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Enhanced matrix inference 
with Seq2seq models via diagonal 
sorting
Wei Peng 1,2,5, Yisong Wang 1,2,5 & Maonian Wu 3,4,5*

The effectiveness of sequence-to-sequence (seq2seq) models in natural language processing has been 
well-established over time, and recent studies have extended their utility by treating mathematical 
computing tasks as instances of machine translation and achieving remarkable results. However, our 
exploratory experiments have revealed that the seq2seq model, when employing a generic sorting 
strategy, is incapable of inferring on matrices of unseen rank, resulting in suboptimal performance. 
This paper aims to address this limitation by focusing on the matrix-to-sequence process and 
proposing a novel diagonal-based sorting. The method constructs a stable ordering structure of 
elements for the shared leading principal submatrix sections in matrices with varying ranks. We 
conduct experiments involving maximal independent sets and Sudoku laws, comparing seq2seq 
models utilizing different sorting methods. Our findings demonstrate the advantages of the proposed 
diagonal-based sorting in inference, particularly when dealing with matrices of unseen ranks. By 
introducing and advocating for this method, we enhance the suitability of seq2seq models for 
investigating the laws of matrix inclusion and exploring their potential in solving matrix-related tasks.

Deep learning has achieved significant success in natural language processing (NLP)1. In particular, many tasks, 
such as machine translation, text summarization, and dialogue systems can be represented as sequence-to-
sequence (seq2seq) form2, which takes a sequence as input (e.g., the sequence of sentences to be translated in 
machine translation) and produces another sequence as output (i.e., the sequence of translated sentences), thus 
learning the laws between the sequences by using the seq2seq model, and to accomplish the particular task. Rep-
resentatively, to efficiently utilize contextual information, Vaswani et al.3 proposed the Transformer by introduc-
ing the attention mechanism into seq2seq models and achieved state-of-the-art results in the machine translation.

Since the success of seq2seq models in NLP, several studies have extended their utility by treating com-
plex computational tasks as instances of machine translation. Examples include symbolic integration, solving 
mathematical word and geometry problems, and other tasks requiring sophisticated inference4–6. These works 
have achieved impressive results by representing inputs like mathematical equations as sequences and training 
seq2seq models to learn the transformation laws mapping between input and output sequences. Matrices are a 
fundamental representation tool for organizing numbers, symbols, or expressions in rows and columns7,8. They 
play a crucial role in various fields, including deep learning, where generalized matrices (or tensors) serve as the 
fundamental computational units for many popular methods9. Matrix operations are also essential in application 
fields such as programming problems, image processing, and information encryption10–12. From a structural 
representation perspective, matrices can be transformed into sequences by arranging their elements, making 
them a suitable input for seq2seq models. However, the current matrix-to-sequence process heavily relies on 
generic row-based sorting (RS) and column-based sorting (CS). Consequently, there is a need to explore suitable 
matrix-to-sequence methods that can unlock the computational potential of the seq2seq model and effectively 
address tasks represented by matrices.

Deep learning has demonstrated a remarkable ability to generalize by effectively partitioning datasets during 
training, which enables models to make inferences on previously unseen data. However, the presence of matrix 
rank poses a significant challenge to the generalization performance of the models. More specifically, when 
confronted with matrices of unseen rank, seq2seq models with RS/CS struggle to accurately predict sequences. 
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Taking inspiration from Cantor’s diagonal argument13, this study proposes diagonal-based sorting (DS) as a 
method to implement the matrix-to-sequence process. By constructing sequential representations of matrices 
using DS, the seq2seq model learns the certain laws of the matrix dataset in a generalized manner, facilitating 
accurate sequence generation even for matrices with unseen rank. To demonstrate the necessity of our method, 
we conduct exploratory experiments. We then compare the effects of different sorting methods on the seq2seq 
model through experiments involving maximum independent sets and Sudoku, providing experimental results 
that validate the effectiveness of our proposed method. The contributions of this study are summarized as follows.

