positive and T790M-negative patients. 
In both the training cohort and the validation cohort, the objective remission rate (ORR) in the T790M-positive 

Figure 1.  Workflow of the radiomic analysis.
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group was significantly higher than that in the T790M-negative group (P < 0.05). In addition, a higher proportion 
of male individuals were observed in T790M-positive patients compared to T790M-negative patients in both 
the training cohort and the validation cohort (P < 0.05).

Feature extraction and selection
In total, 1316 radiomic features were successfully extracted from each patient’s ROI. Clinical features included 
gender and initial response to first- or second-generation EGFR-TKI. The ICC  (= mean ± SD) for radiom-
ics features in each group were calculated. Shape-based features (ICC = 0.92 ± 0.07), first-order statistics 
(ICC = 0.93 ± 0.03), GLRLM-derived texture features (ICC = 0.96 ± 0.04), GLCM-derived texture features 
(ICC = 0.97 ± 0.02), met the criteria for high stability (ICC > 0.85), while GLSZM-derived texture features 
(ICC = 0.56 ± 0.44), GLDM-derived texture features (ICC = 0.36 ± 0.44), NGTDM-derived texture features 
(ICC = 0.59 ± 0.32), LoG features (ICC = 0.77 ± 0.35), and wavelet (ICC = 0.78 ± 0.36) features did not. Out of the 
initial 1316 features, 955 (72.60%) were identified as stable and retained. These features comprised 13 shape-based 
features, 18 first-order features, 16 GLRLM features, 24 GLCM features, 6 GLSZM features, 5 GLDM features, 
3 NGTDM features, 544 wavelet transformed features, and 326 LoG transformed features. The histogram of the 
ICC values of the radiomic features was shown in Supplementary Fig. 2.

Subsequently, the dimensionality reduction was performed and the coefficient for each selected feature was 
illustrated in Fig. 2. As shown in Fig. 2B,C, when the variable is equal to 10, the error classification value is lower. 
Thus, the 10 features were selected to build the LASSO logistic regression model. The coefficients for each selected 
radiomics feature are shown in Fig. 2D. Figure 3 shows the 10 radiomics features were significantly different 
between the T790M-positive and T790M-negative patients in the training set.

Table 1.  Clinicopathological characteristics of patients enrolled in this study. EGFR epidermal growth factor 
receptor, CEA carcinoembryonic antigen, NSE neuron-specific enolase, CYFRA 21–1 fragment of cytokeratin 
subunit 19, SCC squamous cell carcinoma antigen, Pro-GRP pro-gastrin-releasing peptide, CR complete 
response, PR partial response, SD stable disease, PD progressive disease.

Variable

Training cohort p Validation cohort p p

T790M-positive (N = 90) T790M-negative (N = 102) T790M-positive (N = 38) T790M-negative (N = 44)

Age (y, mean ± SD) 65.30 ± 9.90 64.16 ± 10.72 0.45 65.26 ± 10.81 66.11 ± 10.98 0.73 0.46

Sex, n (%) 0.04 0.03 0.01

 Male 52 (57.78) 43 (42.16) 26 (68.42) 19 (43.18)

 Female 38  (42.22) 59 (57.84) 12 (31.58) 25 (56.82)

Smoking Status, n (%) 0.66 0.82 0.06

 Smoker 47 (52.22) 49 (48.04) 20 (52.63) 21 (47.73)

 Never smoker 43 (47.78) 53 (51.96) 18 (47.37) 23 (52.27)

Performance status  (at biopsy) 0.55 0.65 0.05

 0–1 57 (63.33) 69 (67.65) 24 (63.16) 30 (68.18)

  ≥ 2 33 (36.67) 33 (32.35) 14 (36.84) 14 (31.82)

Pathological type 0.69 0.64 0.94

 Adenocarcinoma 85 (94.45) 96 (94.12) 36 (94.74) 41 (93.18)

 Adenosquamous carcinoma 3  (3.33) 5  (4.90) 2  (5.26) 2  (4.55)

 Squamous carcinoma 2 (2.22) 1 (0.98) 0 (0.00) 1 (2.27)

Stage, n  (%) 0.72 0.79 0.87

 III 20 (22.22) 20 (19.61) 8 (21.05) 8 (18.18)

 IV 70 (77.78) 82 (80.39) 30 (76.95) 36 (81.82)

EGFR mutation 0.30 0.50 0.89

 Exon 19 deletion 53 (58.89) 68 (66.67) 22 (57.89) 29 (65.91)

