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Conformational diversity 
and protein–protein interfaces 
in drug repurposing in Ras signaling 
pathway
Ahenk Zeynep Sayin 1, Zeynep Abali 2, Simge Senyuz 2, Fatma Cankara 2, Attila Gursoy 3 & 
Ozlem Keskin 1*

We focus on drug repurposing in the Ras signaling pathway, considering structural similarities 
of protein–protein interfaces. The interfaces formed by physically interacting proteins are found 
from PDB if available and via PRISM (PRotein Interaction by Structural Matching) otherwise. The 
structural coverage of these interactions has been increased from 21 to 92% using PRISM. Multiple 
conformations of each protein are used to include protein dynamics and diversity. Next, we find FDA-
approved drugs bound to structurally similar protein–protein interfaces. The results suggest that HIV 
protease inhibitors tipranavir, indinavir, and saquinavir may bind to EGFR and ERBB3/HER3 interface. 
Tipranavir and indinavir may also bind to EGFR and ERBB2/HER2 interface. Additionally, a drug used 
in Alzheimer’s disease can bind to RAF1 and BRAF interface. Hence, we propose a methodology to find 
drugs to be potentially used for cancer using a dataset of structurally similar protein–protein interface 
clusters rather than pockets in a systematic way.

Abbreviations
CDK4  Cyclin-dependent kinase 4
CDK6  Cyclin-dependent kinase 6
CDKN2D  Cyclin-dependent kinase inhibitor 2D
EGF  Epidermal growth factor
EGFR  Epidermal growth factor receptor
ERK  Extracellular signal-regulated kinase
FDA  Food and Drug Administration
HIV  Human immunodeficiency virus
HTR4  Human serotonin receptor 4
MAPK  Mitogen-activated protein kinase
MEK  Mitogen-activated protein kinase kinase
mTOR  Mammalian target of rapamycin
PDB  Protein Data Bank
PI3K  Phosphatidylinositol-3 kinase
PPI  Protein–protein interaction

Drug repurposing or drug repositioning, using a drug for an indication other than its original purpose, is an 
attractive option compared to the long and costly process of developing a new  drug1,2. The drug to be repurposed 
has already been studied for its safety and has extensive data on its pharmacokinetics. As a result, many stages 
of drug development can be  omitted3. Some examples of successfully repurposed drugs are thalidomide and 
sildenafil. Thalidomide, an antiemetic drug for pregnant women that was subsequently proven to have teratogenic 
effects, has been repurposed to be used in leprosy and sildenafil, a drug originally developed for angina, has 
been used in erectile  dysfunction4. Current drug repurposing cases typically follow a disease-centric approach, 
but when disease-focused repurposing reaches its limits, target-centric and drug-centric repurposing relying 
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on structural data will be  crucial5. Docking and virtual screening are some of the most common methods in 
computational drug repurposing for preliminary  studies6. Some of the structure-based virtual screening web 
servers for drug repurposing are ACID (using inverse docking  approach7), DRDOCK (combining docking and 
molecular dynamic simulations for a target  protein8), and MTiOpenScreen (using docking or blind  docking9).

Cell signaling is the transmission of an external signal to activate certain mechanisms in the  cell10. Ras/Raf/
MEK/ERK signaling pathway plays a role in the transduction of a signal received from an extracellular receptor 
to the cell nucleus to regulate biological functions, including cell proliferation, differentiation, apoptosis, and 
stress  response11–14. Dysregulation of this pathway is associated with diseases such as inflammation, develop-
mental disorders, neurodegenerative  disorders11,15–17 and is observed in approximately one-third of all human 
 cancers18. Consequently, various drugs targeting this pathway have been developed. Vemurafenib, dabrafenib, 
and trametinib are some examples of MAPK inhibitors used in cancer  therapy19. Proteins in this pathway interact 
with other proteins and these interactions take place through protein–protein  interfaces20. Hence, protein–pro-
tein interfaces are critical targets for drugs to regulate abnormal protein–protein interactions (PPIs) in this 
 pathway21,22. Disruption of a PPI by targeting the interface with a drug may interrupt the transduction of a signal 
that promotes tumorigenesis, thereby being beneficial in cancer  therapy23. From our previous studies, we know 
different proteins can form similar protein–protein interface  architectures24–26. Using similar interfaces, Engin 
et al.27 proposed that drugs binding to an interface might also bind to another interface with a similar structure. 
Their case study showed that the drugs binding to the interface between CDK6 and CDKN2D also bind to the 
interface between CDK4 and CDKN2D, which has a similar interface, with comparable binding energies.

Here, our aim is to use a non-redundant protein–protein interface dataset that is clustered based on struc-
tural similarity for drug repurposing. We preferred studying protein–protein interfaces rather than the binding 
pockets because target proteins may sometimes lack binding pockets, limiting their druggability, such as in the 
case of RAS protein  family28–30. Moreover, molecular glue is a new concept that may be used to make the targets 
druggable, which were once considered as undruggable and the protein–protein interfaces are perfect for this 
 approach31. In this study, we focused on protein–protein interfaces of Ras/Raf/MEK/ERK signaling pathway. We 
studied interfaces that are available in Protein Data Bank (PDB)32 and used PRISM web  server33,34, a prediction 
tool for protein–protein interactions at the structural level, to predict the interfaces between any two physically 
interacting proteins of Ras/Raf/MEK/ERK signaling pathway when there is no experimental data. Proteins are 
dynamic and the conformational space is diverse. The availability of different conformations is crucial to find-
ing the right one that fits the drug molecule and PDB is getting richer with many conformations for a single 
protein. Here, we used an ensemble of conformations rather than taking a single structure in the predictions 
(Fig. 1). Considering alternative conformations of each protein, the number of successfully predicted interac-
tions  increases35. We extracted drugs already bound to the interfaces as candidates of drug repurposing for target 
proteins with structurally similar interfaces. Finally, we performed docking to propose drugs to be repurposed 
and found literature evidence showing that the algorithm we used here can be promising in suggesting new uses 
for already known drugs.