•	 We proposed a novel DS method to convert matrices into sequences for input into seq2seq models. DS con-
structs stable ordering of elements for shared leading principal submatrix sections across matrices of varying 
ranks. This allows seq2seq models to make accurate inferences even on matrices of unseen ranks.

•	 We validate DS and highlight the significance of mapping invariance on complex matrix inference tasks 
involving maximum independent sets and Sudoku.

•	 We provide open access to all the datasets, models, and corresponding code utilized in this research.

The remainder of the paper is organized as follows. “Method” presents our method, and “Experiments” describes 
the experiments and the analysis of the results. “Related works” discusses related works. Finally, conclusions and 
future work are given in “Conclusions”.

Method
Limitations of row (column)‑based sorting in Seq2seq
RS and CS are widely employed in the fields of computation, storage, communication, and others to efficiently 
convert matrices into sequences. To accommodate dimensional restrictions, it is customary to use the notation 

[[a,b],[c,d]] instead of 
(

a b
c d

)

when representing 2nd-order matrices. In this notation, [a,b] and [c,d] 

represent the rows of the matrix. Moreover, these methods are commonly utilized to stretch tensors, which 
represent data, into vectors for input into deep learning models. This is done to facilitate batch processing and 
computation.

Figure 1 presents a schematic diagram illustrating the transformation of matrices of varying orders through 
RS to generate a sequence. We represent the elements of the matrices using small squares. With RS, the matrices 
of rank 4 and 3 (left side of the figure) are transformed into two sequences (right side of the figure), respectively. 
The first sequence consists of every fourth consecutive square, representing the rows of the matrix. Similarly, the 
second sequence is composed of every third consecutive square.

Such sorting methods may appear reasonable, but they are unsuitable for deep learning models, particularly 
for seq2seq models designed to fit data with matrix properties. This inadequacy arises because matrices of 
different ranks cannot maintain a consistent order within the corresponding sequences. Figure 1 serves as an 
illustration of this issue, showcasing two matrices with elements a21 in the first column of the second row. Despite 
occupying identical positions within their respective matrices, these elements are shifted within the sequences.

When utilizing RS, the seq2seq model encounters difficulties when inferring on matrices with varying ranks. 
For instance, during training, the model effectively predicts the transpose matrix of a specific 10th-order matrix. 
However, during the inference process, the test data is a 5th-order leading principal submatrix extracted from 
the matrix, where leading principal submatrix denotes a submatrix composed of the initial n rows and columns 
of a matrix. Without a clear understanding of the concept of matrix rank, the model struggles to comprehend 
the need for shifting certain elements to the front in the output sequence, as previously discussed. In “Explora-
tory experiments”, we will provide additional validation to support this idea through exploratory experiments.

Figure 1.   Schematic illustration of matrices converted to a sequences by row-based sorting.
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Diagonal‑based sorting
To ensure optimal performance of the trained seq2seq model in matrix inference, it is essential to employ 
appropriate sorting methods that facilitate the conversion of matrices with varying orders into sequences with 
consistent element ordering. In order to outline this objective, Definition 1 is introduced to formalize the prop-
erty for a matrix-to-sequence method.

Definition 1  (Mapping invariance) Let f be a matrix-to-sequence method that maps the elements of a matrix to 
the elements of the sequential representation of the matrix. f is mapping invariance if for matrix A = (aij)k1,k1 
such that

where B = (bij)k2,k2 is a leading principal submatrix of A . SA and SB are the sequential representations of A and 
B, respectively, by f.

Definition 1 employs the concept of a leading principal submatrix to elucidate mapping invariance. In par-
ticular, Example 1 is utilized to demonstrate that RS fails to exhibit mapping invariance.

