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DGS‑SCSO: Enhancing Sand Cat 
Swarm Optimization with Dynamic 
Pinhole Imaging and Golden Sine 
Algorithm for improved numerical 
optimization performance
Oluwatayomi Rereloluwa Adegboye 1, Afi Kekeli Feda 2, Oluwaseun Racheal Ojekemi 3, 
Ephraim Bonah Agyekum 4, Baseem Khan 5* & Salah Kamel 6

This paper introduces DGS‑SCSO, a novel optimizer derived from Sand Cat Swarm Optimization 
(SCSO), aiming to overcome inherent limitations in the original SCSO algorithm. The proposed 
optimizer integrates Dynamic Pinhole Imaging and Golden Sine Algorithm to mitigate issues like local 
optima entrapment, premature convergence, and delayed convergence. By leveraging the Dynamic 
Pinhole Imaging technique, DGS‑SCSO enhances the optimizer’s global exploration capability, while 
the Golden Sine Algorithm strategy improves exploitation, facilitating convergence towards optimal 
solutions. The algorithm’s performance is systematically assessed across 20 standard benchmark 
functions, CEC2019 test functions, and two practical engineering problems. The outcome proves 
DGS‑SCSO’s superiority over the original SCSO algorithm, achieving an overall efficiency of 59.66% in 
30 dimensions and 76.92% in 50 and 100 dimensions for optimization functions. It also demonstrated 
competitive results on engineering problems. Statistical analysis, including the Wilcoxon Rank Sum 
Test and Friedman Test, validate DGS‑SCSO efficiency and significant improvement to the compared 
algorithms.

Optimization theory is a significant subdivision of computing, which focuses on how to decide the optimum 
solution from a pool of potential solutions. It offers a structure for defining and resolving complex optimization 
problems, particularly those with optimization models constrained by significant restrictions, having many 
objectives, or including complex multivariable systems. Applications of optimization theory can be found in 
disciplines: computer  science1, engineering design  problem2–5,filter  design6–8, offshore  drilling9, semi-submers-
ible platform  design10 and control parameter  optimization11. Through practice, it has been demonstrated that 
optimization technologies can increase system effectiveness, appropriately allocate resources, and lower energy 
usage. A few of the established optimization algorithms are Alpine Skiing Optimization (APS)12,Coronavirus 
Mask Protection Algorithm(CMPA)13, and Arithmetic Optimization  Algorithm14. The superiority of optimiza-
tion technologies is even more noticeable as the complexity of the optimization problem rises, and precisely, the 
latter has become significantly more difficult during the last decades. Therefore, the focus of many scholars has 
shifted to optimization algorithms. Deterministic and meta-heuristic algorithms are the two primary categories 
into which the new advancements in optimization algorithms fall. Deterministic approaches utilize the problem’s 
analytic characteristics for resolving optimization problems to reach an exact or approximate overall  solution15. 
There are various types of deterministic optimization approaches for both convex (with only one optimal solu-
tion) and non-convex problems. Techniques for solving convex problems include Linear Programming (LP) 
and Non-linear Programming (NLP) models. Techniques for solving non-convex problems include Integer 
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Programming (IP), Non-convex Non-linear Programming (NNLP), Mixed-Integer Non-linear Programming 
(MINLP), and Integer Programming Mixed Integer Linear Programming (IP MILP)16. Figure 1 presents the 
grouping of deterministic optimization algorithms.

Deterministic optimization approaches are effective for a variety of problems, but they might be challenged 
in providing accurate solutions to problems that are sophisticated, have considerable nonlinearity, or have a sig-
nificant number of  variables17. In answer to these limitations, meta-heuristic algorithms (MAs) were introduced. 
MAs are particularly suitable for complex optimization problems. Since they are non-deterministic, they don’t 
rely on a predetermined set of guidelines or steps to address a particular issue. Instead, they search the solution 
space and identify the best answers using randomization and probabilistic methods. Due to their adaptability, 
they can deal with ambiguities in problem formulation and complex challenges. MAs can be grouped into: 
Swarm Intelligence Algorithms (SI), Evolutionary-Based Algorithms(EB), and Physics-Based Algorithms (PB)18. 
Mathematics or Physics algorithms are created based on mathematical and physical natural principles. One of 
these is the Gravitational Search Algorithm (GSA)19,influenced by Newton’s second law and the law of universal 
gravitation. This algorithm researches the best possible answer for a problem by repeatedly shifting the popula-
tion’s particle position within the search space using their mutual gravitational attraction.The ideal solution is 
discovered when the particle goes to the ideal spot. EAs are based on the natural biological evolution of species. 
One example is the Differential Evolution (DE) algorithm introduced by Storn and  Price20. The DE has drawn a 
considerable amount of interest and has been applied successfully in a number of contexts. Although using the DE 
produced better results than using traditional approaches, it showed premature convergence to a local minimum 
in a complex search  space21.SI draws its inspiration mostly from biological systems. It mimics the cooperative 
behavior of sociable animal groups in their attempts to survive. Ant Colony Optimization Algorithm is a popular 
SI algorithm that mimics how ant colonies  behave22. The ants’ ability to find direct short routes between their 
colony and food sources by using chemical pheromone trails as a form of indirect communication is the basis 
of this behavior. Such an algorithm is typically capable of handling complex problems. Major applications of 
SI algorithms include the creation of smart strategies for the streamlined transportation of large products and 
determining the shortest path between two  locations23and Impulse response  filters24–26. Another example is the 
SCSO introduced by Seyyedabbasi and Kiani, which mimics the lifestyle and unique abilities of the sand  cat27. 
Although SCSO has been employed to address engineering optimization challenges and several test functions, 
there is still the problem of being stuck in the local optimum, premature convergence, and delayed convergence 
because of sound frequency guiding each sand cat toward the prey. Based on the frequency intensity, the sand 
cat can either search or attack the prey; this serves as a prey-following mechanism that may trap the sand cat in 
local solution, causing poor convergence.

In response, this study proposes Sand Cat Swarm Optimization based on Dynamic Pinhole Imaging (DPI) 
and Golden Sine Algorithm (Gold-SA) called DGS-SCSO. While there is a plethora of existing metaheuristic 

Figure 1.  Taxonomy of deterministic optimization algorithms.
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algorithms and improved versions of this algorithm, the novelty of the DGS-SCSO algorithm lies in its unique 
combination of Dynamic Pinhole Imaging (DPI) and the Golden Sine Algorithm (Gold-SA) with the existing 
Sand Cat Swarm Optimization (SCSO) which is not found in previously modified versions of SCSO. Furthermore, 
the “No Free Lunch theorem states that no single algorithm can be suitable for every  problem28”; hence, DGS-
SCSO strategically utilizes DPI, a more precise version of opposition-based learning, to initialize a population 
with diverse solutions, improving the chances of locating the global optimal. Meanwhile, Gold-SA is used to 
change the location of the best sand cat to get closer to the optimal solution and encourage rapid convergence and 
exploitation. Gold-SA facilitates a continual decrease in the problem space, allowing the algorithm to concentrate 
on areas more likely to yield globally optimal solutions.The integration of DPI and Gold-SA into SCSO not only 
distinguishes DGS-SCSO from existing algorithms but also addresses the algorithmic deficiencies observed in the 
original SCSO. Making DGS-SCSO a valuable addition to the existing metaheuristic algorithms in the literature. 
This research makes several significant contributions, including the proposal of a new optimization algorithm 
named DGS-SCSO. The effectiveness of DGS-SCSO is assessed on 20 classic benchmark functions, 10 CEC2019 
competition benchmark functions, and two engineering problems. To assess the effectiveness of DGS-SCSO, the 
algorithm is contrasted against seven recent metaheuristic algorithms. The results of DGS-SCSO are analysed 
and interpreted using several methods, ensuring a detailed assessment of the new optimizer’s effectiveness.