Figure 1.  Protein–protein interactions with multiple conformations. Interacting proteins, Protein 1 (P1) and 
Protein 2 (P2) have three and two conformations, respectively. Considering the multiple conformations of each 
protein, there are six possible interactions in theory (represented with grey edges) but in reality, only some of 
these interactions can be found (three of them in this case).
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Results
The Ras/Raf/MEK/ERK signaling pathway is reconstructed by 16 proteins in the KEGG  database36–38 under the 
EGF–EGFR–RAS–ERK signaling pathway and their top 10 interactors according to STRING  database39. All 
available structures of these 26 proteins in  PDB32 are grouped based on sequence and structural similarity. The 
representatives of the alternative conformation groups of these proteins can be found in Supplementary Table S1. 
These conformations either correspond to the alternative conformations of the same region or may correspond 
to different parts of a protein. The pathway proteins have 4.56 ± 5.20 conformations on average. The structures 
of GAB2 in PDB have less than 30 amino acids and are eliminated in the grouping process. Its  AlphaFold40,41 
model is used in the following steps.

The network of Ras/Raf/MEK/ERK signaling pathway consists of 26 proteins and 72 interactions. When the 
alternative conformations of each protein are considered, there are 2564 possible interactions in theory, resulting 
from 72 interactions between 26 proteins. Figure 1 shows this concept: one interaction results in six interactions 
in theory between alternative conformations in Fig. 1. Interacting protein pairs considering alternative confor-
mations are submitted to the PRISM web  server33,34. PRISM simulations predicted 3309 complexes for 66 of 72 
interactions reported in STRING. The number of the predicted complexes is more than the number of possible 
interactions because PRISM may predict more than one protein–protein complex structure for a pair of proteins. 
These interactions can be seen in Fig. 2. With the PRISM predictions, the structural coverage of protein–protein 
complexes formed by physically interacting proteins of this pathway has been increased from 15 to 66 out of 72 
interactions found on  STRING39 with the highest confidence score (≥ 0.900). These results correspond to 999 
of all 2564 possible interactions among alternative conformations and through 630 unique protein interface 
templates (Supplementary Text S1). The results involve some complexes for the same protein structures with dif-
ferent binding energy predictions. All the predictions are used in the next steps to avoid missing any new targets.

Additionally, there are 994 PDB structures, 521 of which have more than one chain, involving at least one of 
the 16 proteins in the EGF–EGFR–RAS–ERK signaling pathway. In total, 1296 protein interfaces were formed 
in these PDB entries. These interfaces are combined with the interfaces predicted by PRISM.

Figure 2.  Protein–protein interaction network of Ras/Raf/MEK/ERK signaling pathway. Nodes represent 
proteins and proteins connected by edges represent the interaction between those proteins. If the edge is black, 
the complex of interacting proteins is available in PDB. If the edge is purple, the complex is not available in PDB 
but is predicted by PRISM. If the edge is a dashed line, the complex is neither available in PDB nor predicted by 
 PRISM42.
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A structurally non-redundant dataset of protein–protein interface clusters (Supplementary Dataset S3)43 is 
used to find possible new drug–target pairs. A schematic representation of two scenarios is shown in Fig. 3. The 
first one is “Repurposing To”, where a drug bound to one of the interfaces in a protein–protein interface cluster 
may bind to an interface in the same cluster that belongs to the Ras/Raf/MEK/ERK pathway. In the second sce-
nario of “Repurposing From”, a drug bound to a protein interface in Ras/Raf/MEK/ERK pathway may also bind 
to another protein interface that is in the same cluster, and the protein is not in the Ras/Raf/MEK/ERK pathway.

We filtered the clusters that contain all the template interfaces of the PRISM predictions and experimental 
PDB structures for the “Repurposing To” strategy. With the approach of “Repurposing To”, there are 441 and 
71 possible new drug–target pairs from PRISM results and PDB entries of pathway proteins, respectively (Sup-
plementary Table S2).

Considering unique protein interfaces of PRISM predictions, there are five different FDA-approved drugs 
bound to six different protein interfaces. In contrast, there are eight protein interfaces with three different FDA-
approved drugs among the interfaces related to EGF–EGFR–RAS–ERK signaling pathway in PDB entries. The 
mentioned interfaces and drugs can be seen in Supplementary Table S3. These protein interfaces are used for the 
“Repurposing From” strategy (see “Methods” for details). With the approach explained as “Repurposing From”, 
we have 72 possible new drug–target pairs from PRISM predictions and 120 from protein interfaces in pathway 
PDB entries (Supplementary Table S4).

We further performed docking for these drug–target pairs and the results were analyzed according to 
the binding free energy (Supplementary Table S5). A previous study proposed an average binding energy of 
− 7.75 ± 0.06 kcal/mol44. Accordingly, new targets are presented in Table 1. These proteins contain both intracel-
lular domains or extracellular domains and a result between intra- and extracellular regions is not biologically 
meaningful. Therefore, we eliminated such cases.

To compare the binding energies of randomly selected drugs to these interfaces, a control set of 35 drugs is 
docked to the interfaces presented in Table 1. The average binding energy of these drugs to the protein–protein 
interfaces is − 5.57 kcal/mol, whereas the median is − 5.52 kcal/mol. When the distribution of the binding ener-
gies is assessed (Supplementary Fig. S1), it is seen that there is a drastic decrease in the number of docking scores 
below − 7.33 kcal/mol, which is consistent with our cut-off value for the proposed drug repurposing candidates.

