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Automated optic disk 
segmentation for optic disk edema 
classification using factorized 
gradient vector flow
Seint Lei Naing  & Pakinee Aimmanee *

One significant ocular symptom of neuro-ophthalmic disorders of the optic disk (OD) is optic disk 
edema (ODE). The etiologies of ODE are broad, with various symptoms and effects. Early detection 
of ODE can prevent potential vision loss and fatal vision problems. The texture of edematous OD 
significantly differs from the non-edematous OD in retinal images. As a result, techniques that 
usually work for non-edematous cases may not work well for edematous cases. We propose a fully 
automatic OD classification of edematous and non-edematous OD on fundus image collections 
containing a mixture of edematous and non-edematous ODs. The proposed algorithm involved 
localization, segmentation, and classification of edematous and non-edematous OD. The factorized 
gradient vector flow (FGVF) was used to segment the ODs. The OD type was classified using a linear 
support vector machine (SVM) based on 27 features extracted from the vessels, GLCM, color, and 
intensity line profile. The proposed method was tested on 295 images with 146 edematous cases and 
149 non-edematous cases from three datasets. The segmentation achieves an average precision of 
88.41%, recall of 89.35%, and F1-Score of 86.53%. The average classification accuracy is 99.40% and 
outperforms the state-of-the-art method by 3.43%.

Optic disk edema (ODE) is an abnormal condition describing the swelling of the optic disk. The causes of ODE 
are, for example, toxic optic neuropathy, infiltrative optic neuropathy, malignant hypertension, and papilledema1. 
Symptoms vary from patient to patient, depending on the causes. Common ones are eye pain, visual field loss, 
color vision loss, flashing lights, and even vision loss when left untreated. ODE due to idiopathic intracra-
nial hypertension (IIH), widely known as papilledema, is the most prevalent cause of ODE. The prevalence of 
papilledema is as high as 3.5 out of 100,000 in females aged between 15 and 44 years old2. Fundus photography 
can be used to diagnose ODE from ophthalmic investigations. The appearances of edematous OD considerably 
differ from non-edematous ODs3. Typical characteristics of edematous OD are blur edge, disk hyperemia, eleva-
tion, peripapillary, hemorrhage, and tortuosity of retinal veins. Figure 1 shows a comparison of retinal images 
of non-edematous and edematous OD.

Most works for edematous OD classification are from a clinical point of view. Works related to computer-
aided software or algorithms proposed for edematous OD classification purposes were limited. The following 
are existing works related to edematous classification, including the stage grading applicable. Deep learning and 
machine learning were the two main approaches used.

Milea et al.4 used a deep learning approach on 14,341 ocular fundus photographs, including 9156 normal 
retina images, 2148 papilledema images, and 3037 other retina abnormalities images for training and validation 
of the model and 1505 images for external testing. The system classifies images of normal, papilledema, and 
other abnormalities by applying U-Net for detecting OD location and DenseNet for classification. The model’s 
performance was evaluated by calculating the area under the curve (AUC), sensitivity, specificity, and accuracy. 
The overall classification performance for the detection of papilledema in the external-testing dataset is 96%, 
87.5%, 96.4%, and 84.7% for AUC, accuracy, sensitivity, and specificity, respectively. Saba et al.5 proposed a fully 
automated deep-learning-based papilledema detection system using DenseNet4. They used DenseNet for the 
classification of normal and papilledema OD images. The STARE dataset with 100 images is used in the experi-
ments. The sensitivity, specificity, accuracy, and dice coefficient of classification obtained were 98.63%, 97.83%, 
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99.17%, and 99.08%. Another used approach is machine learning. Fatima et al.6 developed a hybrid feature-based 
papilledema detection system. They first manually detected the OD region. The SVM classifier with thirteen 
extracted features from color, GLCM, statistical features, and intensity line profile was then used for classification. 
The method was evaluated on a small subset of the STARE dataset comprising 20 swelling cases and ten normal 
cases. The reported average values of the performance measures were 100% sensitivity, 95% specificity, 91.67% 
precision, and 96.67% accuracy, respectively. Yousaf et al.7 extracted six related vascular features and four GLCM 
textual features from 36 manually cropped non-edematous OD boundaries and ten edematous OD boundaries 
from the STARE dataset. The classification was performed using the supervised support vector machine (SVM) 
classifier with a radial basic function kernel. They reported accuracy, sensitivity, precision, and specificity meas-
urements of individual features of 95.65%, 100%, 83.30%, and 94.40%, respectively. In both studies in the machine 
learning approach, the OD region used as a domain for feature extraction was manually cropped. In addition, 
each experiment was done on a single small dataset with an imbalance of non-edematous and edematous ODs.