Example 1  Let A =

(

2 3 4
0 5 5
7 0 3

)

 be a matrix and B =

(

2 3
0 5

)

 is a 2nd-order leading principal submatrix of A . The 

sequential representation SA = [2,3,4,0,5,5,7,0,3] and SB = [2,3,0,5] obtained by RS. It can be noticed 
that the third element of SA and SB appears different, although matrix A and matrix B have the same elements 
within the second row and the second column. Therefore, RS does not satisfy the mapping invariance and CS is 
in a similar situation.

The strategy of sorting matrix elements is introduced in Cantor’s diagonal argument, which demonstrates that 
the existence of uncountable sets can be proven by arranging the diagonal elements of a matrix13. Specifically, 
Cantor considered representing real numbers in a table where each row lists the digits of a decimal expansion. 
He then constructed a new number by taking diagonal elements from this table, choosing a different digit in 
each position. This newly constructed “diagonal” number differs from every number in the table, proving that 
trying to list all real numbers leads to a contradiction.

Our work draws inspiration from this idea of utilizing the diagonals of a matrix. We proposes a straightfor-
ward and efficient method for converting matrices to sequences, known as DS, to enhance the seq2seq model. 
By utilizing DS to organize matrices into sequences prior to training the seq2seq model, one can ensure a certain 
performance even when inferring about matrices with previously unseen order.

We begin by presenting an overview of DS in Fig. 2. This process consists of three steps. In Step 1, DS divides 
the matrix into multiple sub-blocks using the main diagonal elements as clues. In Step 2, the elements within 
each sub-block are sorted in the same direction to obtain corresponding sequences. Finally, in Step 3, all the 
sub-block sequences are concatenated to create the sequential representation of the matrix. Formally, DS con-
structs the sequence Si

M
 centered on each diagonal element mii for an nth-order square matrix M = (mij)n,n . The 

sequential representation SM is obtained by concatenating all Si
M

 after iterating through all diagonal elements, 
as shown in Eq. (1).

where ⊕ is the connection operation.
The bi-directionality of the encoding process of DS is evident. This process can be used to sort a given square 

matrix into sequences, and conversely, by inverting the process, sequences of length n2 can be encoded to form 
square matrices of nth order.

SA(l) = SB(l), 1 ≤ l ≤ k2 × k2,

(1)

S1
M

= [m1,1]

S2
M

= [m1,2,m2,2,m2,1]

Si
M

= [m1,i,m2,i, . . . ,mi−1,i,mi,i,mi,i−1, . . . ,mi,2,mi,1]

SM = S1
M
⊕ S2

M
⊕ · · · ⊕ Si

M
⊕ · · · ⊕ Sn

M

Figure 2.   Overview of diagonal-based sorting.
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The utilization of DS is significant as it guarantees mapping invariance, ensuring that sequences correspond-
ing to square matrices of different ranks maintain a consistent order of elements. To illustrate, let’s consider a 
matrix, A = (aij)k1,k1 , and its leading principal submatrix, B = (bij)k2,k2 . The elements of the common parts of 
the two matrices have the same ordering in the sequence obtained by DS. Specifically, for each i from 1 to k2 , the 
sequence Si = [a1,i,a2,i, . . . ,ai−1,i,ai,i,ai,i−1, . . . ,ai,2,ai,1] maintains this consistent order. Example 2 
is used for supplementary illustration.

Example 2  Same as example 1, let A =

(

2 3 4
0 5 5
7 0 3

)

 be a matrix and B =

(

2 3
0 5

)

 is a 2nd-order leading principal 

submatrix of A . In DS process, there is S1
A
= S1

B
= [2] , S2

A
= S2

B
= [3,5,0] ; therefore, the same part of A and 

B can correspond to invariant indices in the sequential representations.

Exploratory experiments
This section presents exploratory experiments aimed at examining the impact of DS in the inference process 
of the seq2seq model. We employ the Transformer model3 to learn the law of transposition of matrices. These 
experiments are relatively fundamental, as they solely involve changes in the position of elements according to 
the mapping rules. Nonetheless, they provide an appropriate context for analyzing the impact of DS. For the sake 
of conciseness, we use the terms transpose in italics to denote the exploratory experiments.