The paper is thus structured: Sect. “Related work” provides an overview of relevant research, while the origi-
nal SCSO algorithm is presented in Sects. “Original SCSO”. “Proposed DGS-SCSO” explains the improvement 
strategies and introduces the proposed DGS-SCSO algorithm. Sections “Analysis of complexity”, “Experiments 
and discussion” and “Application of engineering problem” describe the complexity analysis, experiments, and 
conclusions, respectively.

Related work
Despite the fact that the method was introduced recently, some studies have been done on improving SCSO and 
tackling the previously mentioned limitations. Arasteh et al. introduced a novel variant of the SCSO algorithm 
for software module  clustering29. Their goal was to provide optimal clusters for source codes’ dependency graphs. 
SCSO was revised to maximize its position-updating stage to obtain better results. Another major change was 
to add a controlled mutation technique, such as that seen in the Genetic algorithm (GA), to boost heterogeneity 
and efficiency. Ten common functions were used to rate how well the suggested method performed. In terms of 
overall success, convergence time, and modularization quality, the proposed algorithm outperformed the other 
algorithms compared to it. Li et al. introduced a Stochastic and Elite based SCSO (SE-SCSO)30. In the proposed 
SE-SCSO, Li et al. improved the convergence speed, local exploitation, and exploration of the traditional SCSO 
with a periodic non-linear adjustment process. Overall efficiency and capacity of convergence were enhanced by 
using the opposition and reflection learning processes. The validity of the suggested improvements was supported 
by the experimental results. Iraji et al. suggested a hybridized strategy based on chaotic SCSO and pattern search 
named CSCPS for their  study31. The chaotic sequence was used to increase the SCSO approach’s exploring capa-
bility while also preventing untimely convergence. Mathematical test functions were used to assess the efficiency 
of the new CSCPS optimizer. CSCPS had overall better performance. Wu et al. introduced a modified version 
of SCSO (MSCSO). In the MSCSO algorithm, sand cats’ position updating is done by wandering  techniques32. 
The triangular walking (TW) technique for searching and The Levy flight walking (LFW) technique to attack 
prey. Sand cats employ a Roulette Wheel selection algorithm to calculate their distance from their prey in order 
to determine the best trajectory before updating their position in accordance with the trigonometric function 
calculation theory. The MSCSO was evaluated using the CEC2014 functions and 23 additional functions, and it 
showed superior exploration capacity. The technical applicability of the suggested strategy was finally proven by 
applying it successfully to test seven engineering problems. Jovanovic et al. suggested a novel SCSO technique 
to improve the efficacy of the extreme learning machine (ELM)  classifier33. The concept of “exhausted solutions” 
derived from the popular Artificial Bee Colony Algorithm is included in the algorithm. The suggested approach 
has been verified on two distinguished datasets, and the improvements in performance are shown by contrast-
ing the outcomes with those of other optimizers that operate in a comparable manner. Lu et al. developed an 
Improved SCSO (ISCSO)34. They employed logistic mapping to initialize the population and obtained a popula-
tion more equally distributed, which enhanced the algorithm convergence and optimization precision. In order 
to solve the SCSO algorithm’s constraint and poor accuracy when addressing complex multivariate functions 
with numerous peaks, a water wave dynamic evolution component was incorporated. The utilization of water 
wave dynamics lessened the blindness of individuals who are trailing one another. Finally, the weighted adaptive 
algorithm was taken into consideration to smoothen the switch between global search and local exploitation. 
The ISCSO performed better overall when compared to other traditional algorithms in tests, and it required a 
few iterations to converge to a comparable precision.

Original SCSO
The SCSO, introduced in 2022 by Seyyedabbasi and Kiani, is a MA that takes inspiration from the hunting pat-
terns and biological characteristics of sand  cats27. These felines require 10% more food than domestic cats and 
have developed unique hunting mechanisms to satisfy their needs. With their exceptional hearing capabilities, 
they can perceive low-frequency sounds and detect prey movements underground. Additionally, they possess 
remarkable endurance, allowing them to cover long distances without rest. Drawing from these traits, SCSO 
imitates the two distinct phases of sand cats’ hunting process: foraging and catching the prey. SCSO portrays the 
problem variables as represented by the attributes of sand cats, which are structured as vectors. In the problem 
space, a single sand cat is modeledas a 1 × dim array that encodes the search space, where dim denotes dimension. 
Notably, each variable value (x1,x2, . . . , xdim) is denoted by a floating-point number that falls within the specified 
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lower and upper bounds. To initialize the SCSO algorithm, a candidate matrix is constructed by assembling a 
population of sand cats with a size of N ∗ dim where N denotes population of cats, in proportion to the dimen-
sions of the problem.

Furthermore, the SCSO algorithm assesses the fitness cost of every sand cat using a designated fitness function 
that corresponds to the problem characteristics. The optimization process aims to identify the optimal values of 
the parameters (variables) via this function, which returns a corresponding solution for every single sand cat. 
Finally, the sand cat having the best fitness cost up to that point is selected as the best solution and the remain-
ing sand cats adjust their positions accordingly in the following iteration. This mechanism imitates the behavior 
of sand cats, who tend to follow the most successful hunter in their group. Notably, the SCSO algorithm avoids 
excessive memory usage by only storing the best solution of every iteration, which can be thought of as the sand 
cat nearest to the prey. This iterative process is repeated until the desired level of optimization is achieved. The 
search technique of the SCSO algorithm was modeled after the low-frequency noise emission-based on the hunt-
ing method used by sand cats. The algorithm exhibits a single sand cat’s solution as Xi = (xi1,xi2, . . . , xidim) , and 
leverages sand cats’ low-frequency hearing ability to set every cat’s sensitivity range. To aid the cats in approaching 
their goal without losing or passing it, the value of the sensitivity range (abbreviated as −→rG ) linearly declines from 
2 to 0 kHz as the iterations go on (According to Eq. 1). The SM number, which represents the hearing qualities 
of sand cats, is initially set to 2, but it can be adapted to the problem being solved to decide how quickly the 
agents will act. This demonstrates the algorithm’s adaptability and flexibility. The vector −→R  , derived in Eq. (2), is 
another important parameter for regulating the switch from exploration to exploitation. The adaptive approach 
optimizes the algorithm’s performance by ensuring a smooth transition between the two stages.

where it c and it Max denotes respectively the current and the maximum iterations. The search space is initialized 
at random within the specified borders. A unique sensitivity range ( −→r  ) is assigned to every sand cat in order to 
escape the local optimum, as seen in Eq. (3).

The positions of each sand cat are upgraded based on its present position ( 
−→
Pc ), sensitivity range ( −→r  ) and best 

candidate position 
−−→
(Pbc) as shown in Eq. (4).

The distance ( −−→Prnd ) from the current location 
−→
Pc  to the best candidate position −→Pbc of each sand cat is 

determined by applying Eq. (5). An arbitrary angle α , is chosen using the Roulette Wheel selection algorithm 
to determine the trajectory’s orientation. The random angle ranges from 0° to 360° and has a value between -1 
and 1. This allows every individual to move across the search space in a distinct circular pattern. α is utilized 
to change the position of each sand cat, as indicated in Eq. (5), which guides them toward the prey. The prey is 
then caught with Eq. (6).

The SCSO algorithm uses adaptive parameters −→rG and R to monitor the tradeoff necessary between the local 
and global search. To achieve this,−→rG linearly and progressively declines from 2 to 0 as with iterations. Meanwhile, 
the parameter R is generated arbitrarily from the interval [− 4, 4]. If |R| is inferior or equal to 1 the individual cat 
can catch the prey; if not, search continues as given Eq. (7).