Table 1 presents the protein–protein interfaces proposed for drug repurposing (columns 1 and 2) and the 
protein complexes (column 5) with a drug bound to their interfaces that have structural similarity to the proposed 
interfaces. These protein–protein interfaces, the drug binding protein chain of the protein–protein interface, 

Figure 3.  Identification of new drug–target pairs. A solid line represents a drug bound to an interface. 
Identified new drug–target pairs are represented with a dotted line with an arrow.
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the protein that the drug is originally bound to and the structural  alignment45 of their interfaces can be seen in 
Fig. 4. Tipranavir and indinavir form two hydrogen bonds with EGFR, while saquinavir forms four hydrogen 
bonds with ERBB3 at the ERBB3–EGFR  interface46. Tipranavir and indinavir at the interface of ERBB2–EGFR 
have one and two hydrogen bonds with ERBB2,  respectively46. The hydrogen bond between indinavir and ASP29 
of HIV protease is maintained between indinavir and ASP360 of ERBB2. Moreover, the hydrogen bond between 
the galantamine and its original interface is also present between galantamine and BRAF-RAF1  interface46. 
Lastly, granisetron interacts with BRAF through hydrophobic  contacts46 as it does with mutant binding protein 
(5HTBP-AChBP), which is the protein that it is originally bound to in PDB. Furthermore, the interfaces of the 
original targets and the proposed new targets of the drugs are structurally aligned according to  MultiProt45 
results. The RMSD of the matched interface residues are 1.72 Å, 1.85 Å, 1.88 Å, 1.88 Å, 1.74 Å, 1.53 Å and 1.53 Å 
for the structural alignments in Fig. 4c, Fig. 4,e,g,i,k,m,o, respectively. In Fig. 4, it can be seen that the drugs are 
binding to the same region of the aligned structures.

Since mutations at the interface may alter the protein–protein interactions and the interaction with ligands, 
residues where cancer mutations are observed are extracted from the COSMIC  database49. Then, they are mapped 
to the interface residues and the effect of the mutations on the protein function is predicted by  SIFT50. The cancer 
mutations located at the interfaces (of the protein–protein complexes in Table 1) can be seen in Fig. 5. At the 
interface of the ERBB3–EGFR complex, ERBB3 has two mutations predicted as deleterious to the protein function 
out of six mutations located at the interface, but only one of the deleterious mutations (Q138L) is at the ligand 
contacting residues (i.e., with a distance of less than 5 Å) of the proposed drug repurposing candidates. On the 
other hand, EGFR has eight residues at the interface where cancer mutations are observed, but none of them are 
predicted to be deleterious by SIFT. There are four residues of RAF1 and thirteen residues of BRAF related to 
cancer mutations at the interface of BRAF–RAF1 complex. The mutations of RAF1 are predicted as functionally 
neutral, but six of BRAF mutations are predicted to be deleterious by SIFT. However, these deleterious mutations 
are not at the contacting residues of galantamine or granisetron. Moreover, ERBB2 has one deleterious mutation 
(P416T or P416L) at the contacting residues of indinavir and tipranavir among the three mutations located at 
the interface of ERBB2–EGFR complex. Lastly, one of the eight mutations located at the interface residues of 
EGFR is predicted to be deleterious (N444I) in addition to being one of the contacting residues of indinavir and 
tipranavir. Mapped mutations for all the complexes used in this study are presented in Supplementary Table S7 
and Supplementary Table S8. The frequency and tissue information of the mutations from COSMIC  database49 
that are located at the interface of the protein–protein complexes in Table 1 and their predicted SIFT score can 
be found in Supplementary Table S9.

The sensitivities of cancer cells to our proposed drug repurposing candidates and to the drugs that are used 
in cancer treatment are extracted from  DepMap51. Erlotinib, gefitinib, lapatinib, afatinib, dacomitinib, and osi-
mertinib are EGFR inhibitors, whereas lapatinib and afatinib also target  ERBB252. Cancer cells exposed to our 
proposed drug repurposing candidates tipranavir and saquinavir binding to EGFR-ERBB3 and/or EGFR-ERBB2 
interfaces had less viability than the control group. Moreover, cancer cells were more sensitive to tipranavir and 
saquinavir than to erlotinib and afatinib, which are cancer drugs (Fig. 6a). Furthermore, higher drug sensitivity 
is observed with tipranavir on cancer cells compared to dacomitinib and osimertinib. Vemurafenib is a BRAF 
inhibitor, whereas dabrafenib targets both BRAF and RAF1. Granisetron, which is suggested to be binding to 
BRAF-RAF1 interface, leads to higher sensitivity in cancer cells than cancer drugs vemurafenib and dabrafenib 
(Fig. 6b). When the cell lines used in this analysis are grouped by their primary diseases, the group with the 
highest number of cell lines is non-small cell lung cancer, followed by melanoma and diffuse glioma (Supple-
mentary Fig. S2).

Table 1.  Proposed drug repurposing candidates. a The chains that the drug is bound are in bold. b Only one 
of the interfaces that the drug is originally bound to is provided in the table. All interfaces are presented in 
Supplementary Table S6.