The matrices A = (aij)m,m and B = (bij)m,m serve as the inputs and outputs, respectively, of transpose, and 
naturally, A and B are mutually transposed, meaning that aij = bji . To demonstrate the benefits of DS in the 
inference process of the seq2seq model, we randomly generated 1000 pairs of such transposed matrices (A,B) , 
and incorporated varying matrix ranks in both the training and inference stages. Initially, we trained the model 
using matrices of rank 20/30, which were divided into a training set and a test set in an 8:2 ratio. Subsequently, 
the inference process was carried out on 1000 matrices of different ranks.

The outcomes of the transpose are presented in Table 1. In Table 1, we present a supplementary sorting method 
called counter-DS (c-DS) to demonstrate the extension of Definition 1. The c-DS involves sorting the elements 
of the sub-blocks in the reverse direction of DS during the sorting process. For an nth-order square matrix 
M = (mij)n,n , c-DS constructs the sequence SM according to Eq. (2). Notably, c-DS still adheres to the mapping 
invariance outlined in Definition 1. To enhance clarity, bold formatting is employed in the tables to indicate the 
sorting methods that adhere to mapping invariance, specifically DS and c-DS.

Table 1.   The results of the transposition experiments. RS, CS, DS, and c-DS represent the sorting methods 
utilized. ACCsingle indicates the percentage of accurately predicted individual matrix elements, while ACCtotal 
signifies the percentage of complete matrices that were correctly predicted.

Ranks 20 (train) (%) 19 (%) 18 (%) 17 (%) 15 (%) 12 (%) 10 (%)

ACCsingle

RS 100 10.3 10.2 10.9 10.6 11.1 11.9

CS 100 10.3 10.2 10.9 10.5 11.6 11.3

DS 100 100 100 100 99.9 99.9 99.9

c-DS 100 100 100 100 99.9 99.9 99.9

Ranks 30 (train) (%) 29 (%) 28 (%) 27 (%) 25 (%) 22 (%) 20 (%)

ACCsingle

RS 99.9 10.1 10.1 10.2 10.1 10.3 10.5

CS 100 10.1 10.1 10.1 10.1 10.3 10.8

DS 99.9 99.9 99.9 99.9 99.9 99.9 99.9

c-DS 100 99.9 99.9 99.9 99.9 99.9 99.9

Ranks 20 (train) (%) 19 (%) 18 (%) 17 (%) 15 (%) 12 (%) 10 (%)

ACCtotal

RS 100 0.0 0.0 0.0 0.0 0.0 0.0

CS 100 0.0 0.0 0.0 0.0 0.0 0.0

DS 100 100 100 100 99.8 98.7 98.5

c-DS 100 100 100 100 99.8 98.7 98.5

Ranks 30 (train) (%) 29 (%) 28 (%) 27 (%) 25 (%) 22 (%) 20 (%)

ACCtotal

RS 99.9 0.0 0.0 0.0 0.0 0.0 0.0

CS 100 0.0 0.0 0.0 0.0 0.0 0.0

DS 99.9 99.8 99.7 99.9 99.8 99.5 99.5

c-DS 100 99.9 99.9 99.9 99.9 99.9 99.9
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The accuracy metrics used to evaluate the model are ACCsingle and ACCtotal , as presented in Table 1. ACCsingle 
represents the accuracy of correctly predicting a single element of the input matrix, while ACCtotal measures the 
success of predicting a complete matrix, considering it correct only when all elements within the matrix have 
been accurately predicted.

Through a horizontal analysis of the results depicted in Table 1, we commence the model training phase using 
matrices of 20/30 rank. Subsequently, we progressively reduce the rank of the matrices to assess the model’s 
inference performance. Evaluation based on both the ACCsingle and ACCtotal metrics reveals that the seq2seq 
model, utilizing RS/CS, successfully predicts only a fraction of the matrix elements, failing to accurately predict 
the entire matrix. However, when DS/c-DS is employed as a sorting method instead, the seq2seq model achieves 
remarkable accuracy on the test matrices.