 Exon 21 L858R 37 (41.11) 34 (33.33) 16 (42.11) 15 (34.09)

Serum level of tumor marker  
(mean ± SD)

 CEA 68.33 ± 85.64 59.56 ± 84.91 0.48 43.91 ± 42.51 48.66 ± 63.23 0.69 0.09

 NSE 18.08 ± 19.38 15.11 ± 6.20 0.14 20.33 ± 23.13 21.62 ± 43.28 0.87 0.13

 CYFRA 21–1 5.35 ± 6.69 3.25 ± 3.43 0.01 4.19 ± 3.90 5.20 ± 5.78 0.36 0.47

 SCC 0.93 ± 0.88 0.96 ± 1.02 0.82 0.73 ± 0.42 0.72 ± 0.47 0.93 0.04

 Pro-GRP 47.68 ± 51.69 42.69 ± 44.04 0.47 51.15 ± 68.95 38.81 ± 13.09 0.23 0.90

Initial EGFR-TKI response 0.02 0.01 0.04

 CR or PR 65 (72.22) 57 (55.88) 33 (86.84) 26 (59.09)

 SD or PD 25 (27.78) 45 (44.12) 5 (13.16) 18 (40.91)
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Predictive performance assessment of models
The predictive performance of all 7 models based on radiomics was presented in Supplementary Fig. 3. Among 
these models, the ML method of RF exhibited superior performance compared to the others in the validation 
cohorts. The parameters of the RF model were set as follows: the number of trees was 2, and the maximum depth 
was 4 (Supplementary Fig. 4). In terms of predicting EGFR T790M mutation, the RF and combined models 
obtained an AUC, sensitivity, specificity, and accuracy of 0.80 (95% confidence interval [CI] 0.79–0.81), 0.86 
(0.84–0.89); 0.85 (0.81–0.89), 0.78 (0.72–0.84); 0.70 (0.65–0.74), 0.76 (0.67–0.85); and 0.75 (0.71–0.78), 0.77 
(0.73–0.82); respectively using fivefold cross-validation (Fig. 4A,B). Moreover, the combined model, which 
integrated the radiomics signature derived from RF model and the clinical factors, demonstrated even higher 
AUC values in the training and validation cohorts: 0.92 and 0.87, respectively Fig. 4C,D.

Analysis of the radiomic nomogram
The radiomic nomogram model developed by integrating the radiomics signatures derived from the RF classifier 
and clinical predictors achieved higher AUC values in the validation cohort [0.86 (95% CI 0.85–0.88)] (Fig. 5). 
These findings indicated that the combined model exhibited enhanced predictive capabilities for predicting 
EGFR T790M mutation. To assess the predictive ability of the model, a calibration curve was plotted. The DCA 
for the radiomics nomogram and is presented in Fig. 6. Remarkably, the combined model outperformed the 
other models, as evidenced by its larger area under the decision curve, signifying its superior clinical utility.

Figure 2.  Radiomics feature selection process. (A) The features were screened using the Wilcoxon rank-sum 
test, and the test level was 0.05. (B, C) The LASSO was used to further filter the most relevant features. (D) 
Coefficients for each selected radiomics feature. MSE: mean square error, LASSO: least absolute shrinkage and 
selection operator.
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Discussion
In our current study, we built a ML-derived radiomics model utilizing non-invasive CT images to predict EGFR 
T790M mutation in treatment-naïve patients with NSCLC. This model achieved promising performance in the 
validation cohort (AUC 0.80, 95% CI 0.79–0.81). In particular, the sensitivity and specificity to identify T790M 
mutation was 0.85 (0.81–0.89), and 0.70 (0.65–0.74), respectively, indicating a low false-positive and false-
negative rate, which would be of help in accurately screening patients with EGFR T790M mutation. Moreover, 
we proposed a predictive model integrating CT images and clinical features, which achieved an AUC of 0.86 
(95% CI 0.81–0.89), a sensitivity of 0.78 (0.72–0.84), and a specificity of 0.76 (0.67–0.85). This model further 
demonstrated the ability to identify acquired EGFR T790M mutation in patients who received first- or second-
generation EGFR-TKIs. Our study unveils the potential of a noninvasive approach in identifying patients who 
are likely to develop the T790M mutation following treatment with first- and second-generation EGFR-TKIs. 
Importantly, this is the first study, to the best of our knowledge, investigating the ability of radiomics-based 
models to predict acquired EGFR T790M mutation in Chinese patients with advanced NSCLC bearing an EGFR-
activating mutation by utilizing CT imaging from treatment-naïve patients with NSCLC. Our findings support 
the feasibility of using this model to identify EGFR T790M mutation, offering valuable guidance in selecting 
appropriate patients for improved treatment outcomes. This study represents a significant contribution to the 
field of radiomics research, providing novel insights and potential advancements.