As automatic OD localization and segmentation are essential steps in our work, reviews of these tasks are 
also provided. Many localization techniques have been proposed based on the optic disk intensity, shape, size, 
color, and vessel information. We have summarized the work related to OD localization in Table 1. Although 
several techniques with many different features have been used for OD segmentation in the past, and some even 
achieved accuracy as high as one hundred percent, those methods are evaluated on collections in which most 
images are non-edematous OD. They did not consider edematous cases. All OD localization and segmentation 
methods rely on typical normal ODs’ intensity, shape, and size. Therefore, these methods were not suitable for 
edematous ODs. Thus, the accuracy may not be as good as they claimed when involved with more ODE cases. 
This is because of physical changes in OD appearances, such as color, brightness, and size, and associating ves-
sel structures that tend to be incomplete and tortuous. Reviews of automatic classification, localization, and 
segmentation of edematous OD are provided in the next section. The summary of the techniques used for OD 
segmentation is shown in Table 2.

Objectives, novelty, and contributions
This study extended our previous work8, initially presented at the 19th International Conference on Electrical 
Engineering, Computer, Telecommunications, and Information Technology (ECTI-CON 2022). In that confer-
ence work, we initially introduced a factorized gradient vector flow (FGVF)9, a special kind of gradient vector 
flow for texture segmentation, to segment the edematous ODs. It is experimentally proven on a small dataset 
containing 35 images to yield high performance.

The extension parts from the previous work can be summarized as follows.

1.	 We experimented with using FGVF to segment the OD for non-edematous ODs. The previous work was 
only done on edematous ODs.

2.	 We experimented with more images from two additional public datasets containing both types of ODs. The 
total number of images used in the experiment is 295 with 146 edematous and 149 non-edematous cases.

3.	 We demonstrated that the precise OD boundary is useful for edematous OD classification.

The use of FGVF to identify the boundary of the optic disk (OD) is a groundbreaking technique in the field 
of research. This approach shows great promise for advancing OD detection methodologies, especially in cases 
where ODs are swollen. In comparison to four other state-of-the-art methods, experiments show that FGVF can 
provide precise OD segmentation results, regardless of whether the OD is edematous or non-edematous. This 
is a significant finding in the field of ophthalmic image processing, where images with mixed types of ODs are 
common. Moreover, the classification of OD types can be particularly useful for ODE prescreening.

Figure 1.   Retinal images of a non-edematous (left) and edematous (right).
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Methodology
A diagram depicting the procedures of our method is shown in Fig. 2. Our method comprised OD localization, 
OD boundary segmentation, and edematous classification. The hybrid localization method (HLM)24 was utilized 
to localize the OD. The optic disk boundary was segmented using factorized gradient vector flow (FGVF)8,9 
with the computed location of OD used as the seed point. After OD boundary segmentation, the 27 features 
were extracted from a region centered at the localized OD region, and the classification of the type of OD was 
performed using the linear SVM classifier. The details of each step are provided in the following subsections. 
Settings used in SVM were described in the section Datasets, Classifiers, and Evaluation.

OD localization
To locate the OD in cases where the vascular networks were incomplete, we used the hybrid localization method 
(HLM)24. This was because the vascular networks were often incomplete in edematous cases. The HLM method 
was effective on all types of vascular networks, regardless of their structural completeness. The HLM method first 
analyzed the structure of the vascular network. If the vascular network was complete, the main vessels appeared 
in a horizontal parabolic shape. The HLM method assumed that the vertex of the parabola was the location of the 
OD. If the vascular network was incomplete, it appeared as several broken lines. The OD location is determined 

Table 1.   Reviews on OD localization techniques.

Authors Techniques Datasets and sizes Best performance %

Siddalingaswamy et al.10
The optimal thresholding method is used for segmenting the 
brightest regions, followed by connected component analysis in 
OD localization

148 images from the local database
Accuracy 99.3
Sensitivity 90.67
Specificity 94.06

Mahmood and Lee11

Using directional blur and extended maxima transform for 
finding OD location candidates. Images are classified into 
healthy and unhealthy using simple retinal image statistics to 
detect abnormalities. Radial blur is applied to each candidate 
to obtain the profiles and to distinguish the OD from other 
candidates

554 images from DRIVE, DIARETDB1, DIARETDB0, STARE, 
RIM-ONE, HAF Accuracy 100.00

Shalchi and Rahebi12 The grasshopper optimization algorithm based on the light 
intensity of the retinal images 210 images from DIARETDB1, STARE, DRIVE Accuracy 99.67

Devi et al.13

Proposed a visual attention-based OD detection system. The 
linear filter extracted the stimulus features from color, intensity, 
and orientation. The saliency model, Otsu’s thresholding 
combined with mathematical morphology, is mainly applied 
for OD detection

79 images from STARE Accuracy 74.1

Wang et al.14

An integrated fully convolutional neural network (FCNN) 
for high-level prior knowledge and SMD model. The SLIC 
algorithm clusters the retinal images’ superpixels, and a feature 
matrix is constructed with the extracted color, texture, and 
edge features. The generated hierarchical segmentation tree is 
built to measure spatial connectivity and feature similarity for a 
low-rank background region

182 images from DRISHTI-GS, IDRiD
Precision 94.1
Recall 96.5
F1 score 95.3

Mendonca et al.15
Maximum entropy calculated from the vascular network. For 
the low-resolution images, the intensity of the original images 
is considered together with the vascular maximum entropy