Proposed DGS‑SCSO
Dynamic Pinhole Imaging strategy (DPI)
The overall performance of population-based metaheuristic algorithms is significantly influenced by their ini-
tialization  phas35. A poor initialization may cause the algorithm to explore unpromising regions, subjecting it 
to the local solution. On the other hand, efficient population initialization can considerably increase precision 
and algorithm convergence speed. When the starting collection of solutions is located close to the best solution, 
there is a greater chance of locating the global optimum with a smaller search effort. Opposition-based Learning 
(OBL) is a technique that draws its inspiration from the opposite relationship between real-world  entities36,37. The 
concept was first introduced in 2005, and it has piqued significant research interest. OBL has been successfully 
applied to enhance algorithms’ population initialization. The fundamental idea behind OBL is to jointly explore 
an arbitrary direction and its mirror image while seeking an unknown global optimum. The likelihood of two 

(1)−→rG = sM −
(

2× SM × it c

it Max + it max

)

(2)−→
R = 2×−→

rG × rand (0, 1)−−→
rG

(3)−→r = −→
rG × rand (0, 1)

(4)−→
P (t + 1) = −→r × (

−→
Pbc(t)− rand (0, 1)×−→

Pc (t))

(5)
−−→
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∣

∣

∣
rand (0, 1)×−→

Pbc(t)−
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Pc (t)

∣

∣

∣

(6)−→
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−→
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individuals being closer to the optimal solution is 50% if they are positioned at the opposite location of each other. 
As a result, only a few operations are needed to create a population of greater quality. This technique is analogous 
to the pinhole imaging theory in optics. Pinhole imaging is more precise than standard Opposite-based learning 
and can generate a wider range of opposing  points38. A theoretical representation of pinhole imaging is shown in 
Fig. 2. The following equation is obtained by applying the model in Fig. 2 to the population’s search space Eq. (8):

where the location of the best search agent is denoted as Xbest i,j , while the opposite point is represented by Xi,j . 
The i-th agent in the j-th dimension has lower and upper bounds denoted as Lbi,j and Ubi,j respectively. Further-
more, Lp stands for the size of the candle at the best location and L−p the size of the one at the opposite location. 
Although the candle’s location matches that of the search agent, the search agent’s point has no efficient length. 
As a result, K can be assigned as a variable to represent the two candles’ ratio, as shown in Eq. (9).

By analyzing Eq. (9), it is apparent that when both candles have equal lengths, the strategy becomes a simple 
reverse learning approach. Modifying effectively the value of K  can alter the location of the opposing point, 
which leads to greater search opportunities for the individuals.

Golden Sine algorithm (Gold‑SA)
The Gold-SA is based on the “sine function in mathematics,” and it also utilizes the golden ratio to seek a superior 
answer in the problem space. The sine function’s range is within − 1 to 1, and it has a period of 2π. As x1 changes, 
its associated variable y1 also does. Through the golden ratio, the problem domain can be continually decreased, 
and the algorithm can focus on areas where the likelihood of producing the globally acceptable answer is higher, 
resulting in faster convergence Eq. (10).

The formula involves two arbitrary values p1 ∈[0, 2π], and p2 ∈[0, π], Xi,j denote the current individual, 
Xbest,j denoted the best individual and two coefficient factors d1 and d2 that is determined by Eqs. (11) and (12)

where a and b are initialized respectively to -π and π. The golden ratio, τ is (
√
p5− 1)/2.

Implementation of proposed DGS‑SCSO
The original SCSO algorithm appears to have a tendency to converge too quickly to local optima, which can limit 
its capacity to local the global optimal. Additionally, the algorithm’s convergence speed may be slow, which could 
also hinder its effectiveness. To address these issues, two modifications have been proposed: DPI and Gold-SA. 
DPI is intended to expand the optimizers’ global capacity to escape the trap of the local optimal. Gold-SA, on the 
other hand, is designed to enhance the algorithm’s local search ability, enabling it to quickly find optimal solutions 
in the search area. By incorporating these modifications into the original SCSO algorithm, it is expected that 
the algorithm’s performance will be significantly improved. Specifically, the modifications should help to strike 
the best transition from exploration to exploitation, thereby increasing the population’s diversity and making it 
more likely that the algorithm will converge to global optima. The pseudo-code for DGS-SCSO is provided in 
algorithm 1. The flow chart of DGS-SCSO is given in Fig. 3.

(8)
Xbest i,j −

(

Ubi,j + Lbi,j
)

/2
(

Ubi,j + Lbi,j
)

/2− Xi,j
=

Lp

L−p

(9)Xi,j =
(K + 1)

(

Ubi,j + Lbi,j
)

− 2Xbest i,j

2K

(10)Xi,j(t + 1) = Xi,j(t)×
∣

∣sin
(

p1
)∣

∣− p2 × sin
(

p1
)

×
∣

∣d1 × Xbest,j(t)− d2 × Xid(t)
∣

∣

(11)d1 = a× τ + b× (1− τ)

(12)d2 = a× (1− τ)+ b× τ

Xbest ,

Figure 2.  Dynamic pinhole imaging strategy.
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Initialize population

Determine fitness value for every sand cat

Perform the DPI strategy for every sand cat using Equation 9 

Initialize the r, ⃗⃗⃗ , and R

While (t ≤ maximum iteration)

For every single  sand cat

Roulette Wheel Selection to randomly choose an angle (0° ≤ α ≤ 360°)

If (abs(R) > 1)

Update the sand cat’s position with Equation 4

Else

Update the sand cat’s positionwith Equation 6

End

Update the position of the best cat so far using Gold-SA as expressed in Equation 10

T = t + 1

End

Algorithm 1.  DGS-SCSO Algorithm Pseudo-Code.

Analysis of complexity
The initialization phase has a computing cost of O(N × D) , where N denotes the population size, and D is the 
dimension size. During this phase, SCSO generates the sand cats at random throughout the problem space. Fol-
lowing that, DGS-SCSO assesses each individual’s fitness over the course of the entire iteration with a complex-
ity of O(T × N × D) , with T denoting the number of iterations. Finally, to reach the best option, we employed 
Gold-SA and DPI. Therefore, these phases’ computational complexity is O(3× T × N × D) . In conclusion, the 
DGS-SCSO’s overall computational complexity is O(T × N × D).

Experiments and discussion
We assess the effectiveness of the suggested DGS-SCSO method by subjecting it to 20 commonly used benchmark 
functions and the 10-functions CEC 2019 competition test suite. Additionally, the effectiveness of the method is 
assessed by using it to solve two engineering problems. The experimental setup and benchmark function proper-
ties are elucidated in detail in the following section, followed by a comprehensive analysis and commentary on the 
statistical findings of the 30 benchmark functions. Finally, the benefits of utilizing DGS-SCSO are demonstrated 
through its application to the aforementioned engineering design problems.

Function definition
The study employed a total of 30 test functions, including 10 CEC 2019 test functions and 20 widely used bench-
mark functions. Based on their properties, the 20 classical functions were separated into three categories. The 
functions F1 through F7 are useful for assessing the exploitability of algorithms because they are unimodal, they 
possesses a single global optimum, and lack any local optima. The functions F8 through F13 were beneficial for 
assessing algorithms’ exploration and local minimum avoidance capabilities. The fixed multipeaked functions 
F14 through F20 have different low-dimensional local optima, and they are used to assess the stability and algo-
rithms’ capability of avoiding local optimum.

The study employed 10 functions (F21–F30) from the CEC 2019 benchmark suite in addition to the traditional 
functions. These functions have been shifted and rotated, adding complexity above the conventional functions. 
The specifics of each function are supplied in Tables 1 and 2, and the optimal fitness of each function is marked 
by  fmin. The primary goal of this section is to assess the DGS-SCSO algorithm’s search capability on a variety of 
complicated functions with various properties.