Radiomics is a newly emerging and rapidly progressing field that integrates radiology, oncology, and ML 
 techniques49. By utilizing radiomics data, descriptive and predictive models can be developed, providing invalu-
able diagnostic, prognostic, or predictive  information50. Moreover, certain radiomics features are even able to 
detect genomic alterations within tumor DNA, leading to the emergence of ‘radiogenomics’20. Although some 
limitations of the radiogenomic approach may exist, radiogenomics is playing an increasingly important role in 
precision diagnostics and optimal therapy in lung cancer. For example, radiogenomics can be of help to treatment 
option and prognosis assessment in NSCLC  patients51,52. In addition, radiogenomics can aid in evaluating efficacy 

Figure 4.  ROC curves of models. (A) The fivefold cross-validated ROC curve of model RF. (B) The fivefold 
cross-validated ROC curve of combined model. (C) ROC curve of RF and combined model on the training 
dataset. (D) ROC curve of RF and combined model on the validation dataset.
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of therapy and predicting outcomes of  patients51,52. Therefore, radiogenomics holds great promise for improv-
ing decision making, facilitating more precise personalized care, and ultimately improving patient outcomes.

The findings of this study concur with a previous study that highlighted the correlation between radiom-
ics features from baseline chest CT and the subsequent development of the T790M in Caucasian patients with 
NSCLC after treatment with an EGFR  inhibitor24. Kim et al. also reported that smaller tumor size and selec-
tion of metastatic lung lesions as biopsy targets were associated with the detection of the T790M mutation at 
re-biopsy for mutational  analysis53. Furthermore, significant differences in CT imaging were observed between 
acquired and primary T790M  mutations54. Our results, combined with previous research, clearly demonstrate 
the feasibility of identifying individuals who are likely to acquire the T790M mutation after receiving first- or 
second-generation EGFR-TKIs using baseline CT scans. Intriguingly, Koo et al.55 retrospectively analyzed CT 
findings of NSCLC patients at the initial diagnosis and those at re-biopsy and found that peripheral tumor loca-
tion with vascular convergence, the presence of a pleural tag, and air bronchogram at the time of re-biopsy were 
associated with acquired T790M mutation. Yoshida and  colleagues56 utilized PET scans and found that patients 
with T790M mutation exhibited lower levels of 18F-2-fluoro-2-deoxyglucose uptake in comparison with those 
without T790M mutation. These findings further validate the link between radiomics features and development 
of T790M during treatment with EGFR-TKI. Furthermore, models that integrate both radiomic features and 
clinical factors demonstrated excellent performance in evaluating the prognosis of metastatic NSCLC patients 
with EGFR-T790M mutation receiving osimertinib  treatment57.

When some clinical characteristics added to the radiomics based model, the ability of the combined model 
to predict the T790M mutation has also been assessed in the present study. The combined model, composed of 
clinicopathologic and CT-radiomic signatures, achieved good detection performance with an AUC 0.87 in the 
validation datasets. These findings suggests that certain clinical features may contribute to the discrimination of 
the T790M mutation within the combined model. We identified gender and initial response to first- or second-
generation EGFR-TKI as the most influential clinical predictor. These results are consistent with previous studies 
that reported that gender (male), initial EGFR-TKI response (complete or partial response), progression pattern 
(solitary lesion progression), longer duration of EGFR-TKI, postsurgery recurrence, may represent useful pre-
dictive markers for T790M  detection58,59. Additionally, Dal Maso et al. demonstrated a correlation between age, 
type of EGFR mutation at diagnosis, response to first-line treatment, andT790M  status60. A study by Hou et al. 
compared the clinical and CT imaging characteristics between primary and acquired EGFR T790M mutations 
in treatment-naïve patients with NSCLC. They found that patients with primary T790M mutation exhibited 
earlier tumor stage, higher differentiation, and proportion of lepidic subtype adenocarcinoma in comparison to 
those with acquired T790M  mutations54.