1361 images from DRIVE, STARE, MESSIDOR, INSPIRE-AVR Accuracy 100.00

Soares et al.16
The orientation of the modified corner detector-based vessel 
enhancement function. The high convergence of vessels and 
high-intensity values defined the final OD localization

1767 images from STARE, DRIVE, DIARETDB0, 
DIARETDB1, MESSIDOR, ROC, E-OPHTHA-EX, HRF Accuracy 100.00

Gui et al.17 An improved corner detection algorithm based on edge and 
gray information 1321 images from STARE, DRIVE, MESSIDOR Accuracy 100.00

Muangnak et al.18 Vessel transform. The OD location is the convergence point of 
the directed vectors constructed from vessel segments 354 images from ROP, STARE, smartphone images database Accuracy 98.69

Wu et al.19

The hybrid directional model, combines the global and local 
directional models. The global model uses the relationship 
between OD and the vascular network, whereas the local model 
focuses on shape, brightness, and vessel convergence

1960 images from STARE, ARIA, MESSIDOR, DIARETDB0, 
DIARETDB1, DRIVE, ROC, ONHSD, DRIONS Accuracy 100.00

Zou et al.20 Use a verification model based on image brightness and para-
bolic fitting on the main vascular network 340 images STARE, DRIVE, DIARETDB0, DIARETDB1 Accuracy 100.00

Meng et al.21 The convolutional neural network (CNN) from red channel, 
green channel, and vascular information 340 images from DRIVE, DIARETDB0, DIARETDB1, STARE Accuracy 100.00

Mahfouz and Fahmy22
Features projection method. An OD location is determined 
based on the horizontal and vertical vessel information and the 
intensity profile of OD features

340 images STARE, DRIVE, DIARETDB0, DIARETDB1 Accuracy 100.00

Khaing et al.23

The exclusion method: an extended version of the features 
projection method. Multiple possible OD location candidates 
are listed from horizontal and vertical vessel information. The 
final OD location is concluded using a classification based on 
OD features

431 images STARE, DRIVE, DIARETDB0, DIARETDB1, ROP Accuracy 100.00

Khaing et al.24
Hybrid localization method. The method makes a selective 
model based on vascular information for applying exclusion 
and line models to find the OD location best

541 images from MEX, MHM, MHT, STARE, ROP, 
DIARETDB0, DIARETDB1 Accuracy 100.00
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by the convergence of the fitted straight lines, which represent these broken vessels. Figure 3 illustrates the OD 
localization step for edematous and non-edematous OD.

OD boundary segmentation
The OD region of interest (ROI) was first defined as a square centered at the OD location obtained from the HLM 
method. According to the size of OD in our datasets, we assumed that the diameter of the non-edematous OD 
was one-sixth of the retina’s diameter24. As the edematous OD’s region was commonly larger than the average 
size of the non-edematous OD, the ROI square’s width of both edematous and non-edematous OD was set to 
one-third of the retina’s diameter. Figure 4a and b depicts the original image and the ROI region.

Next, the image contrast was enhanced. The color space transform was applied to convert from an RGB to 
a L*a*b* channel. The Contrast-Limited Adaptive Histogram Equalization (CLAHE)8 was performed on the 
L channel on the ROI. For removing vessels from ROI, a masked image was created by multiplying the green 
channel of the original image with the binary ROI. Gaussian filtering was applied to the green channel of the 

Table 2.   Reviews of OD segmentation techniques.

Authors Techniques Dataset and size Best performance %

Wang et al.25

Using the Coarse-to-fine deep learning U-Net 
model with Gaussian weighting used RGB color 
images and the vascular density map for the 
network weight regions

2978 images from CFI, DIARETDB0, 
DIARETDB1, DRIONS-DB, DRIVE, MESSIDOR, 
ORIGA

Jaccard 89.1, Dice 93.9, Accuracy 97.0, Sensitivity 
94.4

Fang et al.26

Using biregional contour evolution model from 
the two-level set functions. The intensity, edge, 
and area features are considered in the method, 
and the Edge indicator function (EIF) is computed 
to differentiate OD and OC edges

1341 images from Dhristi-GS, DRIVE, REFUGE Jaccard 93.20, Dice 96.48, Accuracy 99.77

Dashtbozorg et al.27

Using two sliding band filters (SBF): low-resolu-
tion SBF for initial OD center location estimation 
and high-resolution producing band support 
points for initial OD boundary

1339 images from ONHSD, MESSIDOR, 
INSPIRE-AVR Overlap 89, Dice 93.73, Accuracy 99.87

Zaaboub et al.28
Using the saliency mask on the fundus images to 
localization region. Irregular shape OD boundary 
is refined by ellipse fitting

2050 images from RimOne, IDRID, Chase, Drive, 
HRF, Drishti, DRIONS, Bin Rushed, Magrabia, 
MESSIDOR, LocalDB

Accuracy 99.7, Dice 92.86, Jaccard 88.95, Sensitiv-
ity 97.98, Specificity 99.77

Khan et al.29
Using the region growing and adaptive threshold-
ing methods. Eccentricity and size are used for the 
final OD selection