Experimental setup
Thirty different test functions where used to assess how well the DGS-SCSO optimization algorithm performed. 
To confirm the accuracy of the outcomes, the proposed algorithm was contrasted against several other algorithms, 
including  SCSO27, Artificial Electric Field Algorithm (AEFA)39, Honey Badger Algorithm (HBA)40, Hybrid But-
terfly Optimization Algorithm with Particle Swarm Optimization (HPSOBOA)41, Quadratic interpolation Salp 
Swarm-Based local escape operator (QSSALEO)42, Time-Based Leadership Salp-Based Algorithm with Com-
petitive Learning (TBLSBCL)43, Transient Search Algorithm (TSO)44. We established the maximum iteration to 
be 1000, the population size to be 30, and the dimension size to be as mentioned in Tables 1 and 2. Additionally, 
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we conducted 30 independent runs for the experimental setup. The best results are indicated in bold. Table 3 
presents the specific parameter settings for the algorithms used in the experiment.

Statistical result analysis
The DGS-SCSO algorithm exhibits noteworthy results when compared to other metaheuristic algorithms across 
Tables 4, 5, and 6. In Table 4, the dimension of the function remained as detailed in Tables 1 and 2; in Tables 5 
and 6, dimensions are set to 50 and 100, which increases the complexity of the test suite function. In Table 4, 
DGS-SCSO achieves superior average values (AVG) and remarkable stability with smaller standard deviation 
(STD) on various functions, indicating consistent and robust performance. In F1, F3, and F5, from the unimodal 
function, DGS-SCSO obtained the theoretically optimal solution. This is in contrast to SCSO, QSSALEO, and 
TSO, which obtained the near-ideal solution. In F2, F4, and F7, DGS-SCSO outperformed HBA and TBLSBCL, 
obtaining the best solution. For the multimodal functions, DGS-SCSO is shown to outperform AEFA, HBA, 
and TSO for F8, F9, and F11, indicating its superior ability to handle complex and challenging optimization 
problems with multiple local optima. Additionally, it performs better than SCSO for F15, F17, and F19. The 
results for the CEC 2019 functions show that DGS-SCSO produces better results than the compared optimizers 
in six of the functions (F23, F24, F25, F26, F28, and F29), suggesting its effectiveness in handling a diverse set 
of optimization problems.

Furthermore, Table 4 displays the outcomes of various algorithms in tackling the 30-function test suite. It is 
clear that the improved DGS-SCSO algorithm has the best performance, achieving an overall efficiency (OE) of 
79.66%, which considers the number of losses (L) and the total number of functions (NF). L is subtracted from 

Figure 3.  Flowchart of DGS-SCSO.
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NF, and the result of the subtraction is divided by NF to compute  OE42,45. The table presents the OE of all the 
optimizers, denoting the number of “Wins, Losses, and Ties” as W, L, and T, respectively. In contrast to the tra-
ditional SCSO algorithm, which has an overall efficiency of 20% for all functions, DGS-SCSO has improved OE 
with a margin of 59.66% over SCSO. The integration of the both methods into SCSO algorithm has significantly 
improved the solution precision, resulting in better exploitation for unimodal functions, better exploration for 
multimodal functions, and a better tradeoff between the two in complex CEC 2019 functions.Additionally, in 
Tables 5 and 6, with increased dimension, DGS-SCSO maintains competitive AVG, low STD, and high overall 
efficiency (OE) across functions F1-F13 at dimensions 50 and 100, respectively, outperforming or performing 
comparably to other algorithms such as HBA, HPSOBOA, QSSALEO, TBLSBCL, and TSO in functions F1-F5, 
F7 and F8. The algorithm’s ability to consistently achieve low AVG, low STD, and strong OE underscores its 

Table 1.  Specifics of the 20 Classic Functions.

Function Dimension Range Fmin

f1(x) =
∑n

i=1x
2
i 30 [−100, 100] 0

f2(x) =
∑n

i=1|xi | +
∏n

i=1|xi | 30 [−10, 10] 0

f3(x) =
∑n

i=1

(

∑i
j−1xj

)2 30 [−100, 100] 0

f4(x) = mini{|xi |, 1 ≤ i ≤ n} 30 [−100, 100] 0

f5(x) =
∑d

i=1

∑i
j=1 x

2
j

30 [−65.536, 65.536] 0

f6(x) =
∑n

i=1([xi + 0.5])2 30 [−100, 100] 0

f7(x) =
∑n

i=1ix
4
i + random[0, 1) 30 [−1.28, 1.28] 0

f8(x) = 1− cos

(

2π

√

∑d
i=1 x

2
i

)

+ 0.1

√

∑d
i=1 x

2
i 30 [−100, 100] 0

f9(x) =
∑n

i=1

[

x2i − 10cos(2πxi)+ 10
]

30 [−5.12, 5.12] 0

f10(x) = −20exp

(

−0.2
√

1
n

∑n
i=1x

2
i

)

− exp
(

(1/n)
∑n

i=1cos(2πxi)
)

+ 20+ e 30 [−32, 32] 0

f11(x) = 1/4000
∑n

i=1

∑

x2i −
∏n

i=1cos
(

xi/
√
i
)

+ 1 30 [−600, 600] 0

f12(x) = π/n
{

∑n−1
i=1

(

yi − 1
)2[

1+ 10sin2
(

πyi+1

)]

+
(

yn − 1
)2
}

30 [−50, 50] 0
+
∑n

i=1u(xi , 10, 100, 4)+ π/n10sin
(

πy1
)

yi = 1+ xi + (1/4)u(xi , a, k,m) =

{

k(xi − a)m xi > a
0 −a < xi < a
k(−xi − a)m xi < −a

f13(x) = 0.1
{
∑n

i=1(xi − 1)2
[

1+ sin2(3πxi + 1)
]

+ (xn − 1)2
[

1+ sin2(2πxn)
]}

+ 0.1sin2(3πx1)+
∑n

i=1u(xi , 5, 100, 4) 30 [−50, 50] 0

f14(x) =
∣

∣x2 + y2 + xy
∣

∣+ |sin(x)| + |cos(y)| 2 [−500, 500] 1

f15(x) = sin2(3πx)+ (x − 1)2
(

1+ sin2(3πy)
)

+ (y − 1)2
(

1+ sin2(2πy)
)

4 [−10, 10] 0

f16(x) = 4x21 − 2.1x41 + 1/3x61 + x1x2 − 4x22 + 4x42 2 [−5, 5] − 1.0316

f17(x) =
(

x2 − 5.1/4π2x21 + 5/πx1 − 6
)2 + 10(1− (1/8π))cosx1 + 10 2 [−5, 5] 0.398

f18(x) =
[

1+ (x1 + x2 + 1)2
(

19− 14x1 + 3x21 − 14x2 + 6x1x2 + 3x22
)]

×
2 [−2, 2] 3

[

30+ (2x1 − 3x2)
2 ×

(

18− 32x1 + 12x21 + 48x2 − 36x1x2 + 27x22
)]

f19(x) = −
∑4

i=1ciexp
[

−
∑3

j=1aij
(

xj − pij
)2
]

3 [1, 3] − 3.86

f20(x) = x2 + 2y2 − 0.3cos(3πx)cos(4πy)+ 0.3 2 [−100, 100] 0

Table 2.  Specifics of the 10 CEC 2019 functions.

No Function names Fmin Dim Range

f21 Storn’s Chebyshev polynomial fitting problem 1 9 [−8, 192, 8, 192]
f22 Inverse Hilbert matrix problem 1 16 [−16, 384, 16, 384]
f23 Lennard-Jones minimum energy cluster 1 18 [−4, 4]
f24 Rastrigin’s function 1 10 [−100, 100]
f25 Griewank’s function 1 10 [−100, 100]
f26 Weierstrass function 1 10 [−100, 100]
f27 Modified Schwefel’s function 1 10 [−100, 100]
f28 Expanded Schaffer’s F6 function 1 10 [−100, 100]
f29 Happy Cat function 1 10 [−100, 100]
f30 Ackley function 1 10 [−100, 100]
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effectiveness, scalability, and reliability in addressing optimization challenges across diverse scenarios and dimen-
sionalities. The results of the performance of each of the compared algorithms and DGS-SCSO on the scaled 
functions (F1-F13) from Tables 4, 5, and 6 are illustrated in Fig. 4 to visualize the consistency of each optimizer 
as complexity increases. As seen from the illustration, DGS-SCSO, QSSALEO, HBA, and TBLSBCL show relative 
consistency in their performance as the dimension increases; this demonstrates the robustness of DGS-SCSO.

