
1

Vol.:(0123456789)

Scientific Reports |           (2024) 14:23  | https://doi.org/10.1038/s41598-023-50922-7

www.nature.com/scientificreports

The local variation of the Gaussian 
modulus enables different 
pathways for fluid lipid vesicle 
fusion
Matteo Bottacchiari , Mirko Gallo , Marco Bussoletti  & Carlo Massimo Casciola *

Viral infections, fertilization, neurotransmission, and many other fundamental biological processes 
rely on membrane fusion. Straightforward calculations based on the celebrated Canham–Helfrich 
elastic model predict a large topological energy barrier that prevents the fusion process from being 
thermally activated. While such high energy is in accordance with the physical barrier function of lipid 
membranes, it is difficult to reconcile with the biological mechanisms involved in fusion processes. In 
this work, we use a Ginzburg–Landau type of free energy that recovers the Canham–Helfrich model 
in the limit of small width-to-vesicle-extension ratio, with the additional ability to handle topological 
transitions. We show that a local modification of the Gaussian modulus in the merging region both 
dramatically lowers the elastic energy barrier and substantially changes the minimal energy pathway 
for fusion, in accordance with experimental evidence. Therefore, we discuss biological examples in 
which such a modification might play a crucial role.

Fusion of fluid lipid bilayer membranes is a pivotal process in cell life, involved in fertilization1, neurotransmission2 
or intercellular communications3. Enveloped viruses also exploit this process to release their genetic material into 
cells to be infected4. Regardless of the specific biological context, all these processes share general characteristics 
in membrane fusion, which are also of strong interest in applications, e.g. for the development of antivirals5 and 
drug delivery6,7.

The celebrated Canham–Helfrich elastic energy8,9,

successfully describes many features of a fluid lipid membrane, representing it as a two-dimensional surface Ŵ 
corresponding to the bilayer midplane. The energy density depends on the principal curvatures of Ŵ , through 
the mean curvature M, and the Gaussian curvature G. m is the spontaneous mean curvature that the membrane 
tends to assume in absence of external forces, while k and kG are usually two constants, known as bending rigid-
ity and Gaussian modulus, respectively. Therefore, the first contribution to the right-hand side is referred to as 
the bending energy, while the second one as the Gaussian energy. The energy density can also be rearranged in 
terms of the isotropic and deviatoric components10. It is worth stressing that the Gaussian term has the feature 
to be a topological invariant, thus remaining constant in absence of fusion (or fission) events. Indeed, the Gauss-
Bonnet theorem of differential geometry states that

where χ(Ŵ) is the Euler characteristic of the surface Ŵ and kg is the geodesic curvature of the boundary ∂Ŵ . 
Considering compact surfaces like lipid vesicles, the line integral vanishes since there is no boundary, and 
χ(Ŵ) = 2(1− g) , where g is the genus of Ŵ , which intuitively counts the holes in the surface, i.e. g = 0 for a 
sphere, g = 1 for a torus, and so on. Such a special characteristic leads to a quantized Gaussian energy variation 
when calculated between an instant before and an instant after a fusion event. Since − kG ≈ k ≈ 20 kBT

11–14, 
where kB is the Boltzmann constant and T the temperature, the aforementioned Gaussian energy variation plays 
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a predominant role in a fusion event. Indeed, for example, two spherical vesicles merge through the formation 
of a catenoid-like neck connecting them15. Hence, since a catenoid has zero mean curvature, the variation of 
the bending energy is negligible when m = 0 , whereas the Gaussian energy jumps of − 4πkG ≈ 250 kBT . This 
energy cannot be supplied by thermal fluctuations, a fact in accordance with the stability and barrier function of 
lipid membranes. As a consequence, the fusion process requires the action of external agents, typically proteins, 
even though 250 kBT seem to be a too demanding request, see also Deserno16. From a Canham-Helfrich theory 
perspective, a possible solution to lower the elastic energy barrier is to locally modify the Gaussian modulus in 
the merging region, shifting it towards higher values, while retaining − 20 kBT in the remainder of the vesicles. 
Indeed, in this case, kG would go under the integral sign, loosening the Gauss-Bonnet theorem constraint, and 
thus reducing the energy barrier. It is worth noticing that this picture is consistent both with the observation 
that inducing a negative spontaneous curvature mml of the constituent monolayers has a fusogenic effect17 and 
the possibility that external agents can modify the monolayers’ bending and Gaussian elastic constants18, kml 
and kml

G  , respectively, with the latter being usually negative19. Indeed, considering for simplicity two symmetric 
leaflets, the consistency relation between the elastic energy of a bilayer and of its constituent monolayers reads

where z0 is a measure of the bilayer thickness20. However, despite its unassailable merits, the Canham–Helfrich 
model is not able to describe fusion processes, unless cuts are artificially introduced in the surfaces21. This makes 
it impractical to investigate the locally variable kG scenario.

Recently, we have introduced a Ginzburg–Landau type of free energy22, which treats the bilayer as a diffuse 
interface. The Ginzburg-Landau free energy approaches the Canham-Helfrich one in the limit of small width-
to-vesicle-extension ratio (sharp-interface limit), and has the additional ability to handle topological transitions, 
thus allowing access to the merging process and to the computation of the involved forces, even accounting 
for the otherwise inaccessible component related to the Gaussian energy term23. Thence, in the same work, we 
showed that the minimal free energy pathway (MEP) for the fusion of two large unilamellar vesicles (LUVs) 
with uniform kG = − k = − 20 kBT has an energy barrier of about 226 kBT , associated with a very steep energy 
path. Furthermore, we showed that the involved forces are localized in the merging region, corroborating the 
possibility that a local modification of kG in that region may significantly affect the fusion barrier.

In this work, we investigate the scenario of a locally varying Gaussian modulus, increasing it in the merging 
region to a value close to the stability limit with respect to saddle deformations of the membrane (or bicontinu-
ous phases)20. We compute the MEP for the fusion between two spherical LUVs, a configuration of interest 
for experiments24–26. We show that this local modification not only reduces the overall energy barrier, but also 
modifies the part of the energy landscape in which fusion intermediates appear, providing results compatible 
with experimental observations.