2054 images from DRIONS, MESSIDOR, 
ONHSD, DIARETDB1, DRISHTI, RIM-ONE

Sensitivity 96.49, Specificity 99.75, Accuracy 
99.60,

Wilson and Mahesh30 Using superpixels with the k-mean algorithm 1310 images from DRIONS, MESSIDOR Jaccard 84.23, Dice 90.84, Accuracy 99.34

Rehman et al.31

Using a simple linear iterative clustering algo-
rithm technique combined with the features-based 
classification. The features from the segmented 
superpixel clusters are Intensity-based statistical 
features, texton-map histogram features, and 
fractal features, are extracted

1409 images from DRIONS, MESSIDOR, ONHSD Sensitivity 96.9, Specificity 99.5, Dice 89.9, 
Accuracy 99.3

Dai et al.32
Using a combination of the three energies: phase-
based boundary, PCA-based shape, and region 
energies

1409 images from MESSIDOR, ONHSD, DRIONS Overlap 90.54

Xue et al.33
The hybrid level set model (HLSM) included 
distance-regularized, line integral and area inte-
gral, area-based, and shape-based models

138 images from DRSHTI-GS, TMUEH Intersection over union 92.75, Four-side evalua-
tion 464.36

Gao et al.34

Using saliency detection and thresholding 
techniques to get a rough OD boundary. The oval 
fitting model is used to segment higher accurate 
boundary

229 images from DIARETDB0, DRSHTI-GS Overlap 66.59, Accuracy 96.30, F1-score 95.1

Abdullah et al.35
Using the fuzzy clustering mean method to 
localize the location. The active contour model is 
applied for OD segmentation

320 images from DRIVE, STARE, DIARETDB1, 
DRIONS-DB

Sensitivity 87.26, Overlap 84.56, DICE 88.40, 
Accuracy 99.46

Kusumandari et al.36
Comparing Gradient Vector Flow (GVF) snake 
active contour model and ellipse fitting method in 
OD detection

64 images from the local database C/D ratio of area: 84.38 (GVF), 81.25 (Ellipse Fit)

Khaing et al.37

Using an alternated deflation-inflation gradient 
vector flow (ADI-GVF) model for OD and optic 
cup segmentation in Glaucoma prescreening 
application. The ADI-GVF represents a balloon 
model that repeatedly deflates and inflates alter-
nately until it converges at the edge of the targeted 
boundary

225 images from mobile phone database, Drishti-
GS, HFS Recall 88.50, Precision 84.35, F-Measure 84.06

Gagan et al.38

Using basis splines-based active contour. The 
normalized multi-resolution-based cross-corre-
lation (MNCC) technique is used for normaliza-
tion. Gradient descent and Green’s theorem are 
utilized to optimize the energy function with free 
parameters

2993 images from Drishti-GS, MESSIDOR, RIGA, 
local database

Sensitivity 94.07, Specificity 99.82, Accuracy 
99.71, Jaccard 85.59, Dice 93.01

Khaing et al.8 Using Factorized Gradient Vector Flow (FGVF) 
for segmentation of optic disk edema (ODE) 35 images from a public database F1-score 84.24, Precision 91.74, Recall 79.21
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masked image to smooth it. Then, the region filling was performed on the pixels within the mask based on 
Laplace’s equation, removing vessel-related regions. Figure 4c and d illustrate the results after these processes.

A factorized Gradient Vector Flow (FGVF) proposed by Gao et al.9 was employed in our work to segment 
the OD boundary. The following FGVF pseudocode illustrates the main tasks in a recursive manner. The initial 
contour (C) was defined as a circle with a radius of 1/4 of the retina’s width, centered at the OD location. Sub-
sequently, the texture feature matrix Y was computed from the vessel-removed image from the prior step. The 
FGVF algorithm takes the texture feature matrix Y, the initial contour C, the number of rounds i as inputs. It 
repeatedly evolves the contour C to be closer to the OD boundary until convergence.

The FGVF algorithm uses the following functions.

Figure 2.   Framework of edematous and non-edematous OD classification.
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MakeFeatureMatrix(Img) takes the image Img as an input. It returned a texture feature matrix cal-
culated by using local spectral histograms39 and a factorized-based texture segmentation method proposed by 
Yuan et al.40.

PerformEvolution(Y, C) takes a texture feature matrix Y and a contour C. It evolves using the level 
set function and returns the new contour. The contour evolution is performed using level-set regularization 
proposed by Li et al.41.

CheckConvergence(C, C*) takes contours C and C* as inputs. If the average differences along the 
x and y directions between the input contours are less than a convergence threshold, the function returns true; 
otherwise, it returns false. In our experiment, we used 0.05 for a convergence threshold.

Figure 4e–h displays contours at the initial round, 100th round, 400th round, and upon convergence.
The contour evolution based on the factorization-based fitting energy and level-set regularization can be 

mathematically explained. Given φ a signed distance function of a contour curve and R is the presentation 
feature9.