Nonparametric test analysis
The Wilcoxon Rank Test (WRT) is useful for analyzing data with complex distributions. Tables 4, 5, and 6 offer 
statistics on the average value and standard deviation of all the optimizers, but they do not allow for comparison 
between multiple algorithms. To verify and test the results, it is necessary to use the WRT. In Table 7, the out-
comes of the DGS-SCSO algorithm and seven other algorithms are presented. These algorithms were run thirty 
times using thirty different benchmark functions with varying dimensions. A significance level (P-value) of 5% is 
used, and outcomes below this value indicate a "significant difference" among the two algorithms. Table 7 shows 
that most test results are below 5%, but few are above, meaning no significant difference. The QSSALEO and TSO 
algorithms have few results that are better than DGS-SCSO, as indicated by the "-" column. This suggests that 
these algorithms have good convergence on certain functions, which confirms the No-free-Lunch theorem, "stat-
ing that no single optimization algorithm can be applied to solve all types of optimization problems". However, it 
is worth noting that in the “ + ” column, which denotes the better performance of DGS-SCSO in comparison to 
the other algorithms, DGS-SCSO consistently outperforms them. The “ = ” column indicates equal performance. 
Table 8 presents another nonparametric test called the Friedman Test, which ranks compared methods from 
least to highest. DGS-SCSO ranked first in all test scenarios with the highest list value in the Friedman rank.

Convergence curve analysis
Figure 5 depicts the average convergence profiles of various optimization algorithms across 30 independent runs 
using the dimensions of Tables 1 and 2. The efficacy and efficiency of an optimization algorithm can be assessed 
using the speed and accuracy of its convergence towards the optimal solution, as reflected in its convergence 
trajectory. In this regard, the DGS-SCSO algorithm performs better than the original SCSO algorithm, achieving 
faster convergence rates, particularly in the initial search phases. The proposed algorithm demonstrates notable 
improvement in convergence performance for most functions, indicating its effectiveness in enhancing the 
optimization process. Specifically, in unimodal functions F1-F5 and F7, the DGS-SCSO algorithm converges far 
more rapidly than other algorithms in the initial iterations, achieving the best convergence precision compared 
to other algorithms. On multimodal functions, the DGS-SCSO algorithm maintains superior convergence speed 
and accuracy across most functions. Notably, in F8-10, F15, and F20, the algorithm performs exceptionally well, 
reaching the proximity of the global optimum and surpassing other optimizers. The incorporation of Gold-SA 
techniques enables the algorithm to rapidly track the best solution to speed up the convergence in the initial 
search stages for unimodal functions. The DPI method facilitates the algorithm’s breakout from the local opti-
mum in multimodal functions, contributing to its outstanding performance. In terms of convergence accuracy 
on complex functions, the DGS-SCSO algorithm outperforms other algorithms. Specifically, in F23-F29, DGS-
SCSO demonstrates superior performance compared to other novel optimization algorithms.

Box plot analysis
Through boxplot analysis, the distributional properties of the data may be shown. The data distribution is shown 
as quartiles in the boxplot. The algorithm’s lowest and highest values are found at the lowest and highest points 
of the boxplot. The rectangle’s ends serve as a boundary between the lower and upper quartiles. In this section 
of the study, the boxplot behaviour was used to demonstrate the distribution of the obtained value for each 
algorithm. The benchmark functions were run independently 30 times for each sample using the dimensions 
in Tables 1 and 2. From Fig. 6, it can be concluded that DGS-SCSO demonstrated better stability for most 
benchmark functions and outperformed the other algorithms. This indicates that DGS-SCSO is a more reliable 
and consistent algorithm for finding the global optimum. The boxplot for the proposed DGS-SCSO method 
was narrow in most cases for F1 to F20 and comparable to other algorithms. This indicates that the DGS-AEFA 
method performs well for less complicated functions and maintains performance where the global optimum is 
easier to find. DGS-SCSO had lower values in much more complex functions like F23, F24, F26, F28, and F29 

Table 3.  Parameter settings.

Algorithms Parameter setting

DGS-SCSO Roulette wheel selection [0, 360], C = 0.35, SM = 2,K = 1.5 ×  104

SCSO27 Roulette wheel selection [0, 360],C = 0.35, SM = 2

AEFA 39 Coulombs constant k0 = 500,γ = 30

HBA40 β = 6 , C = 2

HPSOBOA41 afirst = 0.1, afinal = 0.3, c(0) = 0.01, p = 0.6
x(0) = 0.315, ρ = 0.295, c1 = c2 = 0.5

QSSALEO42 Light absorption coefficient ζ = 1 , step size s = 0.2

TBLSBCL43 φ = 0.3 , c1 = [2/e,2]

TSO44 k = 2, z ∈ [0, 2]
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DGS-SCSO SCSO AEFA HBA HPSOBOA QSSALEO TBLSBCL TSO