We analyze the relationship between the transpose results and the mapping invariance described in Definition 
1 using Fig. 3. During the training phase, the model captures features from input matrices of known ranks and 
successfully predicts the corresponding target matrices. However, in the inference phase, the accuracy of the 
model’s autoregressive predictions is heavily influenced by the sequence order of tokens. To illustrate, consider 
the example depicted in Fig. 3. While the model accurately fits a certain pair of transposed matrices at the 3rd 
order during training, it struggles to predict the 2nd order leading principal submatrices of the same matrix 
during inference. This is due to the disruption in the sequence order caused by RS, as elements are removed 
when reducing the matrix rank, violating the mapping invariance. In contrast, using DS maintains the consistent 
order of elements in the sequences, ensuring that corresponding elements in the target matrices align properly. 
Considering the findings in Table 1, it is evident that RS/CS primarily predicts the elements in the first row/
column of the target matrix, while DS/c-DS accurately predicts the entire matrix.

Experiments
Experimental environment
To further assess the impact of DS on the seq2seq model, we performed experiments using more complex data-
sets in addition to those previously discussed in “Exploratory experiments”,. Specifically, we explored sequence 
prediction tasks such as Maximum Independent Set and Sudoku. The experimental environment was set up with 
an NVIDIA Tesla V100-SXM2 GPU with 32 GB of memory and the Debian 8.3.0 operating system. For imple-
mentation, we utilized Python 3.8 and PyTorch 1.10, along with NetworkX 2.8 for constructing graph-related 
datasets. All codes used for reproduction can be accessed in the https://​github.​com/​Peng-​weil/​ds-​for-​seq2s​eq. All 
the experimental results are averaged over 5 independent runs. It is important to note that the matrices requiring 
diagonal sorting in our experiments were predominantly square matrices. In cases where non-square matrices 
were encountered, we ensured a square matrix shape by populating it with special characters.

The experiments utilized the standard Transformer model as the seq2seq model, incorporating the following 
hyperparameters3:

(2)

S1
M

= [m1,1]

S2
M

= [m2,1,m2,2,m1,2]

Si
M

= [mi,1,mi,2, . . . ,mi,i−1,mi,i,mi−1,i, . . . ,m2,i,m1,i]

SM = S1
M
⊕ S2

M
⊕ · · · ⊕ Si

M
⊕ · · · ⊕ Sn

M

<5><BOS> <2> <0> <3> <EOS>

<3><BOS> <2> <0> <5> <EOS>

training stage

<BOS> <2> <0> <5> <3> <7> <EOS><4><5><3><0><BOS> <2> <0>

Diagonal-based Sorting

<BOS> <2> <0> <3> <5> <EOS><3><5><4><0><BOS> <2> <0> <7>

Row-based Sorting

inference stage

INCORRECT

CORRECT

Diagonal-based Sorting

Row-based Sorting

target predictioninput matrix

input matrix target prediction

Figure 3.   Schematic illustration for analysis of transposition experiment results.

https://github.com/Peng-weil/ds-for-seq2seq
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•	 8 attention heads,
•	 6 encoder and decoder layers,
•	 256 embedding dimension,
•	 Adam optimizer with 10−4 learning rate.

Maximum independent set
Dataset
The concept of the maximum independent set holds significant importance in the field of graph theory. It refers 
to a collection of disconnected nodes in a graph, and adding any new node from the graph to this set creates 
a connection between some two vertices in the set. Formally, Let G = (V ,E) be an undirected graph, where V 
represents the set of vertices and E represents the set of edges. An independent set, denoted as I, is a subset of 
V in which no two vertices are adjacent (i.e., there is no edge connecting any pair of vertices in I). The maxi-
mum independent set, denoted as Imax , is the largest possible independent set within the given graph G, it is an 
independent set with the greatest number of vertices. The size of Imax is denoted as |Imax| , which represents the 
cardinality or the number of vertices in the maximum independent set. The problem of finding the maximum 
independent set is known as the “Maximum Independent Set problem”, which is a well-known NP-hard problem 
in computer science. It provides insights into the structure and connectivity of graphs and plays a crucial role 
in algorithm design and analysis.