The FGVF energy function (EFGVF) consists of two energy terms: a factorization-based fitting energy ( Edata)9  
and a level-set regularization term ( Eregularization)41.

where τ and υ are two positive constants to control the proportion of Edata and Eregularization . In our edematous 
and non-edematous OD boundary segmentation, we set the constant values τ = 50 and υ = 1.5. These values are 
tested empirically to yield the best result.

The first energy term Edata is derived from the matrix factorization techniques. Equations (2)–(5)  collectively 
contribute to Edata . Terms A and B are determined using the Heaviside function and the weight vectors ωo and 
ωb . The weights are calculated from the presentation feature R and the feature matrix Y .

(1)EFGVF(φ,R) = τEdata(φ,R)+ υEregularization(φ),

(2)Edata(φ,R) = −

∫

Ω

A+ Bdx

Figure 3.   Illustration of the HLM method used for OD localization (rectangle) in non-edematous (left) and 
edematous ODs (right).
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(3)A = Hε(φ)ωo(x,R)

(4)B = 1−Hε(φ)ωb(x,R)

(5)[ωo,ωb] =

(

RRT
)−1

RTY

(6)Y = Rβ + ǫ

Figure 4.   FGVF procedure illustration (a) Original Image, (b) Region of Interest (c) Contrast-Enhanced Image, 
(d) Vessel Removed Image, (e) Seed point and initial contour (f) after the 100th round of FGVF’s evolution 
process, (g) after the 400th round of FGVF’s evolution process, (h) OD boundary after FGVF’s convergence.
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where Ω  is a 2D image domain, x is a point in the domain, Ωo and Ωb are defined as the object region and the 
background region (i.e. Ω = Ωo ∪Ωb) , Hǫ(φ) is a Heaviside function, ωo and ωb are the weights of the object and 
background regions, R is the representative features, Y is the feature matrix of the ROI region calculated using 
factorization based method for textual image segmentation proposed by Yaun et al.40, β is a matrix whose columns 
are region weight vectors, and ǫ is the additive noise. In our work, ǫ is set to 0.5. The object and background of 
ROI are divided into two parts with different textural feature maps. The Y in Eq. (6) refers to the resultant matrix 
of the MakeFeatureMatrix(Img) function in the prior FGVF pseudocode.

The second energy term Eregularization shown in Eq. (1) is expressed as:

where ∇φ is the derivate of the level set function, the deformation process is repeated until the contour converges 
into the object boundary. Equation (7) enforces regularization and smoothness in the level-set function.

The update of the level set function at each round is described in Eq. (8).

The evolving contour is a level set of φ , expressed as in Eq. (9).

This C in Eq. 9 refers to the resultant contour of the PerformEvolution (Y, C) in FGVF pseudocode.

Edematous classification
A compilation of 40 different appearance-based and statistical-based features of OD was made from various 
literature sources. The maximum relevance minimum redundancy (mRMR) algorithm42 was then utilized to pick 
the most relevant and non-redundant features from the initial list. The mRMR algorithm prioritized features that 
offer informative data while minimizing any redundant information. It finally picked a set of 27 features, which 
we grouped into four categories, namely GLCM, vessel, color, and intensity line profiles. Below is a detailed list 
of the selected features.

Gray‑level co‑occurrence matrix features
Gray-level co-occurrence matrix (GLCM) is a statistical technique for analyzing texture that considers the spatial 
relationship of pixels43,44. GLCM calculates the texture based on pairs of pixels with specific values and their spa-
tial arrangement. Ten GLCM features are extracted. Let M be a co-occurrence matrix with N dimension, where 
N is the number of gray-values, all pairs of intensities i, j are its coefficients and coordinates of the elements, p 
is the normalized co-occurrence matrix, µx ,µy  and σx, σy are the mean and standard deviations for the matrix 
p’s rows and columns, respectively.

	 1.	 Autocorrelation (autoc) computed as the sum of the product of each element in the matrix p and the 
product of their distance from the mean that refer to the absolute differences between the row and column 
indices of the element in p and the mean row and column indices, respectively. It is high in edematous 
OD due to having similar intensity values, while non-edematous OD has lower autocorrelation because 
of high intensity change between optic disc and optic cup of the normal condition.

	 2.	 Contrast (contr) measures the difference in color shades and brightness of the region. A higher contrast 
value indicates a higher variation in gray level between neighboring pixels. Thus, non-edematous OD has 
larger contrast value than the edematous condition.

where n =
∣

∣i − j
∣

∣ and Ng is quantized gray levels.
	 3.	 Correlation (corrp) uses means and standard deviations to quantify the linear relationship between pixel 

intensities in the matrix p . The low variations in pixel intensities of the edematous case show high correla-
tion.

	 4.	 Cluster prominence (cprom) measures the presence of clusters in the image, where a higher value indicates 
a greater prominence of clusters in the image. Thus, non-edematous OD has high value and edematous 
OD has low value.