Results
Free energy with a locally variable Gaussian modulus
As anticipated, in order to locally modify the Gaussian modulus and gain access to the merging process, we use 
a Ginzburg–Landau type of free energy we have recently introduced22, whose main features are briefly recalled 
here. The free energy exploits a phase-field φ(x) , a smooth function defined on a domain � . The field assumes its 
limiting values ± 1 in the inner and the outer environment of the vesicles taken into account, while the φ(x) = 0 
level set identifies the Canham–Helfrich elastic surface Ŵ , that is the membrane mid-surface. The transition 
between the two limiting values ± 1 occurs in a narrow region, the so-called diffuse interface, which represents 
the membrane bilayer, usually about ℓme = 5 nm thick. The diffuse interface width is controlled by a small 
parameter ǫ , chosen to be such that the bilayer thickness ℓme is 6ǫ . This requirement sets the size of our system 
and is paramount since the scale invariance to which vesicles are usually subjected is broken during topological 
transitions. The free energy E[φ, η] is an integral-type functional depending upon the phase-field φ(x) , with the 
integration done over the entire domain � . Here, η(x) is another, auxiliary field, introduced for the purpose of 
distinguishing the patch with modified Gaussian modulus from the remainder of the vesicle27. Strictly speaking, 
E[φ, η] = EB[φ] + EG[φ, η] , where

and

EB[φ] approaches the bending energy of the membrane in the sharp-interface limit28–30, while EG[φ, η] 
approaches the Gaussian term22. Therefore, E[φ, η] recovers the Canham-Helfrich free energy in the limit of 
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small width-to-vesicle-extension ratio. In other words, if A is the surface area of the vesicle and Dve =
√
A/π  

is its characteristic length, then E[φ, η] ∼ ECH[Ŵ] when � = ǫ/Dve << 1 . One may notice that, in Eq. (6), the 
Gaussian modulus kG depends on x , thus allowing to have kG = −k = − 20 kBT on the whole membrane, except 
in the merging region where we set kG ≈ 0 , a value close to the bilayer stability limit with respect to saddle 
deformations20. This spatial dependence is introduced through the auxiliary field η(x) , which is needed to follow 
the motion of the membrane patch with modified Gaussian modulus. Additional details on the auxiliary field, 
the free energy functional and the adopted numerical scheme are reported in Section Methods.

Fusion pathway
An MEP is a curve on the energy landscape E[φ, η] connecting two stable vesicle states, which identifies a 
sequence of vesicle configurations φα(x) as the normalized arc-length α ∈ [0, 1] varies. By definition, the 
curve is such that it is everywhere tangent to the gradient of the potential, except at critical points31, namely 
∂φα/∂α ∝ δE[φα , ηα]/δφ and ∂ηα/∂α ∝ δE[φα , ηα]/δη , where δE[φα , ηα]/δφ and δE[φα , ηα]/δη denote the 
functional derivatives of E[φ, η] computed at position α along the curve. Here, the initial and final stable states 
are two separate spherical vesicles and a prolate one32, φα=0(x) and φα=1(x) , respectively. By means of a rare event 
technique, the zero temperature string method33,34, we compute the MEP by evolving an initial guess for the path 
discretized in 100 images, referred to as the string. Along the MEP, all the configurations have the same total 
surface area A and enclosed volume V, therefore they have the same reduced volume v = V/(π D3

ve/6) = 1/
√
2 , 

which is the only reduced volume geometrically compatible with the presence of two separate identical spheres35, 
see also Section Methods. Here, the two initial disjointed spherical LUVs have the same diameter of about 
146 nm , therefore Dve ≈ 206 nm along the MEP. Vesicles are supposed to have zero spontaneous curvature, 
m = 0 , while, as anticipated, kG = − k = − 20 kBT except in the merging region where kG ≈ 0 . The initial and 
final configurations, φα=0(x) and φα=1(x) , respectively, are depicted in Fig. 1a, where the color map shows the 
values assumed by the auxiliary field. η = + 1 identifies the membrane patch with modified Gaussian modulus, 
kG ≈ 0 , while η = − 1 is the membrane part with kG = − k . As apparent, the transition between the two zones 
is rapid but smooth, see also Section Methods. The size of the modified patch is conserved along the pathway, 
Section Methods, and amounts to about 2% of the total surface area.

Figure  1b shows the computed MEP, providing the Ginzburg-Landau free energy difference 
�E = E[φα] − E[φα=0] of the membrane along the path, namely as a function of the string parameter α . The 
pathway greatly differs from the one obtained with constant kG in our previous work22, where there was only one, 
steep, and large ( 226 kBT ) elastic energy barrier that prevented the fusion process (therefore no stable intermedi-
ates were present). As apparent, here, the local modification of the Gaussian modulus enables a different pathway, 
consisting of three stable states (minima of the curve) at α = 0, 0.23, 1 and two saddle-points of the energy 
landscape (maxima of the curve) at α = 0.2, 0.34 . The first maximum is very small, and separates a sequence of 
neutral equilibrium states from a downhill stretch that leads to the minimum at α = 0.23 . In what follows, we 
will focus on the second saddle-point and neglect the first one, as it does not substantially contribute to the elastic 
picture that will emerge. The difference between the energy at the saddle-point α = 0.34 and the energy at the 
corresponding preceding minimum, α = 0.23 , provides the elastic energy barrier that must be overcome in order 
to complete the fusion process. This energy is about 16 kBT , and increases to 39 kBT if one considers a bending 
rigidity k of 50 kBT36. Indeed, for clarity, Fig. 1b is plotted considering k = 20 kBT , but energies can be directly 
rescaled for other bending rigidities, see also Section Methods. These values show that the local modification of 
kG is able to drastically reduce the work needed to drive the fusion process, lowering the elastic energy barrier 
to values less than 40 kBT , thus allowing the topological transition to be thermally activated37,38. Figure 1c shows 
some configurations along the MEP: the two vesicles are initially separated ( α = 0 ), then brought into close 
apposition to reach a stable state ( α = 0.23 ) which is reminiscent of the experimentally observed hemifusion 
stalk configuration25,39. Subsequently, a catenoid-like neck starts to appear ( α = 0.49 ) leading to the formation 
of a stable pore ( α = 1 ). Also catenoid-like necks are experimentally observed15. The aforementioned sequence 
of neutral equilibrium states corresponds to rigid translations during which the two vesicles approach each other 
before falling in the energy minimum α = 0.23 with the hemifusion configuration. This stretch of the MEP cor-
respond to the zeroth stage of fusion as discussed by Smirnova and Müller40 and actually involves a dehydration 
energy barrier which is not considered in this work. Therefore, we have computed an intrinsic elastic MEP, whose 
barrier can be overcome thermally, while, as we will discuss later, the energy needed for the zeroth stage can be 
supplied by external agents. As an example, Fig. 1d shows the phase-field function φα=0(x) in the r − z plane, 
whose transition layer between φ = ± 1 identifies the diffuse interface of the initial configuration consisting of 
two disjointed spheres with z-axial symmetry.