The dataset DMIS = (AG , SI ) is created to characterize the transformation of the maximum independent set, 
as depicted in Fig. 4. Here, AG denotes the adjacency matrix of a graph G, and SI represents the maximum inde-
pendent set of G in the form of a sequence. To ensure semantic consistency with the elements in AG , when the 
value in SI is 0, it signifies that the corresponding node at that position index is independent and not connected. 
Conversely, when the value is 1, it indicates the opposite. The NetworkX library is utilized for computing the 
maximum independent set of graph G to guarantee dataset accuracy. Furthermore, we assign the unique label 
to the maximum independent set that has the earliest sequential order according to the node numbers.

Results

The performance of the seq2seq model with various sorting methods in the Maximum Independent Set experi-
ment is presented in Table 2. In line with the experiments mentioned in “Exploratory experiments”, the initial 
training is conducted on a 16/25-node graph, which is subsequently stepwise reduced in size to assess the infer-
ence performance of the models using ACCsingle and ACCtotal as evaluation metrics.

The seq2seq models employing four distinct sorting methods demonstrate exceptional accuracy when tested 
on a graph containing the same number of nodes as the training data graph. However, as the number of nodes 
decreases, the RS/CS method struggles to accurately predict the label sequence, despite the sequence length 
being a mere 12–15 tokens. On the other hand, the DS/c-DS method maintains a certain level of accuracy, 
albeit with a noticeable decline as the number of nodes decreases. It is worth noting that in both the 16 node 
and 25 node experiments, the model’s accuracy decreases as the difference between the seen matrix rank and 
the unseen matrix rank increases. This indicates that as the gap widens between test data and training data, the 
model finds it increasingly difficult to leverage patterns learned during training. However, methods that do not 
guarantee mapping invariance exacerbate the problem due to elements shifting to other positions. By contrast, 
DS maintains consistency in element ordering, preserving training generalizability as much as possible. Table 2 
showcases a discernible trend indicating that the performance of the seq2seq model is significantly influenced 
by encoding the input data into an appropriate sequence prior to training.

Sudoku
Dataset
Sudoku is a logic-based number puzzle that has gained worldwide popularity. The game is played on a 9 × 9 grid, 
composed of nine 3 × 3 boxes. The objective of the game is to fill the grid with the numbers 1–9, ensuring that 
each number appears only once. The puzzle follows three primary rules: each row and column must contain the 
numbers 1–9, and each 3 × 3 box must also include these numbers.

Figure 4.   Illustration of the dataset for the maximum independent set experiment, where the adjacency matrix 
AG of one of a graph G is the input of the model and SI is the output of the model.
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Numerous studies have utilized neural networks to solve Sudoku puzzles14,15. The input for a Sudoku data-
set typically consists of a 9 × 9 matrix with numbers ranging from 0 to 9. In this representation, 0 signifies an 
empty cell that requires filling to conform to the Sudoku rules, while numbers 1–9 denote cells already filled 
with respective values. The output is a 9 × 9 Sudoku solution wherein each cell contains a number from 1 to 9. 
The Sudoku dataset can be effectively utilized for training a seq2seq model. In this section, we utilize a dataset 
of 100 K Sudoku puzzles to evaluate the effectiveness of the seq2seq model in learning Sudoku patterns across 
various sorting methods.