(7)Eregularization(φ) =

∫

Ω

1

2

(∣

∣∇φ(x)− 1
∣

∣

)2
dx

(8)φt+1 = φt +
∂φ

∂t
dt

(9)C = {x : φ(x) = 0}

(10)autoc =
∑

i

∑

j

(

ij
)

p
(

i, j
)

(11)contr =

Ng−1
�

n=0

n2







Ng
�

i=1

Ng
�

j=1

p
�

i, j
��

�

�

�i − j
�

� = n







(12)corrp =

∑

i

∑

j p
(

i, j
)

− µxµy

σxσy
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	 5.	 Cluster shade (cshad) measures the degree of asymmetry in the grayscale pair distribution. Non-edematous 
condition has high asymmetry in the distribution of the matrix p and edematous case perform low asym-
metry.

	 6.	 Dissimilarity (dissi) measures the average absolute differences between pixel intensities in the matrix p . 
When non-edematous OD has significant changes in texture of optic cup and disc, the value is high.

	 7.	 Energy (energy) measures the uniformity of the image pixels. Texture is likely uniform in edematous OD 
and varying in non-edematous OD. Thus, energy value increase in abnormal disruptions of texture pat-
terns.

	 8.	 Entropy (entro) measures the disorder in the distribution of pixel pairs. The value is high when the matrix 
p ’s elements are uniformly distributed. The homogenous characteristic of edematous OD condition has 
low entropy.

	 9.	 Homogeneity (homop) measures image homogeneity with larger values for smaller gray tone differences 
in pair object. The non-edematous OD has low homogeneity compared to the edematous OD.

	10.	 Max probability (maxpr) measures the most frequently occurring intensity pair in the image. The edema-
tous ODs tend to have a lower value of maxpr than the nonedematous.

Vessel features
The following are the vessel features used in the experiment.

1.	 Vessel disk continuity Index (VDI) is the number of disjointed vessel regions in the segmented vascular 
network of OD images. Non-edematous OD image usually has a completely connected vascular structure, 
resulting in a low VDI value. In comparison, an edematous OD image usually has more broken vessels, 
especially in a severe case, resulting in a higher VDI value3.

2.	 Vessel disk continuity index to disk proximity (VDIP) is a VDI that calculates within the scope of the seg-
mented OD region.

3.	 An area of the largest vessel region is the number of pixels in the largest vessel region. It offers details regard-
ing the prevalence or range of the largest vessel structure. The edematous ODs tend to have a smaller number 
than the non-edematous ODs due to less completeness of the vascular network.

4.	 Mean vessel area- The ratio of the sum of vessel pixels to the total number of connected vessel clusters. 
Edematous ODs usually have this number lower than non-edematous ODs due to the vessel compression 
effect.

5.	 A standard deviation ( σ ) of the probability of intensity distribution is defined as follows.

where N is the total number of pixels in the image, x represents each pixel intensity value, µ is the mean of 
image intensity distribution. The σ values of the edematous ODs tend to be higher than the non-edematous 
ODs.

6.	 Kurtosis distribution ( κ ) is a measure of the tailedness of an intensity distribution defined as follows.
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where N is the total number of pixels in the image, x represents each pixel intensity value, µ is the mean of 
image intensity distribution, and σ is the standard deviation. It indicates how often the outliers occur.

The κ values of the edematous ODs tend to be lower than the non-edematous ODs.

Color features

1.	 Sharpness (S): the ratio of the sum of all gradient norms and the number of image pixels.
2.	 The hue value (H) in the HSV space
3.	 The saturation value (S) in the HSV space
4.	 The brightness (V) in the HSV space
5.	 Mean values of the intensity
6.	 The Red/Green value (a*) in the L*a*b* color spaces
7.	 The Blue/Yellow value (b*) in the L*a*b* color spaces

Generally, these color features of non-edematous ODs are higher than edematous ODs.

Image intensity line profile features
A horizontal line centered at the optic disk (OD) location with a length one-half of the diameter of the retina is 
considered. Figure 5 depicts the intensity profile.

The following features are extracted from a line profile.

1.	 The average intensity
2.	 The minimum intensity
3.	 The maximum intensity
4.	 The standard deviation of intensity

Figure 5.   Example of image intensity profile from a line on edematous and non-edematous OD image.
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Generally, the averages, the maximums, and the standard deviations of the intensity of the non-edematous 
ODs are larger than the edematous ODs. In contrast, the minimum intensity values of non-edematous ODs are 
lower than those of edematous ODs.

Datasets, classifier, and evaluation
The programs were implemented using MATLAB R2022a and ran on DELL IN5406 (Intel Core i7-1165G7 
Processor). The experiments were tested on three datasets. The first dataset downloaded images from the 
Internet45,46 includes 35 edematous and 38 non-edematous ODs images with the dimensions between 600 × 600 
and 2300 × 1900. The selected fundus images with optic disk edema from RFMiD public dataset47 contained 91 
edematous and 91 non-edematous ODs images with dimensions between 2144 × 1424 and 4288 × 2848. From 
the RFMiD2.0 public dataset48, 20 edematous and 20 non-edematous OD images with the dimensions 512 × 512 
and 2048 × 1536 were selected. A total of 295 OD images with 146 edematous and 149 non-edematous cases 
were used in the experiments.