Figure 2 shows the enlargement of the merging region along the MEP of Fig. 1. Therefore, the membrane 
part shown in these enlargements belongs to the patch with modified Gaussian modulus, kG ≈ 0 . The contour 
plots show the phase-field φ(x) in the r − z plane, and the different configurations along the MEP are identified 
by α . The enlargements allow to identify the presence of two bulges ( α = 0.22 ) preceding the hemifusion state 
( α = 0.23 ), as also observed in experiments25,41. Furthermore, the experimentally observed15 hourglass-shaped 
neck is apparent ( α = 0.33, 0.34, 0.49, 1 ). Vectors, scaled according to the reference arrow in each plot, depict 
the force fields f = −δE/δφ∇φ needed to counterbalance the elastic reaction of the membrane in the given 
configuration, see our previous work for more details22. The D-symbols present in the α = 0.22, 0.34, 0.49, 1 
enlargements point out the configurations taken along the downhill stretches of the MEP of Fig. 1b, namely states 
where the elastic reaction fe = −f  alone is sufficient to drive the fusion process. It is worth noticing that, as stated 
above, since the energy barrier is small and therefore the process can be thermally activated, actually there is no 
need of external force fields to drive the process even in the uphill stretches of the MEP, whose configurations 
reported in Fig. 2 are highlighted by the U-symbol. Overall, Fig. 2 shows that the forces are localized in the 
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merging region and are more intense in the steepest stretches of the MEP. Furthermore, the change of direction 
of the vectors is a numerical confirmation that the saddle-point is placed between α = 0.33 and α = 0.34.

Discussion
Bilayer elasticity predicts a very large fusion energy barrier of about 250 kBT , associated with a very steep energy 
path, and very intense forces localized in the merging region, all factors that are difficult to reconcile with the 
biological mechanisms involved in membrane fusion. In this work, we have shown that the sole local modifica-
tion of the Gaussian modulus in the merging region drastically lowers the elastic energy barrier to 16 kBT for 
a typical value of k = 20 kBT  , or to 39 kBT  for k = 50 kBT  . Although elasticity is commonly used to obtain 
valuable insights into membrane fusion42,43, it might be argued that these energies begin to be comparable to 
those that can emerge from the molecular detail that is inevitably missing in our approach. Despite this, our 
result is still relevant even if referring only to the elastic barrier. Indeed, in absence of a mechanism to lower 
it, the 250 kBT elastic barrier would be the dominant one, and, for example, fusion proteins would be called 
upon to perform a formidable task in overcoming it. In fact, our results also show a MEP in accordance with 
experimental evidence, e.g. with an intermediate reminiscent of the hemifusion state25, which is also found in 
molecular dynamics simulations44,45. We also find that this intermediate is stabilized by the local modification of 
the Gaussian modulus, which therefore also substantially affect the pathway. In our previous work22, we showed 
that a uniform change of kG on the entire membrane was only able to rigid translate the fission branch, thus 
modifying the fusion energy barrier and the relative stability between the initial and final configurations, but 
not the shape of the pathway as in the present case.

A local modification of the Gaussian modulus might be relevant in several processes involving membrane 
fusion, as we shall now discuss. For example, calcium ions are capable of promoting fusion without the need for 

Figure 1.   The MEP obtained with the string method for the fusion of two spheres into a prolate shape, 
Dve ≈ 206 nm . The path consists of vesicles with m = 0 , constant total area and enclosed volume, and therefore 
with constant reduced volume v = 1/