Chain  1a Chain  2a Drug name Ligand ID Original interfaces with the  drugb ΔG (kcal/mol)

ERBB3
(4LEO_C)

EGFR
(4UIP_A) Tipranavir TPV HIV-1 Protease

(1D4S_A_B) − 7.334

RAF1
(6XGU_B)

BRAF
(6Q0K_A) Granisetron CWB

Mutant Binding Protein
(5HTBP-AchBP)
(2YME_A_B)

− 7.580

ERBB3
(4LEO_C)

EGFR
(4UIP_A) Indinavir MK1 HIV-II Protease

(1HSH_A_B) − 7.532

RAF1
(6XGU_B)

BRAF
(6Q0K_A) Galantamine GNT Ach-binding Protein

(2PH9_C_D) − 7.382

ERBB3
(4LEO_C)

EGFR
(4UIP_A) Saquinavir ROC HIV-1 Protease

(1HXB_A_B) − 7.379

ERBB2
(3N85_A)

EGFR
(1YY9_A) Tipranavir TPV HIV-1 Protease

(1D4S_A_B) − 7.351

ERBB2
(3N85_A)

EGFR
(1YY9_A) Indinavir MK1 HIV-II Protease

(1HSH_A_B) − 7.302
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Discussion
Drug repurposing may adopt a ligand-based approach or target-based approach. Here, we used a new concept, 
the structural similarities of the protein–protein interfaces to propose new targets for the FDA-approved drugs 
in Ras signaling pathway. This method required the 3-dimensional structures of the protein–protein complexes. 
However, only 21% of the physically interacting protein complexes on  STRING39 with the highest confidence 
score were available in PDB for our network. Using PRISM, a template-based structural prediction tool, structural 
coverage of the network is increased to 92% for these protein–protein interactions on  STRING39. Thus, we could 
use more protein–protein interfaces in our further steps, such as filtering the interfaces with FDA-approved drugs 
and identifying new drug–target pairs to search for drug repurposing candidates. Here, the conformational diver-
sity of proteins is integrated by using multiple conformations of the pathway proteins. For instance, if just one 
structure (PDB ID:3KSY Chain ID:A) of SOS1 had been used, protein–protein complex structures for only 60% 
of the listed interactions would have been found, but the value is increased to 90% using multiple conformations. 
After the prediction of the complexes that are not available in the literature, new drug–target pairs are identified 
using a structurally clustered protein–protein interface dataset. Drugs that are suggested for repurposing are 
determined according to their binding free energy prediction via docking (Table 1) to similar interfaces. The 
protein chain having a favorable binding energy for target–ligand complex is stated as the new target.

Three of the results involve EGFR-ERBB3 protein interface formed by structures with PDB IDs of 4UIP and 
4LEO with chain IDs of A and C, respectively. EGFR is a transmembrane protein of ErbB family of tyrosine 
kinase  receptors53. EGFR, also known as HER1, involves extracellular region comprising four domains, trans-
membrane region and intracellular region with tyrosine kinase  domain54,55. Domain III of the extracellular region 
plays a role in ligand  binding53. ERBB3, also known as HER3, is also a member of ErbB family and consists of 
three regions, namely extracellular, transmembrane and intracellular regions. Its extracellular region also has 
four domains among which domains I and III are involved in binding of its natural ligand  heregulin56. EGFR 
and ERBB3 can form heterodimers as well as homodimers resulting in activation of MAPK/ERK and PI3K/Akt 
signaling pathways that are responsible for cell migration and  proliferation57–59. Previous studies showed that 
EGFR-ERBB3 heterodimer is involved in signaling which promotes metastasis in melanoma cells and activation 
of  MAPK60. According to another study, upregulation, mutation or catalytic activation of ErbB family proteins 
are associated with breast, ovarian, colorectal, pancreatic, and lung cancer. Moreover, targeting a single protein 
in therapy might fail because of the crosstalk between ErbB family that activates downstream pathways. In that 
study, it is also reported that targeting the EGFR-ERBB3 interface for breast cancer is an improved strategy where 
malignancies exhibit resistance to treatment that targets a single  protein61.

Structures with PDB IDs of 4LEO and 4UIP are extracellular domains of ERBB3 and EGFR, respectively. A 
previous study suggested that targeting the extracellular domain of EGFR is promising in colorectal cancer treat-
ment where there is resistance to EGFR inhibitors cetuximab and  panitumumab62,63. In our results, tipranavir 
and indinavir bind to EGFR with favorable binding energy at the interface formed between EGFR and ERBB3 
(Fig. 4b,d). Both indinavir and tipranavir are drugs used in the treatment of HIV  infection52. Tipranavir and 
indinavir were approved by FDA in 2005 and 1996,  respectively64,65. They both bind to the active site of HIV 
protease enzyme to prevent hydrolysis of peptide bonds which is necessary for the life cycle of  HIV66. According 
to docking results, tipranavir and indinavir are bound to domain III of EGFR extracellular domain. In another 
study, cetuximab which is an EGFR inhibitor is also bound to the domain  III67 suggesting that these HIV protease 
inhibitors might be used in cancer treatment.

The other drug that binds to the same interface formed by these protein structures is saquinavir which is also 
an HIV protease inhibitor. Saquinavir binds to ERBB3 with a lower (better) energy. Saquinavir was approved in 
1995, being the first HIV protease inhibitor approved by  FDA68. Saquinavir is bound to the domain I of ERBB3 
extracellular domain (Fig. 4f), which is one of the domains involved in ligand binding and inhibition may prevent 
activation of downstream signaling pathways that play a role in the growth of cancer cells.