Results

The Sudoku dataset of size 100 K is divided into training and testing sets in an 8:2 ratio. The seq2seq model is 
then trained using four sorting methods, and the results are presented in Table 3. Both seq2seq models, under 
RS/CS and DS/c-DS, demonstrate high accuracy in predicting individual elements on the test set. This indicates 
that both sorting strategies effectively accommodate the features of Sudoku data and utilize them for predictions. 
It is important to note that the presence of numbers from the puzzle in some Sudoku puzzles leads to higher 
accuracy in predicting individual elements. However, when it comes to predicting an entire puzzle correctly, the 

Table 2.   The results of the maximum independent set experiments with 16-node graph training on 200 K data 
and 25-node graph training on 400 K data.

Nodes 16 (train) (%) 15 (%) 14 (%) 13 (%) 12 (%)

ACC​single

 RS 99.9 67.93 65.08 63.53 62.45

 CS 99.98 67.83 66.14 64.9 64.25

 DS 99.99 99.78 99.81 98.51 95.84

 c-DS 99.99 99.8 99.73 99.81 99.08

Nodes 25 (train) (%) 24 (%) 23 (%) 22 (%) 21 (%)

 RS 99.98 67.91 63.24 62.83 61.14

 CS 99.37 62.34 59.18 57.27 58.6

 DS 99.95 99.56 98.88 97.11 96.98

 c-DS 99.87 99.34 98.74 98.57 97.69

Nodes 16 (train) (%) 15 (%) 14 (%) 13 (%) 12 (%)

ACC​total

 RS 99.99 0.11 0.05 0.1 0.15

 CS 99.83 0.15 0.13 0.27 0.4

 DS 99.99 96.86 97.56 85.29 69.82

 c-DS 99.98 97.14 96.62 97.71 90.14

Nodes 25 (train) (%) 24 (%) 23 (%) 22 (%) 21 (%)

 RS 97.6 0.16 0.14 0.06 0.08

 CS 98.34 0.07 0.11 0.15 0.1

 DS 98.96 90.74 77.67 75.24 68.52

 c-DS 97.19 85.87 74.53 76.77 66.41

Table 3.   The results of the Sudoku experiments with 100 K puzzles.

Training set (%) Test set (%)

ACCsingle

 RS 99.93 96.49

 CS 99.63 96.21

 DS 99.99 99.67

 c-DS 99.99 99.54

ACCtotal

 RS 94.8 10.30

 CS 95.8 16.32

 DS 99.14 62.86

 c-DS 99.0 57.75
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seq2seq model with DS/c-DS exhibits higher accuracy compared to RS/CS. This could be because DS compacts 
the first 3 × 3 section of the Sudoku, thereby facilitating the learning of attentional mechanisms.

Related works
A highly relevant approach is to encode numbers as symbolic sequences and use text-based architectures like 
Transformer for training and inference, which can be seen as a neural-symbolic method. Saxton et al.16 brought 
this problem into view earlier by proposing a dataset containing various mathematical problems and conducting 
large-scale benchmark tests on Transformer models and LSTMs with attention mechanisms, demonstrating these 
models can achieve moderate performance on some mathematical problems. The study by Lample et al.4is par-
ticularly relevant to our research as they employ the Transformer model to perform symbolic operations, includ-
ing differentiation, integration, and solving ordinary differential equations. In order to train the model using 
mathematical expressions, they use prefix encoding to convert formulas into sequences that can be processed 
by the model. Lewkowycz et al.17trained a large language model called Minerva that is capable of solving middle 
school to college level math and science problems without relying on external tools, by continuing pretrain-
ing it on technical subject data. Their model achieves state-of-the-art results on several quantitative reasoning 
benchmark datasets. Faber and Wattenhofer18 proposed a novel neural architecture called Neural Status Registers 
tailored for learning comparisons between numbers, which can be combined with other models to solve interest-
ing problems requiring comparisons, such as piecewise-defined functions, image digit comparison, recurrent 
computation like finding minimum elements, and more. The key difference between the aforementioned works 
and our work is that we process more abstract data with a specific focus on matrix-type data. More specifically, 
the input data in our case can be represented in matrix form where each element has certain relationships with 
other elements in its row and column. Moreover, we design a novel matrix-to-sequence encoding tailored for 
seq2seq models. This enables the models to achieve reasonable prediction performance even when tested on 
matrices of unseen ranks.