√
2 . Simulation assumes z-axial symmetry. (a) A zoom of the initial 

and final configurations, φα=0(x) and φα=1(x) , respectively. The color map shows the values taken by the 
auxiliary field η(x) on the membrane. η = + 1 identifies the membrane patch with kG ≈ 0 , while η = − 1 is 
the membrane part with kG = − k = − 20 kBT . The size of the patch with kG ≈ 0 is conserved along the MEP. 
(b) The free energy difference �E with respect to the initial state along the MEP, namely in function of the 
normalized arc-length α discretized by means of 100 equidistant images represented by the points, α = i/99 
with i = 0, ..., 99 , see also Section Methods. There are three minima, α = 0, 0.23, 1 , and a relevant maximum 
(saddle-point) at α = 0.34 . (c) Vesicle shapes along the pathway as identified by the diffuse interface, namely 
the transition layer between φ = ± 1 . The three minima of the MEP correspond to two disjointed vesicles, a 
configuration reminiscent of the hemifusion state, and a final prolate shape, respectively. (d) The phase-field 
function in the r − z plane for the initial configuration, namely φα=0(x) . Here, it is possible to see the small 
transition layer between φ = ± 1 which identifies the diffuse interface of the two initial disjointed vesicles. An 
enlargement of the merging region is reported in Fig. 2.
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any proteins. Using molecular dynamics, Allolio and Harries46 showed that this ability is related to the genera-
tion of surface tension in the headgroup region, which in turn translates to a negative monolayer spontaneous 
curvature and an increased Gaussian modulus, see also Eq. (3). A locally varying kG may also play a role in the 
morphogenesis of neuroepithelial organoids, which has recently been shown47 to depend upon a uniform change 
in kG/k . The local variation of the Gaussian modulus might also be related to the orientational ordering among 
oriented lipids48–51, which has been proposed to be relevant in the formation of thin necks that can subsequently 
break52,53. Another speculation can be made with regard to viral fusion. Indeed, viral proteins orchestrate at least 
the initial part of the fusion process by bringing the membranes in close proximity. The remainder of the process 
could proceed spontaneously due to thermal fluctuations, taking several minutes to complete54. Accordingly, 
the energy barrier for the fusion process should not exceed 40 kBT37, a fact which implies that viral proteins, 
in addition to having an apposition activity, should act as catalysts. From a physical point of view, this catalytic 
effect is compatible with a local modification of the Gaussian modulus. For example, influenza virus hemag-
glutinin (HA) protein is a 13.5 nm long trimer55, that can be viewed as a spring-loaded fusion machinery. When 
exposed to low pH, HA undergoes a series of conformational changes that lead to the insertion of its fusion 
peptides into the host membrane56. At that point, a refolding brings the two membranes in close contact and 
the fusion process can proceed towards the opening of a pore, passing through a hemifusion intermediate57. 
The insertion of a HA fusion peptide releases about 13 kBT , thus the action of three neighboring HA trimers is 
thought to generate enough energy to perturb the bilayer and overcome the dehydration barrier that keeps the 
two membranes apart58, a task also accomplished by increasing the protrusion of lipid tails59. Thus, this energy 
released upon insertion can be used to move from the zeroth stage of fusion40 to the following one. Once in 
close contact, fusion could proceed thermally due to the presence of HA. Hence, in addition to the mechanical 
work for the close apposition, peptides insertion ought to play a significant role for the additional catalytic effect 
that should lower the intrinsic fusion energy barrier, allowing fusion to be thermally activated. In this regard, 
it has been shown, both numerically60 and experimentally61, that the wild-type HA peptides promote negative 
Gaussian curvature, such as that of the catenoid-like necks. Therefore, an increase of kG in the merging region is 
compatible with the action of HA peptides and could catalyze the intrinsic fusion process due to the reduction 
of the intrinsic elastic barrier as shown in this work. Also the recently observed membrane thinning due to the 
aggregation of influenza peptides might contribute to modify the Gaussian modulus in viral fusion, Eq. (3). The 
same equation shows that if proteins modified the spontaneous curvature or the bending rigidity of the monolay-
ers, the effect would still be to modify kG . Beyond all these congruencies, the tendency of peptides to increase 

Figure 2.   Enlargements of the merging region in the r − z plane. The contour plots show the phase-field 
φ in the configuration identified by the normalized arc-length α along the MEP of Fig. 1b. The two vesicles 
are initially brought into close apposition, then the formation of two bulges ( α = 0.22 ) allow to reach a 
stable hemifusion state ( α = 0.23 ). Subsequently, a catenoid-like neck starts to appear ( α = 0.33, 0.34, 0.49 ) 
leading to the formation of a small stable pore ( α = 1 ). Vectors, scaled according to the reference arrow in 
each plot, depict the force fields f  needed to counterbalance the elastic reaction of the membrane in the given 
configuration. The U- and D-symbols point out the configurations taken along the uphill and downhill stretches 
of the MEP of Fig. 1b, respectively. The membrane part shown in these enlargements belongs the patch with 
modified Gaussian modulus, kG ≈ 0.
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the Gaussian modulus also emerged in a recent molecular lipid model62, which also shows that the concomitant 
modification of k should be small. However, if the change in the elastic properties is localized in the merging 
region, the variation of the Gaussian modulus should be dominant. Indeed, in the merging region the leading 
forces are the Gaussian ones because of the high energy redistribution due to the Gauss-Bonnet theorem22. In 
any case, we found a MEP with a single hemifusion intermediate, like in HA mediated fusion57,63,64, and energy 
barriers that can be crossed in a time of several minutes, which is the time needed for viral infections to occur. 
Incidentally, viruses can have envelopes the size of our large vesicles65.

Of course, the main aim of this work is to show that a local change in kG can indeed have a strong impact on 
the intrinsic, elastic fusion path of two LUVs. We also discussed practical cases, both in presence and absence 
of proteins, where this modification might play a role. Clearly, there may also be instances where such a change 
is irrelevant. For example, one may think of membrane fusion induced by tension66. Nonetheless, even in this 
case kG could be affected67, albeit at the second order in z014.

Methods
Additional details on the free energy
As anticipated in the main text, EB[φ] , Eq. (4), approaches the bending energy of the membrane in the sharp-
interface limit28,29, while EG[φ, η] , Eq. (6), approaches the Gaussian term22. Therefore, E[φ, η] recovers the Can-
ham–Helfrich free energy in the limit of small width-to-vesicle-extension ratio, � << 1 . The complete derivation 
of this asymptotic behavior is developed in our previous work22 and is not affected by the dependence of kG on 
η(x) . This auxiliary field is needed to discriminate between the small patch with varied Gaussian modulus and 
the remainder of the membrane. Following the work of Wang and Du27, η(x) identifies a field which is orthogonal 
to the phase-field φ(x) representing the membrane. Furthermore, η(x) ∼ tanh

(

a(x)/ǫ
√
2
)