Tipranavir and indinavir also bind to the interface formed between EGFR and ERBB2, with a lower bind-
ing energy to ERBB2 protein chain (Fig. 4h,j). The complex consists of chain A of structure with PDB ID 1YY9 

Figure 4.  ERBB3–EGFR, ERBB2–EGFR, RAF1–BRAF interface results. (a) ERBB3–EGFR, ERBB2–EGFR and 
BRAF–RAF1 complexes. (b) Tipranavir with EGFR (4UIP_A), represented in pink with domain III in darker 
 shade32,47, and its original target HIV protease (1D4S_A). (c) Structural alignment of EGFR and HIV protease 
interfaces with  tipranavir45. (d) Indinavir with EGFR (4UIP_A), represented in pink with domain III in darker 
 shade32,47, and its original target HIV protease (1HSH_A). (e) Structural alignment of EGFR and HIV protease 
interfaces with  indinavir45. (f) Saquinavir with ERBB3 (4LEO_C), represented in orange with domain I in 
darker  shade32,47, and its original target HIV protease (1HXB_A). (g) Structural alignment of ERBB3 and HIV 
protease interfaces with  saquinavir45. (h) Tipranavir with ERBB2 (3N85_A), represented in blue with domain III 
in darker  shade32,47, and its original target HIV protease (1D4S_B). (i) Structural alignment of ERBB2 and HIV 
protease interfaces with  tipranavir45. (j) Indinavir with ERBB2 (3N85_A), represented in blue with domain III in 
darker  shade32,47, and its original target HIV protease (1HSH_A). (k) Structural alignment of ERBB2 and HIV 
protease interfaces with  indinavir45. (l) Galantamine with BRAF (6Q0K_A) and its original target acetylcholine 
binding protein (2PH9_C). (m) Structural alignment of BRAF and acetylcholine binding protein with 
 galantamine45. (n) Granisetron with BRAF (6Q0K_A) and its original target mutant binding protein (2YME_A). 
(o) Structural alignment of BRAF and mutant binding protein with  granisetron45 (Molecular graphics 
performed with UCSF Chimera, developed by the Resource for Biocomputing, Visualization, and Informatics at 
the University of California, San Francisco, supported by NIH P41-GM103311.048. Ligand–protein interactions 
and structural alignment are performed with  LigPlot46 and  MultiProt45, respectively).

▸
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and chain A of structure with PDB ID 3N85 representing EGFR extracellular domain and ERBB2 extracellular 
domain, respectively. ERBB2, also known as HER2, is another member of ErbB family. Thus, its extracellular 
domain consists of four subdomains where subdomains I and III are involved in ligand  binding69 and subdomains 
II and IV play roles in homodimerization and  heterodimerization70. EGFR-ERBB2 heterodimer activates MAPK 
pathway, preventing  apoptosis71. Overexpression of ERBB2 is highly related to breast cancer and is observed in 
20–30% of all breast  cancers72. Upregulation of ERBB2 expression may promote cell proliferation and can further 
lead to  tumorigenesis73. Amplification of ERBB2 also occurs in 10–30% of gastric cancers and has been associated 
with different types of cancer, such as ovary, colon, and bladder  cancers74–76. Consequently, ERBB2 has become 
a therapeutic target of interest. Trastuzumab is a monoclonal antibody used in breast and gastric cancer and 
targets  ERBB277,78. There are also other therapeutic strategies that are developed for patients with trastuzumab 
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resistance. Dual tyrosine kinase inhibitor lapatinib is one of them and targets both EGFR and  ERBB279. Moreover, 
recombinant humanized ERBB2 monoclonal antibody pertuzumab prevents dimerization of ERBB2 with EGFR 
and ERBB3 to prevent activation of downstream pathways, which is demonstrated to be inhibiting breast and 
prostate tumor  growth78,80. Since tipranavir and indinavir bind to the domain III of ERBB2 extracellular domain 
and are at the EGFR-ERBB2 interface according to our results, they may disrupt the heterodimer and prevent the 
cell signaling. Therefore, these HIV protease inhibitors may be repurposed for tumor growth inhibition. There 
have been studies on repurposing of HIV protease inhibitor nelfinavir for cancer, suggesting its mechanism of 
action involves inhibition of MAPK signaling  pathway81,82. Moreover, the phase II clinical trial of indinavir for 
non-HIV associated classic Kaposi’s Sarcoma reported positive outcome after receiving treatment for 61.5% of 
the  patients83. Furthermore, a study demonstrated that tipranavir induced apoptosis of gastric cancer stem cells 
by targeting PRSS23-IL24  pathway84. Hence, the HIV protease inhibitors that we reported in our results may be 
repurposing candidates for cancer.

Regarding the toxicity of HIV protease inhibitors in combination with chemotherapies or radiotherapy, the 
clinical trials of nelfinavir for cancer therapy might give insight. In the phase I trial of nelfinavir in combination 
with chemoradiotherapy on unresectable stage IIIa/IIIb non-small cell lung cancer (NSCLC), Rengan et al. 
reported that nelfinavir administered 7 to 14 days before or at the same time with cisplatin, etoposide, and 
radiotherapy at a dose of 66.6 Gy resulted in no predetermined dose-limiting  toxicity81,85. In the phase II trial 
conducted by 35 patients with IIIa/IIIb NSCLC by Rengan et al., no unexpected grade 3 or 4 toxicities were 
observed apart from those of standard  chemoradiotherapy81,86. Moreover, Brunner et al. reported that nelfinavir 
with concurrent chemoradiotherapy did not exhibit any additional toxicity in the phase I clinical trial in inoper-
able locally advanced pancreatic cancer  patients81,87.

The interface formed between RAF1 and BRAF also has drugs that have low binding energy. RAF1, also 
known as CRAF, and BRAF are both members of Raf kinase family along with ARAF. Their structure is com-
prised of three conserved regions (CR), namely, C1 with Ras-binding domain and cysteine-rich domain; CR2 
with serine/threonine-rich region; and CR3 involving kinase  domain88. Heterodimer of BRAF and RAF1 for-
mation is induced by growth factor-stimulated RAS and activates MEK and ERK to promote cell proliferation, 
differentiation, survival, and  migration89,90. BRAF-RAF1 heterodimer is the most active dimer compared to their 

Figure 5.  Cancer mutations at the interface of the protein–protein complexes (a) ERBB3–EGFR complex with 
cancer mutation residues colored according to frequency. (b) BRAF–RAF1 complex with cancer mutation 
residues colored according to frequency. (c) ERBB2–EGFR complex with cancer mutation residues colored 
according to frequency.
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homodimers in MEK1/2  activation91,92. BRAF mutation is observed in nearly 8% of all cancers and is mostly 
associated with  melanoma93. Mutated RAF1 is less common in human cancers but mutation in RAF1 may lead 
to Noonan syndrome which is a disorder that includes short stature, facial dysmorphology, and congenital heart 
 defects94,95. Also, it is reported that increased BRAF heterodimerization with RAF1 is associated with RAF1 
mutations related to Noonan  syndrome96. Since mutation in BRAF also promotes MAPK signaling pathway 
activation and tumorigenesis, it has been identified as a target in cancer  therapy91.