The permutation invariance in set-to-sequence paradigm provides inspiration for proposing mapping invari-
ance in this study. With the set-to-sequence approach, the input consists of an unordered collection of elements, 
while the output is an ordered sequence19. Unlike the widely used seq2seq method, the set-to-sequence approach 
needs to address the appropriate representation of the input set, given its unordered nature.

In recent years, the integration of Transformer models with mathematical problems has become a significant 
focus of research20–25. For example, d’Ascoli et al.26train a Transformer model to infer functions and recursive 
relationships for integer or floating-point number sequences. Their evaluation, conducted on a subset of OEIS 
sequences, demonstrates the model’s superior performance compared to built-in Mathematica functions in recur-
sive prediction. Popov et al.27propose a novel deep learning framework that utilizes a variational autoencoder 
to generate symbolic expressions. Their approach outperforms contemporary symbolic regression benchmarks, 
especially in noisy conditions. Additionally, Cornelio et al.28highlight the derivation of models for natural phe-
nomena from axiomatic knowledge and experimental data through the fusion of logical inference and symbolic 
regression. Mandlecha et al.29proposed a hybrid tokenization technique to encode mathematical and science 
problems which requires less memory and achieves better accuracy compared to character-level tokenization 
in several domains. They also introduced an extensive dataset of mathematical and science problems spanning 
topics like calculus, linear algebra, mechanics, optics, etc. Frieder et al.30 assess ChatGPT’s mathematical capabili-
ties using publicly available and handcrafted datasets and compare its performance to other models trained on 
mathematical corpora, such as Minerva. They also simulate various use cases that mathematicians encounter in 
their daily professional activities, such as question-answering and theorem searching, to determine if ChatGPT 
can serve as a useful assistant for professional mathematicians.

Conclusions
Numerous studies have underscored the potential of seq2seq models in addressing mathematical problems such 
as calculus, geometry, and mathematical word problems. Despite these achievements, seq2seq models employing 
generic sorting methods have encountered difficulties in comprehending the specific rules embedded within 
matrix data. Specifically, these models have struggled to make accurate inferences over matrices with unseen 
rank, resulting in less optimal outcomes. To overcome these limitations, this research delves into the matrix-
to-sequence process of seq2seq models and proposes DS as a solution for attaining sequential representations 
of matrices. DS guarantees a consistent ordering of elements in the shared leading principal submatrices across 
matrices of various orders. Such consistency is paramount for precise inference in seq2seq models. This study 
presents an exploratory experiment that emphasizes the urgency of introducing DS. Additionally, maximum 
independent set and sudoku experiments are conducted to illustrate the advantages of DS compared to generic 
sorting methods. By harnessing DS, seq2seq models enhance their ability to uncover patterns within matrix data 
and possess the potential for solving matrix-related tasks.

Although DS exhibits certain limitations and seq2seq models with DS currently face instability in terms of 
inference accuracy, there is a need for improvement to facilitate practical applications. For future endeavors, 
we intend to introduce a neural symbol approach that leverages a priori symbols within the model to represent 
matrix knowledge. This proposed approach will enable the utilization of the computational capabilities of seq2seq 
models for broader application domains.

Data availability
All the data utilized for analysis in this study were generated using custom code, thereby eliminating the need for 
any publicly available third-party datasets. The code employed to reproduce the experimental results, as well as 
the code used for generating the data, is accessible at https://​github.​com/​Peng-​weil/​ds-​for-​seq2s​eq. The trained 
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model data and the dataset can be accessed through the following link: https://​drive.​google.​com/​file/d/​1r9OV​
IqI5f​z7m2c​I5fT9​DoVTW​1Oe0V​Zl6.
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