F1
AVG 0 2.64E-143 4.77E-21 4.03E-70 8.39E-9 5.49E-14 9.87E-9 4.29E-153

STD 0 4.89E-144 3.45E-21 8.97E-71 3.61E-9 2.02E-14 1.73E-9 7.96E-154

F2
AVG 1.82E-217 5.01E-73 1.04E + 2 9.88E-40 4.24E-1 9.13E-8 1.41 9.57E-63

STD 0 9.31E-74 4.57E + 1 2.62E-40 3.21E-1 6.42E-8 1.35 5.15E-62

F3
AVG 0 2.51E-140 1.75E + 3 5.92E-33 4.48E-7 1.62E-14 7.73E + 1 2.88E-139

STD 0 4.67E-141 4.43E + 2 1.20E-33 1.96E-7 1.59E-14 5.35E + 1 7.44E-140

F4
AVG 1.61E-241 1.41E-70 1.48 1.31E-23 1.21E-5 1.43E-7 6.84 2.52E-72

STD 0 2.63E-71 1.00 2.44E-24 8.52E-6 9.12E-8 2.43 4.68E-73

F5
AVG 0 4.96E-150 2.18 3.67E-65 2.55E-7 2.40E-13 4.50 3.52E-114

STD 0 9.21E-151 0 6.82E-66 7.00E-7 9.79E-14 1.04 6.53E-115

F6
AVG 6.15 6.32 2.39E-21 9.38E-5 6.28 1.28E-8 9.67E-9 9.16E-5

STD 5.12E-1 3.11E-1 1.87E-21 3.89E-6 4.80E-1 2.96E-9 2.08E-9 4.30E-5

F7
AVG 2.69E-5 4.20E-5 1.63 2.79E-3 3.76E-4 1.11E-4 6.96E-2 5.76E-5

STD 2.50E-5 3.67E-5 5.29E-1 2.45E-3 3.13E-4 1.11E-4 2.22E-2 4.31E-5

F8
AVG 0 1.70E-78 1.39 1.13E-1 4.24E-6 2.11E-8 8.67E-1 3.03E-78

STD 0 3.54E-79 3.05E-1 7.27E-2 4.06E-6 1.77E-8 1.47E-1 7.54E-79

F9
AVG 0 0 4.15E + 1 1.54 2.33E-6 5.43E-14 4.08E + 1 0

STD 0 0 1.29E + 1 1.38E + 1 5.66E-6 1.33E-14 1.10E + 1 0

F10
AVG 4.44E-16 4.44E-16 1.45E-1 4.77 3.74E-5 5.93E-8 2.92 4.44E-16

STD 9.86E-32 9.86E-32 3.76E-1 7.31 3.15E-5 3.96E-8 5.91E-1 9.86E-32

F11
AVG 0 0 3.93E-1 2.46E-5 3.20E-10 2.34E-14 1.36E-2 0

STD 0 0 5.31E-1 4.57E-6 1.91E-10 2.11E-14 1.22E-2 0

F12
AVG 9.53E-1 9.95E-1 2.45 5.82E-2 9.30E-1 6.84E-11 7.23 2.07E-5

STD 1.89E-1 1.65E-1 9.21E-1 1.38E-2 2.00E-1 2.29E-11 2.94 6.02E-6

F13
AVG 2.65 2.83 7.12 7.28E-2 2.88 1.02E-2 7.55 4.71E-5

STD 3.47E-1 8.12E-2 4.67 8.48E-4 2.06E-1 6.17E-3 1.10E-2 3.18E-5

F14
AVG 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

STD 0 0 9.95E-5 0 6.20E-6 0 2.09E-6 0

F15
AVG 1.35E-31 1.48E-1 1.35E-31 9.35E-2 2.24E-1 1.59E-13 1.55E-13 7.78E-5

STD 6.57E-47 9.75E-2 6.57E-47 8.94E-2 2.45E-1 1.37E-13 1.40E-13 4.63E-5

F16
AVG − 1.03 − 1.03 − 1.03 − 1.03 − 7.81E-1 − 1.03 − 1.03 − 8.54E-1

STD 4.44E-16 4.07E-3 4.44E-16 5.21E-3 3.03E-1 4.44E-16 4.44E-16 2.84E-1

F17
AVG 3.98E-1 5.02E-1 3.98E-1 4.92E-1 4.43E-1 3.98E-1 3.98E-1 7.14E-1

STD 5.55E-17 1.07E-1 5.55E-17 1.18E-1 1.02E-1 5.55E-17 5.55E-17 1.56E-1

F18
AVG 3.90 3.28 3.00 3.15 4.08 3.00 3.00 2.22E + 1

STD 4.85 9.53E-1 0 1.98E-1 2.64 0 0 1.21E + 1

F19
AVG − 3.86 − 3.54 − 3.62 − 3.67 − 3.23 − 3.86 − 3.86 − 3.30

STD 1.78E-15 2.89E-1 3.50E-1 2.45E-1 3.55E-1 1.78E-15 1.78E-15 3.98E-1

F20
AVG 0 0 0 0 2.27E-9 3.70E-18 2.82E-11 0

STD 0 0 0 0 3.41E-9 1.38E-17 3.00E-11 0

F21
AVG 1.00 1.00 1.38E + 8 1.00 1.00 1.00 3.83E + 5 1.00

STD 0 0 9.05E + 7 0 0 0 4.30E + 5 0

F22
AVG 4.95 5.00 2.80E + 4 4.06E + 2 5.00 4.80 8.49E + 2 5.00

STD 1.30E-1 5.30E-3 8.08E + 3 2.98E + 2 7.47E-5 2.79E-1 5.09E + 2 0

F23
AVG 1.98 9.34 1.23E + 1 4.57 7.68 9.16 4.15 1.17E + 1

STD 1.08 7.50E-1 6.25E-1 2.81 1.62 8.20E-1 2.04 1.16

F24
AVG 1.19E + 1 1.02E + 2 1.03E + 2 1.83E + 1 1.09E + 2 3.38E + 1 2.77E + 1 1.34E + 2

STD 4.81 1.47E + 1 1.00E + 1 6.31 2.29E + 1 1.33E + 1 1.11E + 1 1.93E + 1

F25
AVG 1.01 7.36E + 1 8.02E + 1 1.13 8.39E + 1 1.17 1.21 1.52E + 2

STD 9.12E-3 2.50E + 1 2.53E + 1 7.92E-2 3.49E + 1 9.94E-2 9.66E-2 3.29E + 1

F26
AVG 1.05 1.16E + 1 1.12E + 1 3.58 1.20E + 1 5.44 3.94 1.36E + 1

STD 2.69E-1 8.76E-1 8.66E-1 1.22 1.12 1.67 1.52 1.02

F27
AVG 2.12E + 3 2.18E + 3 1.08E + 3 8.06E + 2 2.05E + 3 1.04E + 3 9.70E + 2 2.72E + 3

STD 2.23E + 2 2.30E + 2 3.74E + 2 3.15E + 2 4.29E + 2 2.91E + 2 3.04E + 2 2.65E + 2

F28
AVG 3.97 5.21 5.15 5.17 5.34 4.23 4.14 5.25

STD 4.11E-1 1.45E-1 2.22E-1 1.36E-1 2.28E-1 3.10E-1 4.69E-1 6.03E-2

Continued
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than all other algorithms. This suggests that DGS-SCSO is also able to maintain stability and is able to handle 
more complex functions well where finding the global optimum is more challenging. Overall, DGS-SCSO shows 
an advantage in stability and robustness when taking into account the “length and median” of the box, which is 
the thin line inside the box. The addition of the two enhancement techniques led to greater harmony between 
the exploitation and exploration capacities, making the algorithm more efficient as a whole.

Exploration and exploitation analysis
Too much exploration can lead to inefficient search and slow convergence, while too much exploitation can result 
in early convergence to local optima and a failure to discover better solutions. In this subsection, we observe the 
exploitation and exploration capability of the proposed method as proposed by Kashif et al46.

(13)Divj =
1

n

n
∑

i=1

median
(

xj
)

− x
j
i

DGS-SCSO SCSO AEFA HBA HPSOBOA QSSALEO TBLSBCL TSO

F29
AVG 1.07 3.76 3.49 1.22 5.06 1.25 1.29 4.81

STD 3.10E-2 5.45E-1 7.32E-1 9.66E-2 6.12E-1 1.22E-1 1.20E-1 5.71E-1

F30

AVG 2.16E + 1 2.16E + 1 2.03E + 1 2.15E + 1 2.18E + 1 2.04E + 1 1.91E + 1 2.17E + 1

STD 1.28E-1 1.23E-1 3.59 1.22E-1 8.59E-2 3.61 5.84 5.19E-2

W/L/T 13/7/10 0/24/6 1/24/5 1/26/3 0/29/1 2/22/6 1/25/4 1/23/6

OE 76.66% 20% 20% 13.33% 3.33% 26.66% 16.66% 23.33%

Table 4.  Result of different algorithms on 30 functions. Significant values are in [bold].

Table 5.  Result of different algorithms on F1-F13 with dimension 50. Significant values are in [bold].