According to our results, granisetron and galantamine bind to BRAF with favorable energy at the interface 
formed between BRAF (PDB ID:6Q0K Chain ID:A) and Ras binding domain and cysteine-rich domain of RAF1 
(PDB ID:6XGU Chain ID:B) (Fig. 4l,n). Granisetron is a serotonin type 3 (5-HT3) receptor antagonist used as 
an antinauseant for cancer chemotherapy  patients97. There are several studies where some other drugs binding 
to a serotonin receptor are proposed as anticancer agents. For example, tegaserod which is a serotonin receptor 
4 (HTR4) agonist is reported to be inducing apoptosis in B16F10 murine melanoma cell line and some human 
melanoma cell lines by perturbing PI3K/Akt/mTOR  pathway98. In another study, methiothepin which is a non-
selective serotonin 5-HT receptor antagonist is reported to be increasing the efficacy of chemotherapy when 
used along with doxorubicin, against melanoma  cells99. The same study shows that methiothepin also enhances 
the efficacy of BRAF inhibitor vemurafenib and MEK inhibitor trametinib, used against resistant BRAFV600E 
melanoma cells.

Galantamine is an acetylcholinesterase inhibitor used in the treatment of Alzheimer’s  disease100. Abnor-
mal expression of acetylcholinesterase is observed in several tumors, therefore, is associated with tumor 
 development101–106. As a result, some acetylcholinesterase inhibitors may be considered as possible anti-cancer 
agents for the cancer types where increased activity of acetylcholinesterase is  observed107. Inhibition of the 
MAPK pathway may be another mechanism when using acetylcholinesterase inhibitor galantamine as an anti-
cancer agent.

Both granisetron and galantamine are bound to the kinase  domains108,109 according to our results. BRAF 
inhibitors such as sorafenib also bind to the kinase domain of BRAF (PDB ID:1UWH) and if these drugs also 
act as BRAF inhibitors or disrupt the BRAF-RAF1 protein interface, they can be potential anti-cancer drugs. 
However, in some cases, a BRAF inhibitor such as vemurafenib, binding to BRAF leads to inhibition of BRAF 
but transactivation of RAF1 further leads to activation of MEK and ERK. To prevent paradoxical activation, a 
high level of RAF inhibitor that acts on both BRAF and RAF1 may be  used110.

Additionally, somatic mutations in human cancers are mapped to interfaces of the 3-dimensional structures 
of the protein complexes used in this study via COSMIC  database49 and SIFTS UniProt-PDB  mappings111 on 
PDBe  API112. COSMIC  database49 provides manually curated mutation information of tumor samples includ-
ing mutation types. Here, nonsense mutations that stop the translation prematurely and missense mutations 
that result in encoding of different amino acids at that location are mapped. For the ERBB3–EGFR complex, 
the interface mutation with the highest frequency for ERBB3 is observed in 0.006% of the samples and they 
are from endometrium, large intestine, and bile duct tumors. In contrast, the highest frequency for the inter-
face mutations of EGFR is 0.007%, from the samples of large intestine and lung carcinoma (Supplementary 
Table S9). Recurrent ERBB3 mutations are observed in colon and gastric cancers and there are various studies 
on characterization of ERBB3 mutations in  cancer113,114. However, the mapped ERBB3 mutations located at the 
interface of ERBB3–EGFR complex have not been characterized as oncogenic mutations in these  studies113,114. 
Considering EGFR mutations at the interface, G465R and S492R are identified to be related to cetuximab resist-
ance, while S492R does not affect panitumumab binding in colorectal cancer  treatment115,116. Residue G465 of 
EGFR is one of the contacting residues of indinavir at ERBB3–EGFR interface in our study and might affect the 
binding. For the BRAF-RAF1 complex, the highest frequency of mapped mutations is 0.005% for RAF1 and 
they are from various tissues such as large intestine, brain, and endometrium. RAF1 mutations located at the 
interface of BRAF–RAF1 complex are checked in PanCancer  Studies117–126 on  cBioPortal127 and it is seen that 
their oncogenic effects are marked as  unknown127. For BRAF, the highest frequency is 0.003% from mutations 
in the samples of ovary, lung, kidney, skin and lymphoid at the E586 position. The BRAF mutation E586K has 
been identified to be related to lung  adenocarcinoma128 and kinase activity is increased in COS cells that exhibit 
this  mutation129. Moreover, it is reported that HEK293 cells with BRAF E586K showed sensitivity to pan-RAF 
inhibitor (LY3009120) by inhibited phospho-MEK and -ERK  activities130. The mutations E586K, H725Y, and 
H725Q are marked as likely to be oncogenic on  cBioPortal127 but these mutations are not located at the contact-
ing residues of granisetron or galantamine in our study. At the interface of ERBB2–EGFR complex, ERBB2 has 
mutations with the frequency of 0.002% observed in tissues like skin, ovary, and stomach. In contrast, the highest 
mutation frequency for EGFR is 0.007%, observed in large intestine and lung tissues. The ERBB2 mutations at the 
interface of ERBB2–EGFR complex are not mentioned as one of the activating/oncogenic mutations of  ERBB2131 
or available in  cBioPortal127. On the other hand, EGFR mutations S464L, G465R, K467T, and S492R observed in 
cetuximab resistance in colorectal cancer  treatment115,116 are located at the contacting residues of tipranavir and 
indinavir while I491M is also a contacting residue of indinavir in our study. The protein structures that we used 
in our studies do not exhibit these mutations and the mutations may change the protein–protein interactions 
and the interaction with the drug. However, not all of the people with cancer have these mutations considering 
the frequency of the mutations among the tumor samples, and not all of the mutations have a functional effect 
on the protein (Supplementary Table S9).