For the ODE classification, we selected a Linear Support Vector Machine (SVM) since it is effective with 
datasets with many features. To minimize over-fitting, we used fivefold cross-validation approach with 80% 
training and 20% testing. However, when dealing with a new image with different characteristics from the current 
dataset, over-fitting may still occur. Additionally, it is important to note that there are limited publicly available 
retinal images with edematous ODs. Thus, it is currently not possible to solve the issue of over-fitting by simply 
increasing the size of the dataset.

For OD localization, the performance was measured using a location accuracy (Accloc) defined in Eq. (22).

where C is the number of images the method correctly localizes the OD, and N is the number of images. Remark 
that the case is successful when the method’s calculated OD location is within the ground truth contour.

The performance of the OD segmentation method was evaluated using precision, recall, and F1 measures. 
The evaluation formulas are shown in Eqs. (23)–(25).

where TP, FP, TN, and FN are the number of pixels that are true positive, false positive, true negative, and false 
negative, respectively.

For edematous classification, we compared the performances of each feature and all together features using 
a support vector machine (SVM) linear classifier. The classification accuracy (Accclassify) is defined in Eq. (26).

where CEde and CNon are the numbers of images correctly classified as edematous and non-edematous and N is 
the number of images.

Numerical results and discussion
This section presents comparative and quantitative studies of localization, segmentation, and classification of 
edematous OD compared to the existing methods.

OD localization
We compared the hybrid localization method (HLM)24 used by our method against the feature projection (FP)22 
and adaptive thresholding (AT)10 methods. Selected cases of localization results from non-edematous and edema-
tous groups of two datasets are depicted in Fig. 6.

The numerical results are reported in Table 3. For non-edematous ODs, most methods could locate the OD 
efficiently. The FP performed worse than other methods because it relied only on vessels. When the vascular 
network was incomplete in some edematous cases, the FP failed. AT could sometimes spot abnormally high 
bright spots as the OD.

Results from  Fig. 6 and Table 3 showed that the HLM method used by our algorithm achieved the best average 
Accloc of 97.88% for all three datasets and was considerably higher than the FP and AT methods. The Accloc values 
of all three methods were lower in the edematous cases than in the non-edematous cases. Across all OD types, 
the average Accloc of HLM was higher than FP and AT by 12.48% and 6.04%, respectively. Moreover, HLM locali-
zation performance was significantly superior to the other two comparative methods, especially in edematous 
cases. For such cases, Accloc of HLM was higher than FP and AT by as much as 22.49% and 12.03%, respectively.
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C

N
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(23)Precision =
TP

TP + FP
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OD segmentation
We compared the factorized gradient vector flow (FGVF)8,9 used in our work against four other compara-
tive methods: alternated deflation-inflation gradient vector flow (ADI-GVF)37, traditional gradient vector flow 
(GVF)36, region growing (RG)29, and super-pixel clustering (SPC)30. All methods except super-pixel clustering 
required initial points. The OD locations obtained from the HLM method were the initial points. Figure 7 shows 
examples of segmentation results from different approaches for edematous and non-edematous ODs.

Most methods performed better on the non-edematous ODs than the edematous ODs. For edematous OD, 
the methods in the GVF family showed undersegmentation, while the region growing and superpixel clustering 
showed oversegmentation. Most methods worked well for non-edematous OD. Table 4 shows the numerical 
performance comparison of segmentation methods.

The following findings can be summarized from the results of Table 4.
In the case of non-edematous images, both GVF and FGVF methods have F1 measures that are significantly 

higher than other comparative methods. On average, the improvement of FGVF over the second-best method 
(GVF) is only 0.21%. However, FGVF outperforms the poorest method (ADI-GVF) by 21.16%.

It was found that for images with edema, all methods performed worse than those without edema. Among all 
the methods, FGVF was the best and had significantly better results than GVF and other methods. On average, 

Figure 6.   Examples of OD localization results of edematous cases from FP (yellow square), AT (red circle), and 
HLM used by the FGVF method (blue hexagram) for non-edematous (top) and edematous (bottom).

Table 3.   Comparison of the OD localization performance of FP, AT, and HLM. The highest number in class is 
bold.

Methods Datasets

Accloc

Average Accloc (%)Non-edematous Edematous

FP22

Internet 97.37 74.29 85.83

RFMiD 92.31 93.41 92.86

RFMiD2.0 100.00 55.00 77.50

Average 96.56 73.23 85.40

AT10

Internet 97.37 77.14 87.67

RFMiD 100.00 98.90 99.45

RFMiD2.0 100.00 75.00 87.50

Average 99.12 83.68 91.54

HLM24 (ours)

Internet 100.00 97.14 98.63

RFMiD 100.00 100.00 100.00

RFMiD2.0 100.00 90.00 95.00

Average 100.00 95.71 97.88
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the improvement of FGVF over the second-best method (GVF) was 2.99%, while the improvement of FGVF 
over the poorest method (RG) was 15.54%.