 , where a(x) is the 
signed distance function from the η = 0 level set. Therefore, also η(x) assumes two limiting values ±1 , in the 
regions inside and outside the η = 0 level set, respectively. Therefore, we say that the portion of the membrane 
lying where η = − 1 is the one with kG = kG0 = −k , while the small patch located within the η = + 1 zone has 
the modified Gaussian modulus. Hence, we choose kG(η) = kG0(1− η)2/4 in Eq. (6). To make sure that the 
auxiliary field does indeed have a hyperbolic tangent profile, we add to the system the auxiliary energy

that is a bending energy for η with a very small bending rigidity, 103 times smaller than that of the membrane. 
To ensure the orthogonality between the two fields, we use the following functional:

As mentioned in the main text, all membrane configurations along the MEP have the same total surface area A 
and enclosed volume V. Indeed, since lipids are insoluble in water, the number of membrane lipids is conserved 
and a large tension is associated with the surface area change, implying that membrane bending cannot substan-
tially modify A. At the same time, osmotic conditions constraint V35. In order to preserve these two quantities 
along the string, we used two functionals

which recover the total surface area and enclosed volume, respectively, in the sharp interface limit, � << 1 . 
Therefore, being Dve =

√
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√
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√
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surface area of the membrane patch with modified Gaussian modulus. For this purpose we use the functional:

In conclusion, we have the modified energy
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where E[φ, η] = EB[φ] + EG[φ, η] is the membrane elastic energy which asymptotically behaves as the Canham-
Helfrich one, Eq. (1), with a locally variable Gaussian modulus. Additional terms are needed when constraining 
to A0 , V0 , and P0 the total surface area (Eq. (11)), enclosed volume (Eq. (12)), and surface area of the patch with 
modified Gaussian modulus, respectively. M1 , M2 , M3 and M4 are penalty constants, whereas γ , �p and γp are 
updated at each time step following the augmented Lagrangian method68:

Therefore γ , �p , and γp are estimates of the Lagrange multipliers that improve at every time step. Orthogonal-
ity between fields is instead imposed directly through a pure penalty approach. Finally, it is worth saying that 
the energy associated with the auxiliary field does not affect in any substantial way the MEP of Fig. 1, indeed 
maxα |�Ē(α)−�E(α)| < 0.086 kBT.

As we also discussed in our previous work22, the asymptotic Canham-Helfrich model is thought to hold69 for 
vesicles with Dve ≥ 40 ℓme , being ℓme the lipid bilayer thickness; otherwise, higher-order terms in the energy 
density could make a significant contribution. For symmetric membranes, as those considered here, this limit 
safely reduces to 10 ℓme

69–71. Therefore, the request is largely met by the LUVs considered in this work, since they 
have a characteristic length Dve ≈ 206 nm . Moreover, as also recently discussed by Duncan and Pezeshkian72, 
there is evidence that the Canham-Helfrich energy can work up to a length scale close to the thickness of the 
membrane71. In any case, we would like to stress that, as opposed to the Canham-Helfrich approach, our model 
explicitly takes into account a diffuse interface related to the membrane thickness. As also shown in this work, 
this interface plays a role in the highly curved merging region and reproduces experimentally observed configu-
rations such as the hemifusion intermediate.

As a comment, we would like to stress that the discussed approach allows to simulate the full-scale evolution 
of topological transitions in LUVs, which is hardly achievable with molecular models. Moreover, this methodol-
ogy can be exploited to explore the role of varying parameters like elastic constants and vesicle geometry to the 
extent that gedankenexperimente can be conceived. For example, electrostatic effects can be included, e.g., by 
following the prescription provided by Helfrich73. Hydrodynamics may be easily taken into account to investigate 
the transport of vesicles.

Numerics
The simulation has been carried out using N = 100 images for the string74, and a [0ǫ, 96ǫ] × [− 245ǫ, 245ǫ] 
computational domain in the r − z plane (z-axial symmetry), with a grid of 144× 735 nodes per image, and 
1/� ≈ 247.5 . We remind that the bilayer thickness ℓme is 6ǫ and Dve ≈ 206 nm . We used FFT-based spectral 
differentiation in a cell-centered grid, with a semi-implicit Euler single-step scheme to evolve the string, follow-
ing the simplified string method algorithm33. Due to the presence of the auxiliary field, we actually evolved two 
fields to find the final MEP, namely

and

with i = 1, ... ,N . As regards the reparametrization step33, the distance between the images and, thus, the total 
length of the pathway (used to calculate the normalized arc-length α ) are obtained with the metric induced by 
the norm of the vector valued function ( φα , ηα ), namely �(φα , ηα)� =

√

�φα�22 + �ηα�22 , where the norm of the 
two fields are those induced by the standard L2 inner product. Additional details on the numerical scheme and 
its convergence are also available in our previous work22. The functional derivative of the Gaussian energy, in 
presence of the locally variable kG(η(x)) introduced in this work, reads:

where subscripts denote partial derivatives with respect to r and z. As a final remark, it is worth saying that even 
though results of Figs. 1 and 2 are reported assuming the typical value − kG = k = 20 kBT , they are actually 
independent of the choice of k22. In fact, provided that − kG = k in the unperturbed region, they can be rescaled 
with the value of k.

(15)γ n+1 = γ n +M1

(

A
[

φn+1
]

− A0

)

,

(16)�pn+1 = �pn +M2

(

V
[

φn+1
]

− V0

)

,

(17)γ n+1
p = γ n

p +M3

(

P
[

φn+1
]

− P0
)

.

(18)
∂φi

∂t
= −M

δĒ

δφi
,

(19)
∂ηi

∂t
= −M

δĒ

δηi
,

(20)
δEG

δφ
=

35

8
√
2

ǫ3

r

[

12kGφr
(

φ2
rz − φrrφzz

)

+ φrφ
2
z kGrr + 6φr(φrφrz − φzφrr)kGz

+ φ3
r kGzz + 2φ2

r φzkGrz +
(

4φrφzφrz + φrrφ
2
z − 5φ2

r φzz
)

kGr
]

,



8

Vol:.(1234567890)

Scientific Reports |           (2024) 14:23  | https://doi.org/10.1038/s41598-023-50922-7

www.nature.com/scientificreports/

Data availibility
The datasets generated during and/or analysed during the current study are available from the corresponding 
author on reasonable request.