This study relying on structural similarities of protein–protein interfaces revealed that indinavir, tipranavir, 
and saquinavir originally used for HIV infection treatment may bind to EGFR-ERBB3 and/or EGFR-ERBB2 
interfaces and can be repurposed for cancer treatment. Additionally, the Alzheimer’s disease drug galantamine 
and antiemetic drug granisetron may bind to BRAF-RAF1 interface and can be used as anti-cancer agents to 
prevent tumor growth. Even though these results present candidates for drug repurposing, they should be vali-
dated by experiments and clinical trials.
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Conclusions
Drug repurposing is a strategy that can be adopted to save time and money by reducing drug development 
timeline and research and development process cost. Hence, it is an effective alternative to conventional drug 
development. Different approaches for drug repurposing involve methods based on similarities in drugs, targets, 
or diseases. Here, we focused on the structural target similarities considering protein–protein interfaces formed 
by proteins involved in Ras/Raf/MEK/ERK signaling pathway. This pathway plays a role in cell signaling that 
regulates cell proliferation, differentiation, and apoptosis; therefore, it is highly related to cancer and tumor 
progression. The protein–protein interfaces studied in this work either have been predicted by PRISM according 
to physically interacting proteins in STRING database or obtained from Protein Data Bank. Candidates for drug 
repurposing are suggested considering the binding free energy prediction of the drug to the protein interface 
that is structurally similar to its original target by docking.

We report that HIV protease inhibitors tipranavir, indinavir, and saquinavir can bind to EGFR-ERBB3 inter-
face. Additionally, tipranavir and indinavir can bind to EGFR-ERBB2 interface. Furthermore, we report that 
galantamine used in Alzheimer’s disease treatment and the antiemetic drug granisetron can bind to RAF1–BRAF 
interface. These protein interfaces are involved in signal transduction that activates Ras/Raf/MEK/ERK signaling 
pathway leading to biological processes that promote tumor growth. Hence, disruption of these interfaces may 
interrupt the transduction of the signals associated with cancer. Consequently, these drugs are proposed to be 
repurposed as anti-cancer agents.

Although our results present some candidates for drug repurposing and are important in identification of 
the compound to be repurposed, in-silico drug repurposing approach needs to be supported by experimental 
data that shows the complete effect of the drug. Thus, candidates suggested in this work should be validated 
experimentally and by clinical trials in future studies.

Materials and methods
The basis of this study is that if a drug can bind to a protein–protein interface, it may also bind to another 
interface that is structurally similar to the protein–protein interface that the drug is originally bound to. Since 
our study focuses on Ras/Raf/MEK/ERK signaling pathway, we extracted the structures of the proteins in this 
pathway. Then, the alternative conformations of these proteins are determined and used in the prediction of the 
complexes of physically interacting proteins using  PRISM33, a prediction tool for protein–protein interactions 
at the structural level, if they are not available in the literature. Following that, protein–protein interfaces with 
drugs are filtered to suggest new targets for these drugs using a structurally similar protein–protein interface 
dataset and docking. Figure 7 illustrates the workflow of this study.

Protein structures of Ras/Raf/MEK/ERK signaling pathway
The gene list for the EGF–EGFR–RAS–ERK signaling pathway (N00001) under MAPK signaling pathway is 
obtained from the Kyoto Encyclopedia of Genes and Genomes (KEGG)36–38. KEGG identifiers for these genes are 
mapped to UniProt identifiers. If more than one UniProt identifier is associated with the gene, the UniProtKB/
Swiss-Prot identifier (reviewed, manually annotated) is selected. Physical interactions for the 16 proteins in the 
EGF–EGFR–RAS–ERK signaling pathway with the highest confidence score (≥ 0.900) and their top 10 interactors 
(Supplementary Table S10) are imported from the STRING  database39. The proteins in EGF–EGFR–RAS–ERK 
signaling pathway and their top 10 interactors form our set of pathway proteins.

Following that, PDB entries for these UniProt identifiers are found using “idmapping_selected.tab.gz” file 
from the UniProt  website132. Since PDB is redundant and some PDB entries are very similar, proteins with 95% 
sequence identity and 2 Å RMSD value are grouped for each UniProt identifier. One representative is kept for 
each group. Proteins having less than 30 residues are  eliminated133. These steps provided us with multiple con-
formations of the pathway proteins introducing dynamics in the predictions.

Protein–protein interfaces in the pathway
Protein–protein interfaces used in this work are either predicted by the PRISM web server or found in PDB. 
PRISM predicts interactions between two proteins according to the similarity between the surfaces of target pro-
teins and each side of a template interface. Physically interacting protein pairs according to STRING are sent to 
the PRISM web server as target proteins. PRISM results consist of an interface template, binding energy, protein 
complex structure and interface residues. PRISM may give none or multiple results for each target protein pair.

Additionally, PDB entries involving one of the proteins in the EGF–EGFR–RAS–ERK signaling pathway are 
found. Only the proteins listed under the EGF–EGFR–RAS–ERK signaling pathway in KEGG are included to 
avoid 2nd shell interactors. Protein–protein interfaces formed in these PDB entries are used in the following 
steps. If the distance between two atoms is less than the sum of their van der Waals radii plus a tolerance of 
0.5 Å, they are considered contacting. If there are at least five contacting residues at each protein chain, they are 
considered to be forming an interface.