Figure 5.  Radiomic nomogram. In the training cohort, the nomogram incorporated the radiomic signature, 
sex, and the initial response to first- or second-generation EGFR-TKI.
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Liquid biopsy, which involves analyzing circulating tumor-derived elements in various body fluids, presents 
a valid alternative to tissue re-biopsy. The liquid biomarkers consisted of circulating free DNA (cfDNA), circu-
lating tumor cells (CTCS), exosomes, and tumor-educated  platelets61. These components can be easily isolated 
from almost a wide range of body fluids, including blood, urine, pleural effusion, and  ascites62. Liquid biopsy 
offers convenient, non-invasive, and the ability to be performed at multiple time-points. Furthermore, it enables 
the identification of dynamic changes in gene expression within the tumor and the capturing intrinsic tumor 
 heterogeneity63. As a result, liquid biopsy plays an increasingly important role in establishing a diagnosis, detect-
ing molecular characterization, and monitoring mechanisms of resistance in patients with lung  cancer64–66. The 
specificity of liquid biopsy for detecting T790M mutation during treatment with first- and second-generation 
TKIs has also been  confirmed65. However, there are cases where the results from tissue and cfDNA genotyp-
ing do not match, probably due to technological differences or sampling different tumor cell  populations67–69. 
Therefore, patients with T790M-negative plasma results still need a tumor biopsy to identify T790M mutation. 
Consequently, tissue biopsy and blood-based analyses may have complementary roles in evaluating the genetic 
alterations for these  patients60,68. In this context, radiomics may offer additional information to assist in the 
implementation of optimal treatment strategies. Cucchiara et al. developed a mode that integrates liquid biopsy 
and radiomics, demonstrating good performance in identifying the presence of  T790M70.

ML is a subset of artificial intelligence (AI) that involves the development of algorithmic models to identify 
patterns and relationships in  data71. The main aim of ML techniques is to create models that can be applied to 
perform tasks, such as classification, prediction, or estimation. Our retrospective study revealed the feasibility 
of using 7 ML approaches to predict EGFR T790M mutations after treatment with a first- or second-generation 
EGFR-TKI. Among these classifiers, RF classification method exhibited the highest performance, with an AUC 
of 0.87. This finding accords with a study by Saini R et al.72, which reported that RF-based radiomics classifier 
achieved the best performance (AUC = 0.776) in predicting the Ki-67 expression level in NSCLC. Parmar et al.73 
also found that RF classification method showed highest prognostic performance in predicting 2-year patient 

Figure 6.  Calibration curve and decision curve analysis (DCA). (A) Calibration curve of the nomogram in 
the training cohort. (B). Calibration curve of the nomogram in the validation cohort. (C) DCA in the training 
cohort. (D) DCA in the validation cohort.
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survival in patients with NSCLC. In addition, RF-based models had best performance in identifying new potent 
EGFR inhibitors against the resistant T790M  mutant74. RF is considered a favorable ML method due to its simple 
structure, ability to deal with both regression and classification issues, and higher efficiency than compared to 
 methods75. In our study, the RF-based model which integrated the radiomics signatures and the clinical factors 
achieved an AUC of 0.87. In terms of interpretability, the predictions made by the RF model can be meaningfully 
explained from a biological standpoint as  well76. Additionally, the robustness of the features used in the current 
study was ensured through the utilization of five-fold cross-validation.

Several limitations of this study should be noted. Firstly, the retrospective nature of the analysis may inevitably 
result in patient selection bias. Another limitation is the relatively small sample size of patients harboring T790M 
mutation, which may limit the power of these analyses. However, although larger data sets are more likely to 
have higher statistical power, radiomics analyses can still be performed with as few as 100  patients77. Further 
studies with large sample size should be conducted to assess the clinical applications of our models. Thirdly, 
because all of subjects who were involved in this study were Chinese, generalization of these results should not 
be made beyond this population. Further studies are required to verify these findings within other racial and 
ethnic population. Finally, manual segmentation of ROI is both tedious and time consuming, and there may be 
significant variability among different observers. However, manual segmentation can still be a simple and reliable 
method, and its reproducibility can be evaluated by interobserver reproducibility  analysis78.

In conclusion, this study demonstrates the feasibility of non-invasively predicting EGFR T790M mutation at 
diagnosis in NSCLC patients following treatment with a first- or second-generation EGFR-TKI using a ML model 
integrating radiomic features and clinical characteristics. Our results are promising and warrant validation in 
a larger sample size. These findings indicate that utilizing this method to detect EGFR-T790M mutation could 
potentially facilitate the selection of accurate and personalized treatment strategies for patients with NSCLC.

Data availability
The original data supporting the conclusions of this paper will be provided unreservedly by the authors to any 
qualified researcher. The datasets used and/or analyzed during the current study are available from the cor-
responding author.
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