Received: 14 July 2023; Accepted: 28 December 2023

References
	 1.	 Deneke, V. E. & Pauli, A. The fertilization enigma. How sperm and egg fuse. Annu. Rev. Cell Dev. Biol. 37, 391–414 (2021).
	 2.	 Rizo, J. Molecular mechanisms underlying neurotransmitter release. Annu. Rev. Biophys. 51, 377–408 (2022).
	 3.	 Kalluri, R. & LeBleu, V. S. The biology, function, and biomedical applications of exosomes. Science 367, eaau6977 (2020).
	 4.	 Barrett, C. T. & Dutch, R. E. Viral membrane fusion and the transmembrane domain. Viruses 12, 693 (2020).
	 5.	 Tang, T., Bidon, M., Jaimes, J. A., Whittaker, G. R. & Daniel, S. Coronavirus membrane fusion mechanism offers a potential target 

for antiviral development. Antivir. Res. 178, 104792 (2020).
	 6.	 Mitchell, M. J., Billingsley, M. M., Haley, R. M., Wechsler, M. E., Peppas, N. A. & Langer, R. S. Engineering precision nanoparticles 

for drug delivery. Nat. Rev. Drug Discov. 1–24 (2020).
	 7.	 Tenchov, R., Bird, R., Curtze, A. & Zhou, Q. Lipid nanoparticles-from liposomes to mRNA vaccine delivery, a landscape of research 

diversity and advancement. ACS Nano 15(11), 16982–17015 (2021).
	 8.	 Canham, P. B. The minimum energy of bending as a possible explanation of the biconcave shape of the human red blood cell. J. 

Theor. Biol. 26(1), 61–81 (1970).
	 9.	 Helfrich, W. Elastic properties of lipid bilayers.: Theory and possible experiments. Zeitschrift für Naturforschung C 28, 693–703 

(1973).
	10.	 Fischer, T. M. Bending stiffness of lipid bilayers. V. Comparison of two formulations. J. Phys. II 3, 1795–1805 (1993).
	11.	 Dimova, R. Recent developments in the field of bending rigidity measurements on membranes. Adv. Coll. Interface. Sci. 208, 225–34 

(2014).
	12.	 Nagle, J. F., Jablin, M. S., Tristram-Nagle, S. & Akabori, K. What are the true values of the bending modulus of simple lipid bilay-

ers?. Chem. Phys. Lipid. 185, 3–10 (2015).
	13.	 Hu, M., Briguglio, J. J. & Deserno, M. Determining the gaussian curvature modulus of lipid membranes in simulations. Biophys. 

J . 102(6), 1403–10 (2012).
	14.	 Hu, M., de Jong, D. H., Marrink, S. J. & Deserno, M. Gaussian curvature elasticity determined from global shape transformations 

and local stress distributions: A comparative study using the martini model. Faraday Discuss. 161, 365–382 (2013).
	15.	 Avinoam, O., Schorb, M., Beese, C. J., Briggs, J. A. G. & Kaksonen, M. Endocytic sites mature by continuous bending and remod-

eling of the clathrin coat. Science 348, 1369–1372 (2015).
	16.	 Bassereau, P. et al. The 2018 biomembrane curvature and remodeling roadmap. J. Phys. D Appl. Phys. 51, 343001 (2018).
	17.	 Poojari, C. S., Scherer, K. C. & Hub, J. S. Free energies of membrane stalk formation from a lipidomics perspective. Nat. Commun. 

12, 1–10 (2021).
	18.	 Siegel, D. P. Bicontinuous inverted cubic phase stabilization as an index of antimicrobial and membrane fusion peptide activity. 

Biochimica et Biophysica Acta (BBA)-Biomembranes 1864, 183815 (2022).
	19.	 Siegel, D. P. The gaussian curvature elastic energy of intermediates in membrane fusion. Biophys. J . 95, 5200–5215 (2008).
	20.	 Deserno, M. Fluid lipid membranes: From differential geometry to curvature stresses. Chem. Phys. Lipid. 185, 11–45 (2015).
	21.	 Gompper, G. & Kroll, D. M. Membranes with fluctuating topology: Monte Carlo simulations. Phys. Rev. Lett. 81, 2284–2287 (1998).
	22.	 Bottacchiari, M., Gallo, M., Bussoletti, M. & Casciola, C. M. Activation energy and force fields during topological transitions of 

fluid lipid vesicles. Commun. Phys. 5, 1–12 (2022).
	23.	 Guckenberger, A. & Gekle, S. Theory and algorithms to compute Helfrich bending forces: A review. J. Phys. Condens. Matter Inst. 

Phys. J. 29(20), 203001 (2017).
	24.	 Hernandez, J. M. et al. Membrane fusion intermediates via directional and full assembly of the snare complex. Science 336, 

1581–1584 (2012).
	25.	 Chlanda, P. et al. The hemifusion structure induced by influenza virus haemagglutinin is determined by physical properties of the 

target membranes. Nat. Microbiol. 1, 1–8 (2016).
	26.	 Morandi, M. I. et al. Extracellular vesicle fusion visualized by cryo-electron microscopy. PNAS Nexus 1, pgac156 (2022).
	27.	 Wang, X. & Qiang, D. Modelling and simulations of multi-component lipid membranes and open membranes via diffuse interface 

approaches. J. Math. Biol. 56, 347–371 (2008).
	28.	 Qiang, D., Liu, C. & Wang, X. A phase field approach in the numerical study of the elastic bending energy for vesicle membranes. 

J. Comput. Phys. 198, 450–468 (2004).
	29.	 Lázaro, G., Pagonabarraga, I. & Hernández-Machado, A. Phase-field theories for mathematical modeling of biological membranes. 