Filtering of protein–protein interfaces with Food and Drug Administration (FDA) approved 
drugs
FDA-approved drugs are listed in the ZINC  database134 and those in PDB are identified to form the FDA-
approved drugs dataset used in this work (Supplementary Dataset S1)135. Glycerol (PDB Ligand ID:GOL) and 
isopropyl alcohol (PDB Ligand ID:IPA) that are present in FDA-approved drugs dataset are highly observed in 
PDB entries. However, these molecules are mostly used in the structure determination step as precipitant or to 
protect proteins when  frozen136,137. Hence, glycerol and isopropyl alcohol are excluded from the FDA-approved 
drugs dataset in this step.
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Protein–protein interfaces in the EGF–EGFR–RAS–ERK signaling pathway with FDA-approved drugs are 
filtered by mapping and combining ligands at the interface residues using data from  PDBsum138 with the FDA-
approved drug dataset (Supplementary Dataset S2)135. Protein–protein interfaces predicted by PRISM and inter-
faces from the PDB are studied separately.

Identification of new drug–target pairs
To propose new drug target pairs, a dataset consisting of clusters of structurally similar protein–protein inter-
faces is used (Supplementary Dataset S3)43. This dataset is constructed by clustering protein interfaces in PDB 
entries with an Interface-Similarity score (IS-score) of 0.311 according to  iAlign139.  SparseHC140, a hierarchical 
clustering algorithm, is used in the clustering.

Two cases are considered to propose new drug–target pairs (Fig. 3):

Repurposing To: A drug bound to one of the interfaces in a protein–protein interface cluster may bind to an 
interface in the same cluster, and the protein is in the Ras/Raf/MEK/ERK pathway.
Repurposing From: A drug bound to a protein interface in Ras/Raf/MEK/ERK pathway may also bind to 
another protein interface that is in the same cluster, and the protein is not in the Ras/Raf/MEK/ERK pathway.

Docking
Python package of AutoDock  Vina141 is used in this work for docking. Additionally  BioPython142 and NumPy 
 packages143 in Python,  Chimera48 and Open  Babel144 are used. The 3-dimensional structures of drugs at reference 
pH are downloaded from ZINC  database134. Both receptor and ligand structures are prepared for docking using 
codes in MGL  Tools145. The size and the center of the docking box is adjusted to include interface residues (Sup-
plementary Dataset S4) in the box. Docking is performed with exhaustiveness of 8 because it is the best option 

Figure 7.  Workflow of the study. A list of proteins in the Ras/Raf/MEK/ERK signaling pathway is constructed 
from the KEGG and STRING databases. Their three-dimensional structures are found in the Protein Data Bank 
(PDB). These structures are grouped to obtain alternative conformations. The protein–protein interfaces formed 
by these proteins in PDB entries are determined or predicted via a template-based protein–protein docking tool. 
The interfaces with approved drugs are filtered using the FDA-approved drugs dataset and new drug–target 
pairs are identified using a structurally clustered protein–protein interface dataset. Then, docking is performed 
to propose drug repurposing candidates.
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for the prediction of binding energy considering the increased computation time with a higher  exhaustiveness44. 
Details are presented in Supplementary Text S2.

Control set for docking
A control set of drugs are randomly selected to evaluate their energy. 35 drugs are selected from the FDA-
approved drugs dataset (Supplementary Dataset S1) using random.sample() function in random module of 
Python. The list of drugs can be found in Supplementary Table S11. These selected drugs are docked to the 
interfaces that the drug repurposing candidates are reported to be binding (i.e., EGFR-ERBB2, EGFR-ERBB3 
and BRAF-RAF1 interfaces). The docking procedure has been explained in the “Docking” section of “Materials 
and methods”.

Cancer mutations
For the somatic mutations in cancer, missense and nonsense mutations from the COSMIC (v97) database are 
 used49. Human proteins included in the proteome  UP000005640132 are considered. Using PDBe  API112, UniProt 
mappings for each PDB ID from  SIFTS111 are obtained. For the start and end residue numbers, author residue 
numbers are considered. The residue names are compared, the start and end residues are manually adjusted to 
be consistent if they do not match. The mutations in the whole chain are listed and compared with interface 
residues to find the ones that are at the interface. For the mutations located at the interfaces where the drug 
repurposing candidates are proposed to be binding,  SIFT50 is used to predict the functional effect of the muta-
tion on the protein function.

Experimental data of drug sensitivity
Drug sensitivities of cancer cell lines to selected drugs are extracted from  DepMap51 (https:// depmap. org/ portal/). 
If the sensitivity data of a cell line is not available for all of the drugs, that cell line is omitted. Negative values sug-
gest that the growth of treated cells is less than that of the control cells. The data on DepMap was obtained using 
PRISM viability assay where barcoded cell lines were exposed to the compound for five days and the abundance 
of mRNA barcodes was detected using Luminex MagPlex Microspheres to estimate cell viability in comparison 
to the control  group51. PRISM Repurposing Primary Screen dataset is used in this study.

Data availability
PRISM is accessible through the PRISM webserver (https:// cosbi. ku. edu. tr/ prism/). The codes for grouping the 
alternative conformations are available on GitHub (https:// github. com/ ku- cosbi/ ppi- netwo rk- alter native). All 
PRISM results and docking results of the proposed drugs are available on GitHub (https:// github. com/ ku- cosbi/ 
RasPa thway DrugR epurp osing). Drug sensitivity data can be accessed from DepMap portal (https:// depmap. 
org/ portal/) (Accessed 18 Aug. 2023). Other data used in this work can be found in supplementary materials.
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