DGS-SCSO SCSO AEFA HBA HPSOBOA QSSALEO TBLSBCL TSO

F1
AVG 0 1.06E-161 1.46E + 1 1.20E-61 2.88E-8 9.69E-14 4.38E-8 1.85E-134

STD 0 0 2.10E-1 2.24E-62 1.24E-8 5.54E-14 8.36E-9 3.44E-135

F2
AVG 6.19E-284 3.78E-86 2.23E + 2 1.07E-34 3.71E + 23 2.23E-7 4.36 2.07E-68

STD 0 7.02E-87 4.84E + 1 2.01E-35 1.65E + 23 2.22E-7 1.84 3.84E-69

F3
AVG 0 8.70E-126 4.87E + 3 1.38E-22 1.19E-6 1.21E-13 1.88E + 3 1.16E-137

STD 0 1.61E-126 1.22E + 3 3.47E-23 4.72E-7 7.95E-14 6.02E + 2 2.15E-138

F4
AVG 5.26E-268 9.50E-71 8.02 5.92E-20 7.96E-6 1.64E-7 1.59E + 1 3.01E-66

STD 0 1.77E-71 2.22 1.60E-20 5.52E-6 1.18E-7 2.55 6.41E-67

F5
AVG 5.73E-273 1.88E-167 6.69E + 2 6.72E-61 7.11E-7 7.39E-13 1.27E + 2 4.38E-137

STD 0 0 6.23E + 2 1.25E-61 4.60E-7 6.63E-13 9.73E + 1 8.14E-138

F6
AVG 1.12E + 1 1.11E + 1 1.36E + 1 9.65E-2 1.14E + 1 5.29E-8 4.30E-8 7.02E-5

STD 6.34E-1 4.25E-1 1.02E + 1 7.50E-3 5.66E-1 1.33E-8 6.93E-9 4.10E-5

F7
AVG 2.04E-5 4.31E-5 4.21E + 2 4.06E-3 4.49E-4 1.07E-4 2.30E-1 7.58E-5

STD 1.82E-5 4.18E-5 6.76E + 1 5.80E-4 3.56E-4 9.56E-5 6.24E-2 6.03E-5

F8
AVG 0 8.97E-76 3.15 9.63E-2 7.33E-6 3.62E-8 2.21 1.44E-64

STD 0 1.67E-76 5.08E-1 8.84E-3 6.35E-6 2.82E-8 3.31E-1 2.67E-65

F9
AVG 0 0 1.82E + 2 1.26E 9.64E-6 3.41E-14 7.56E + 1 0

STD 0 0 4.54E + 1 2.57E-1 5.46E-6 1.14E-14 1.37E + 1 0

F10
AVG 4.44E-16 4.44E-16 2.86 9.03 3.17E-5 7.48E-8 3.89 4.44E-16

STD 9.86E-32 9.86E-32 1.10 8.67 3.14E-5 5.96E-8 8.42E-1 9.86E-32

F11
AVG 0 0 8.29 7.97E-17 3.57E-10 6.20E-14 8.34E-3 0

STD 0 0 4.10 1.48E-17 1.88E-10 4.01E-14 1.10E-4 0

F12
AVG 9.93E-1 1.13 6.82 5.62E-3 1.09 2.15E-10 1.05E + 1 3.51E-6

STD 1.58E-1 1.01E-1 3.58 1.17E-4 1.27E-1 7.30E-11 3.34 7.10E-6

F13

AVG 4.69 4.85 7.30E + 1 1.26 4.91 5.08E-2 6.25E + 1 6.20E-5

STD 3.88E-1 4.51E-2 3.95E + 1 5.67E-1 1.79E-1 4.39E-2 2.18E + 1 4.77E-5

W/L/T 7/3/3 0/13/3 0/13/0 0/13/0 0/13/0 1/12/0 1/12/0 1/9/3

OE 76.92% 0% 0% 0% 0% 7.69% 7.69% 30.76%
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In Eq. (13), the population’s diversity in dimension j is measured. To compute the diversity of a single dimen-
sion j , firstly we find the median value denoted as median

(

xj
)

 of that dimension across all individuals n in the 
swarm. Subsequently, we compute the distance of every individual i value for that dimension from the median 
value j , and take the average of these distances across all individuals Divj in the swarm in Eq. (14). This gives 
diversity Divj for that dimension. To compute the overall diversity Div of the swarm, we repeat this process for 
each dimension j , and then take the average of the diversities Divj across all dimensions. The purpose of this 
calculation is to measure how diverse the individuals in the swarm are in terms of their dimensional values. If 
all individuals have very similar values for all dimensions, then the diversity will be low. If there is a lot of vari-
ation in the values across dimensions and individuals, then the diversity will be high. Equations (14) and (15) 
determine the exploration and exploitation percentages in an iteration:

where, Div is the diversity of the swarm in the current iteration, Divmax is the maximum diversity among all itera-
tions, Exploration% is the percentage of exploration in the current iteration, and Exploitation% is the percentage 
of exploitation in the current iteration.

In Fig. 7, we used unimodal functions F1, F4, and F5 to depict how well the optimizer is able to explore. On 
the other hand, the multimodal functions F10, F11, and F12 in Fig. 6 depict how well the optimizer is capable to 
explore the search area. It can be observed that the method begins with a wide exploration and narrow exploi-
tation of the functions examined. The appropriate balance between both optimization processes is seen as the 
iteration process progresses.

(14)Div =
1

D

D
∑

j=1

Divj

(15)Exploration% =
Div

Divmax
× 100

(16)Exploitation% =
| Div − Div max |

Div max
× 100

Table 6.  Result of different algorithms on F1-F13 with dimension 100. Significant values are in [bold].

DGS-SCSO SCSO AEFA HBA PSOBOA QSSALEO TBLSBCL TSO

F1
AVG 0 7.68E-141 1.01E + 3 1.55E-62 1.25E-8 1.99E-13 2.27E-1 4.87E-119

STD 0 1.43E-141 3.18E + 2 4.70E-63 1.05E-8 1.09E-13 1.72E-1 9.04E-120

F2
AVG 6.24E-261 2.92E-71 4.41E + 2 1.38E-33 7.38E + 48 4.18E-7 2.02E + 1 7.30E-64

STD 0 5.42E-72 4.06E + 1 2.64E-34 1.63E + 48 3.43E-7 1.04E + 1 1.36E-64

F3
AVG 0 7.09E-130 1.74E + 4 1.31E-3 2.42E-6 1.91E-12 1.42E + 4 1.69E-116

STD 0 1.32E-130 4.89E + 3 2.44E-4 1.17E-6 9.08E-13 2.76E + 3 3.14E-117

F4
AVG 7.23E-227 2.98E-66 1.67E + 1 4.01E-16 7.81E-6 2.09E-7 1.85 1.85E-73

STD 0 5.54E-67 2.07 8.24E-17 6.12E-6 1.48E-7 2.62E + 1 3.45E-74

F5
AVG 1.98E-240 2.33E-158 2.69E + 4 2.70E-55 8.23E-6 7.56E-12 3.95E + 3 1.42E-131

STD 0 0 6.50E + 3 5.04E-56 5.90E-6 3.84E-12 1.88E + 3 2.66E-132

F6
AVG 2.31E + 1 2.36E + 1 1.01E + 3 4.21 2.40E + 1 6.89E-7 2.47E-1 7.74E-4

STD 1.20 3.99E-1 3.18E + 2 9.29E-1 4.71E-1 1.55E-7 2.39E-1 2.34E-4

F7
AVG 1.80E-5 3.83E-5 1.91E + 3 7.48E-3 4.98E-4 1.00E-4 1.14 6.76E-5

STD 1.71E-5 3.51E-5 1.25E + 2 4.63E-3 7.39E-4 8.55E-5 2.29E-1 6.09E-5

F8
AVG 4.16E-130 1.23E-80 7.43 9.09E-2 7.70E-6 6.23E-8 7.14 1.11E-66

STD 7.73E-131 2.30E-81 7.92E-1 4.81E-2 7.33E-6 4.42E-8 7.42E-1 2.06E-67

F9
AVG 0 0 7.97E + 2 2.80E-1 3.37E-5 9.50E-14 1.52E + 2 0

STD 0 0 1.01E + 2 7.46E-2 1.56E-5 4.17E-14 2.69E + 1 0

F10
AVG 4.44E-16 4.44E-16 7.98 1.46E + 1 2.28E-5 8.75E-8 7.55 4.44E-16

STD 9.86E-32 9.86E-32 7.66E-1 7.61 1.97E-5 5.12E-8 1.54 9.86E-32

F11
AVG 0 0 4.84E + 1 0 2.78E-10 2.20E-13 1.95E-1 0

STD 0 0 1.09E + 1 0 1.54E-10 1.06E-13 6.28E-2 0

F12
AVG 1.09 1.16 3.12E + 2 5.27E-2 1.11 2.69E-8 1.67E + 1 2.95E-6

STD 1.33E-1 6.93E-2 1.54E + 2 1.35E-2 8.33E-2 3.62E-8 3.60 8.86E-7

F13

AVG 9.74 9.87 3.83E + 5 7.16 9.95 5.44E-1 1.73E + 2 4.96E-5

STD 2.77E-1 4.78E-2 3.13E + 5 1.35 1.53E-1 2.40E-1 2.07E + 1 3.71E-5

W/L/T 7/3/3 0/10/3 0/13/0 0/12/1 0/13/0 2/11/0 0/13/0 1/9/3

OE 76.92% 23.07% 0% 7.69% 0% 15% 0% 30.76%
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Application of engineering problem
In this section, DGS-SCSO is compared to seven other algorithms on popular engineering problems, the experi-
ment settings are the same as the previous experiment.