Chem. Phys. Lipid. 185, 46–60 (2015).
	30.	 Kusumaatmaja, H. Surveying the free energy landscapes of continuum models: Application to soft matter systems. J. Chem. Phys. 

142, 124112 (2015).
	31.	 Cameron, M. K., Kohn, R. V. & Vanden-Eijnden, E. The string method as a dynamical system. J. Nonlinear Sci. 21, 193–230 (2011).
	32.	 Ghosh, R., Satarifard, V., Grafmüller, A. & Lipowsky, R. Spherical nanovesicles transform into a multitude of nonspherical shapes. 

Nano Lett. 19, 7703–7711 (2019).
	33.	 Weinan, E., Ren, W. & Vanden-Eijnden, E. Simplified and improved string method for computing the minimum energy paths in 

barrier-crossing events. J. Chem. Phys. 126(16), 164103 (2007).
	34.	 Smirnova, Y. G., Fuhrmans, M., Vidal, I. A. B. & Müller, M. Free-energy calculation methods for collective phenomena in mem-

branes. J. Phys. D 48, 343001 (2015).
	35.	 Lipowsky, R. Understanding giant vesicles: A theoretical perspective. In The Giant Vesicle Book (eds Rumiana, D. & Carlos, M.) 

73–168 (CRC Press, 2019).
	36.	 Steinkühler, J. et al. Controlled division of cell-sized vesicles by low densities of membrane-bound proteins. Nat. Commun. 11, 

905 (2020).
	37.	 Kuzmin, P. I., Zimmerberg, J., Chizmadzhev, Y. A. & Cohen, F. S. A quantitative model for membrane fusion based on low-energy 

intermediates. Proc. Natl. Acad. Sci. 98, 7235–7240 (2001).
	38.	 François-Martin, C., Rothman, J. E. & Pincet, F. Low energy cost for optimal speed and control of membrane fusion. Proc. Natl. 

Acad. Sci. 114, 1238–1241 (2017).
	39.	 Aeffner, S., Reusch, T., Weinhausen, B. & Salditt, T. Energetics of stalk intermediates in membrane fusion are controlled by lipid 

composition. Proc. Natl. Acad. Sci. 109, E1609–E1618 (2012).
	40.	 Smirnova, Y. G. & Müller, M. How does curvature affect the free-energy barrier of stalk formation? Small vesicles vs apposing, 

planar membranes. Eur. Biophys. J. 50, 253–264 (2021).
	41.	 Frolov, V. A., Cho, M.-S., Bronk, P., Reese, T. S. & Zimmerberg, J. Multiple local contact sites are induced by GPI-linked influenza 

hemagglutinin during Hemifusion and Flickering pore formation. Traffic 1, 622–630 (2000).



9

Vol.:(0123456789)

Scientific Reports |           (2024) 14:23  | https://doi.org/10.1038/s41598-023-50922-7

www.nature.com/scientificreports/

	42.	 Golani, G. et al. Myomerger promotes fusion pore by elastic coupling between proximal membrane leaflets and hemifusion dia-
phragm. Nat. Commun. 12, 495 (2021).

	43.	 Golani, G. & Schwarz, U. S. High curvature promotes fusion of lipid membranes.: Predictions from continuum elastic theory. 
Biophys. J . 122, 1868–1882 (2023).

	44.	 Shuhei, K., Klein, M. L. & Shinoda, W. Coarse-grained molecular dynamics study of membrane fusion: Curvature effects on free 
energy barriers along the stalk mechanism. J. Chem. Phys. 143, 243112 (2015).

	45.	 Smirnova, Y. G., Risselada, H. J. & Müller, M. Thermodynamically reversible paths of the first fusion intermediate reveal an 
important role for membrane anchors of fusion proteins. Proc. Natl. Acad. Sci. 116, 2571–2576 (2019).

	46.	 Allolio, C. & Harries, D. Calcium ions promote membrane fusion by forming negative-curvature inducing clusters on specific 
anionic lipids. ACS Nano 15, 12880–12887 (2021).

	47.	 Ishihara, K., Mukherjee, A., Gromberg, E., Brugués, J., Tanaka, E. M. & Jülicher, F. Topological morphogenesis of neuroepithelial 
organoids. Nat. Phys. 1–7 (2022).

	48.	 Kralj-Iglič, V., Heinrich, V., Svetina, S. & Žekš, B. Free energy of closed membrane with anisotropic inclusions. Eur. Phys. J. 
B-Condens. Matter Complex Syst. 10, 5–8 (1999).

	49.	 Iglič, A., Babnik, B., Gimsa, U. & Kralj-Iglič, V. On the role of membrane anisotropy in the beading transition of undulated tubular 
membrane structures. J. Phys. A: Math. Gen. 38, 8527 (2005).

	50.	 Kralj-Iglič, V., Babnik, B., Gauger, D. R., May, S. & Iglič, A. Quadrupolar ordering of phospholipid molecules in narrow necks of 
phospholipid vesicles. J. Stat. Phys. 125, 727–752 (2006).

	51.	 Urbanija, J. et al. Attachment of β 2-glycoprotein i to negatively charged liposomes may prevent the release of daughter vesicles 
from the parent membrane. Eur. Biophys. J. 37, 1085–1095 (2008).

	52.	 Penič, S. et al. Budding and fission of membrane vesicles: A mini review. Front. Phys. 8, 342 (2020).
	53.	 Mesarec, L., Góźdź, W., Kralj-Iglič, V., Kralj, S. & Iglič, A. Coupling of nematic in-plane orientational ordering and equilibrium 

shapes of closed flexible nematic shells. Sci. Rep. 13, 10663 (2023).
	54.	 Akimov, S. A., Molotkovsky, R. J., Kuzmin, P. I., Galimzyanov, T. R. & Batishchev, O. V. Continuum models of membrane fusion: 

Evolution of the theory. Int. J. Mol. Sci. 21, 3875 (2020).
	55.	 Boonstra, S. et al. Hemagglutinin-mediated membrane fusion: A biophysical perspective. Annu. Rev. Biophys. 47, 153–173 (2018).
	56.	 Benhaim, M. A., Mangala Prasad, V., Garcia, N. K., Guttman, M. & Lee, K. K. Structural monitoring of a transient intermediate 

in the hemagglutinin fusion machinery on influenza virions. Sci. Adv. 6, eaaz8822 (2020).
	57.	 Floyd, D. L., Ragains, J. R., Skehel, J. J., Harrison, S. C. & Van Oijen, A. M. Single-particle kinetics of influenza virus membrane 

fusion. Proc. Natl. Acad. Sci. 105, 15382–15387 (2008).
	58.	 Zubarev, I. et al. Viral membrane fusion proteins and RNA sorting mechanisms for the molecular delivery by exosomes. Cells 10, 

3043 (2021).
	59.	 Pabis, A., Rawle, R. J. & Kasson, P. M. Influenza hemagglutinin drives viral entry via two sequential intramembrane mechanisms. 

Proc. Natl. Acad. Sci. 117, 7200–7207 (2020).
	60.	 Fuhrmans, M. & Marrink, S. J. Molecular view of the role of fusion peptides in promoting positive membrane curvature. J. Am. 

Chem. Soc. 134, 1543–1552 (2012).
	61.	 Tenchov, B. G., MacDonald, R. C. & Lentz, B. R. Fusion peptides promote formation of bilayer cubic phases in lipid dispersions. 

an X-ray diffraction study. Biophys. J . 104, 1029–1037 (2013).
	62.	 Downing, R., Volpe Bossa, G. & May, S. Saddle-curvature instability of lipid bilayer induced by amphipathic peptides: A molecular 

model. Soft Matter 16, 5032–5043 (2020).
	63.	 Chakraborty, H., Tarafdar, P. K., Klapper, D. G. & Lentz, B. R. Wild-type and mutant hemagglutinin fusion peptides alter bilayer 

structure as well as kinetics and activation thermodynamics of stalk and pore formation differently: Mechanistic implications. 
Biophys. J . 105, 2495–2506 (2013).

	64.	 Joardar, A., Pattnaik, G. P. & Chakraborty, H. Mechanism of membrane fusion: Interplay of lipid and peptide. J. Membr. Biol. 1–14 
(2022).

	65.	 Dimitrov, D. S. Virus entry: Molecular mechanisms and biomedical applications. Nat. Rev. Microbiol. 2, 109–122 (2004).
	66.	 Lira, R. B., Robinson, T., Dimova, R. & Riske, K. A. Highly efficient protein-free membrane fusion: A giant vesicle study. Biophys. 

J . 116, 79–91 (2019).
	67.	 Lipowsky, R. Remodeling of membrane shape and topology by curvature elasticity and membrane tension. Adv. Biol. 6, 2101020 

(2022).
	68.	 Qiang, D. & Zhang, L. A constrained string method and its numerical analysis. Commun. Math. Sci. 7, 1039–1051 (2009).
	69.	 Dimova, R. & Marques, C. The Giant Vesicle Book (CRC Press, 2019).
	70.	 Harmandaris, V. A. & Deserno, M. A novel method for measuring the bending rigidity of model lipid membranes by simulating 

tethers. J. Chem. Phys. 125, 204905 (2006).
	71.	 Fiorin, G., Marinelli, F. & Faraldo-Gómez, J. D. Direct derivation of free energies of membrane deformation and other solvent 

density variations from enhanced sampling molecular dynamics. J. Comput. Chem. 41, 449–459 (2020).
	72.	 Duncan, A. L. & Pezeshkian, W. Mesoscale simulations: An indispensable approach to understand biomembranes. Biophys. J . 122, 

1883–1889 (2023).
	73.	 Winterhalter, M. & Helfrich, W. Effect of surface charge on the curvature elasticity of membranes. J. Phys. Chem. 92, 6865–6867 

(1988).
	74.	 Weinan, E., Ren, W. & Vanden-Eijnden, E. String method for the study of rare events. Phys. Rev. B 66, 052301 (2002).

Acknowledgements
This work has been supported by Italian PNRR funds, Italy, CN-1 Spoke 6. Support is acknowledged from the 
2020 Sapienza Large Project: Dynamics of Biological and Artificial Lipid Bilayer Membranes. The work was also 
supported by Sapienza with “Avvio alla Ricerca - Tipo 1”, no. AR1221816C7D59E0. Concerning computational 
resources, we acknowledge PRACE for awarding us access to Marconi’s successor at CINECA, Italy, PRACE 
23rd call project Nr. 2021240074; DECI 17 SOLID project for resource Navigator based in Portugal at https://​
www.​uc.​pt/​lca/ from the PRACE aisbl; CINECA award under the ISCRA initiative, for the availability of high-
performance computing resources and support (ISCRA-C InvFusMe).

Author contributions
C.M.C. designed the study; M.Bo., M.Bu. designed the simulation campaign under the supervision of M.G.; 
M.Bo. performed the simulations. M.Bu. processed the data. M.Bo. wrote the paper with contributions from 
all the authors. All authors analyzed the simulation data, discussed the results, read, revised, and approved the 
final version.

https://www.uc.pt/lca/
https://www.uc.pt/lca/


10

Vol:.(1234567890)

Scientific Reports |           (2024) 14:23  | https://doi.org/10.1038/s41598-023-50922-7

www.nature.com/scientificreports/

Competing interests 
The authors declare no competing interests.

Additional information
Correspondence and requests for materials should be addressed to C.M.C.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access   This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder. To view a copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

© The Author(s) 2024

www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	The local variation of the Gaussian modulus enables different pathways for fluid lipid vesicle fusion
	Results
	Free energy with a locally variable Gaussian modulus
	Fusion pathway

	Discussion
	Methods
	Additional details on the free energy
	Numerics

	References
	Acknowledgements