Tension/compression spring design problem (TCSD)
The TCSD problem evaluated in this subsection is a continuous constrained problem that minimizes the weight 
of a TCSD, as illustrated in Fig. 8. It includes three parameters: the number of “active coils (N), the mean coil 
diameter (D), and the wire diameter (d)”; with three constraining factors: "minimum deflection, shear stress, and 
urge frequency". We further proceeded to apply the DGS-SCSO algorithm and other metaheuristic algorithms 

Figure 4.  Result of different algorithms on 30 functions.
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to solve the TCSD problem. The results provided in Table 9 show that the DGS-SCSO algorithm outperformed 
the other algorithms in determining the optimum  cost47.

Considering the vector −→x = [x1x2x3] = [dDN]
We aim to minimize

Constrained by

Possible boundaries of vector −→x :

(18)f (−→x ) = (x3 + 2)x2x
2
1

(18)g1(
−→x ) = 1−

x32x3

7178x41
≤ 0

(19)g2(
−→x ) =

4x22 − x1x2

12566
(

x2x
3
1 − x41

) +
1

510x21
− 1 ≤ 0

(20)g3(
−→x ) = 1−

140.45x1

x22x3
≤ 0

(21)g4(
−→x ) =

x1 + x2

1.5
− 1 ≤ 0

Table 7.  Wilcoxon rank test.

Dimension DGS-SCSO vs -  +  = R- R + p-value

30

SCSO 1 21 8 15 238 2.95E-04

AEFA 4 21 5 49 276 2.26E-03

HPSOBOA 6 20 4 110 241 9.62E-02

HBA 2 26 2 37 369 1.57E-04

QSSALEO 7 18 5 134 191 4.43E-01

TBLSBCL 4 22 4 66 285 5.42E-03

TSO 3 21 6 48 252 3.57E-03

50

SCSO 1 9 3 8 47 4.69E-02

AEFA 0 13 0 0 91 1.47E-03

HPSOBOA 3 10 0 33 58 3.82E-01

HBA 0 13 0 0 91 1.47E-03

QSSALEO 3 10 0 36 55 5.07E-01

TBLSBCL 1 12 0 8 83 8.78E-03

TSO 3 7 3 27 28 9.59E-01

100

SCSO 0 10 3 0 55 5.06E-03

AEFA 0 13 0 0 91 1.47E-03

HPSOBOA 3 9 1 31 47 5.30E-01

HBA 0 12 0 0 78 2.22E-03

QSSALEO 3 10 0 36 55 5.07E-01

TBLSBCL 1 12 0 9 82 1.07E-02

TSO 3 7 3 27 28 9.59E-01

Table 8.  Friedman test.

DGSSCSO SCSO AEFA HPSOBOA HBA QSSALEO TBLSCL TSO

30dim
Friedman value 2.47 4.37 5.53 4.15 6.1 3.63 5.02 4.73

Friedman rank 1 4 7 3 8 2 6 5

50dim
Friedman value 2.08 2.85 7.62 4.62 5.85 3.92 6.62 2.46

Friedman rank 1 3 8 5 6 4 7 2

100dim
Friedman value 2.13 3.04 7.92 4.71 5.58 3.67 6.58 2.38

Friedman rank 1 3 8 5 6 4 7 2
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Figure 5.  Convergence curve for functions F1 to F30.
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Figure 5.  (continued)
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Figure 5.  (continued)
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Three‑bar truss design
Three bar truss design optimization problem’s objective is to minimize the relevant weights related to the design 
illustrated in Fig. 9. The problem involves two optimization parameters ( x1 , x2 ) and three constraining factors: 

0.05 ≤ x1 ≤ 2.00

0.25 ≤ x2 ≤ 1.30

2.00 ≤ x3 ≤ 15.0

Figure 5.  (continued)
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Figure 6.  Boxplot plots on benchmark functions F1 to F30.
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Figure 6.  (continued)
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Figure 6.  (continued)
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Figure 6.  (continued)
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Figure 6.  (continued)
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buckling, deflection, and stress. The mathematical expression of the Three-bar truss design problem is presented 
 below48,49:

Constraining factors:

(22)Minimize : f (x1, x2) = l ×
(

2
√
2x1 + x2

)

Figure 7.  Exploitation and exploration plot of DGS-SCSO.
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where: l = 100cm; P = 2kN
cm2 ; σ = 2kN

cm2

Interval: 0 ≤ x1, x2 ≤ 1
As seen in Table 10 DGS-SCSO obtained the best outcome for the optimal cost.

Conclusion
In conclusion, this paper introduces DGS-SCSO, a novel optimization algorithm that builds upon Sand Cat 
Swarm Optimization (SCSO) with the incorporation of Dynamic Pinhole Imaging (DPI) and Golden Sine 
Algorithm (Gold-SA). DPI improves global search capabilities and helps to avoid local optima, while Gold-SA 
addresses the drawbacks of SCSO, including early convergence and stagnation, thereby enhancing exploitation. 
The effectiveness of DGS-SCSO was assessed using 20 test functions and 10 CEC 2019 competition test func-
tions, and the algorithm demonstrated superior optimization accuracy, convergence speed, robustness, and 
statistical significance when compared to other competitors. Furthermore, DGS-SCSO was evaluated on two 
real-world engineering design problems and significantly outperformed its peers. However, DGS-SCSO’s time 
consumption is a potential concern due to its use of DPI and fitness evaluation to detect the best solutions, fol-
lowed by the application of Gold-SA to improve the best solution. Future research will concentrate on reducing 
the computational time of DGS-SCSO while maintaining its performance, as well as exploring its applications 
to combinatorial optimization problems and coupling it with other optimizers to enhance its performance fur-
ther. In addition to the aforementioned future directions, an online web server and an importable library will be 
developed to enhance the accessibility and usability of DGS-SCSO. Furthermore, our future efforts will focus on 
improving and advancing the constraint DGS-SCSO algorithm version, equipping it with enhanced techniques 
tailored for handling both equality and inequality constraints. These endeavours aim to strengthen the algorithm’s 
applicability and performance across a broader range of real-world optimization problems.

(23)G1 =
√
2x1 + x2√

2x12+ 2x1x2
P − σ ≤ 0

(24)G2 =
x2√

2x12+ 2x1x2
P − σ ≤ 0

(25)G3 =
1

√
2x2 + x1

P − σ ≤ 0

0.05 ≤ 1 ≤ 2.00

0.25 ≤ 2 ≤ 1.30

2.00 ≤ 3 ≤ 15.0

Figure 8.  Tension/compression spring design problem parameters.

Table 9.  Results of tension/compression spring design problem. Significant values are in [bold].

Optimizers Optimal Cost d D N

DGS-SCSO 0.012665233 0.051683015 0.356572307 11.29749715

SCSO 0.01287564 0.052802393 0.381809003 10.09526686

AEFA 0.012704376 0.050244994 0.322960141 13.58184231

HBA 0.012814532 0.051761779 0.356086697 11.43162679

HPSOBOA 0.012745971 0.05 0.317013059 14.08258117

QSSALEO 0.013652141 0.058302711 0.531052593 5.562854585

TBLSBCL 0.012693336 0.050462415 0.327918248 13.20106881

TSO 0.012797224 0.05 0.316569921 14.1698549
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Data availability
The datasets used and/or analyzed during the current study available from the corresponding author on reason-
able request.
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