In general, regarding mix cases, both GVF and FGVF have F1 measure values that are fairly close, but signifi-
cantly better than other methods. Precision-wise, GVF was slightly better than FGVF, but FGVF had consider-
ably better recall than GVF. This resulted in FGVF having a better overall F1 measure than GVF. However, the 
ADI-GVF method was the poorest performer among them.

The RFMiD2.0 dataset is known to be more challenging for most methods due to the low resolution and 
indistinct OD region in edematous OD images. However, when only considering edematous OD images in this 
dataset, FGVF still performs best.

Edema classification
Table 5 compares the linear SVM classifier accuracy of classification performance using each sole feature set and 
combined feature sets on different datasets.

The findings and discussions from Table 5 are as follows.

1.	 The proposed method achieved an average accuracy of 99.40%, which was the highest accuracy recorded.
2.	 The results of the average accuracy classification for a single feature type showed that the intensity line pro-

file, vessel, color, and GLCM gave the best to worst results, respectively. However, in the proposed work, the 
average accuracy significantly improved. The overall improvement of all feature types combined compared 
to the best type (the intensity line profile) was 2.6%, while compared to the worst type (GLCM) was 11.4%.

3.	 It should be noted that our proposed method had shown better performance than the method proposed 
by Yousaf et al.7 by 3.34%. This improvement could be attributed to the fact that Yousaf et al. used only ten 
features from vessels and GLCM, while our method also employs features from the Color and intensity line 
profiles. This suggests that using additional features could help improve the classification results.

4.	 After analyzing the unsuccessful cases, we found that the accuracy of classification depended on several 
factors, such as the stages of edema in the dataset and the appearance of the OD. We noticed that when the 
images dealt with the mild edema stage in the dataset, the classification accuracy was lower. This was because 
the differences in characteristics between mild edema and normal OD showed minimal changes in the 
appearance of the disk. Additionally, some non-edematous OD with unclear boundary resulted in incorrect 
segmentation of the OD, which led to extracting wrong features and consequently resulted in inaccurate 
classification. Figure 8 shows examples of an edematous OD misclassified as non-edematous (false negative) 
and a non-edematous image misclassified as edematous (false positive).

Conclusion
This paper presents an automatic classification and segmentation of optic disks with edematous and non-edem-
atous based on the FGVF segmentation model using HLM initialization and classification results from a linear 
SVM classifier. The proposed method was evaluated on 146 edematous and 149 non-edematous images from 
Internet and RFMiD datasets by comparing the proposed localization, segmentation, and classification perfor-
mances against the existing methods. The HLM worked well for OD localization and correctly located the OD in 
295 out of 292 images with 97.88% accuracy. The proposed FGVF achieved an average segmentation precision of 
86.56%, recall of 88.19%, and F1-score of 86.48%. The average classification accuracy was 99.40%. However, the 
FGVF method used in the OD segmentation algorithm had limitations, including high computational demands 

Figure 7.   Examples of segmentation results of non-edematous cases (top) and edematous (bottom) for ADI-
GVF, GVF, RG, SPC, and FGVF (ours).
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Type Dataset Method

Performance (%)

Precision Recall F1 measure

Non-edematous

Internet

ADI-GVF 64.77 74.83 69.44

GVF 89.01 96.47 92.59

RG 89.77 88.10 88.93

SPC 89.38 76.69 82.55

FGVF (ours) 96.55 86.06 91.00

RFMiD

ADI-GVF 51.41 99.44 67.78

GVF 90.51 96.48 93.40

RG 93.36 84.17 88.53

SPC 78.73 79.25 78.98

FGVF (ours) 92.97 94.67 93.81

RFMiD2.0

ADI-GVF 64.40 99.74 78.27

GVF 99.07 89.53 94.06

RG 87.70 82.73 85.14

SPC 98.77 72.06 83.33

FGVF (ours) 98.79 93.66 96.16

Average

ADI-GVF 60.19 91.34 72.56

GVF 92.86 94.16 93.51

RG 90.28 85.00 87.56

SPC 88.96 76.00 81.97

FGVF (ours) 96.10 91.46 93.72

Edematous

Internet

ADI-GVF 75.31 74.04 74.67

GVF 90.62 76.90 83.20

RG 50.58 85.42 63.54

SPC 83.08 68.70 75.21

FGVF (ours) 91.74 79.21 85.02

RFMiD

ADI-GVF 74.68 77.04 75.84

GVF 95.01 70.72 81.08

RG 66.13 86.60 74.99

SPC 84.24 77.48 80.71

FGVF (ours) 84.64 84.47 84.55

RFMiD2.0

ADI-GVF 56.94 76.57 65.31

GVF 66.22 69.77 67.95

RG 43.12 80.23 56.09

SPC 95.20 42.57 58.83

FGVF (ours) 54.66 91.05 68.31

Average

ADI-GVF 68.98 75.88 72.27

GVF 83.95 72.46 77.78

RG 53.28 84.08 65.23

SPC 87.51 62.92 73.21

FGVF (ours) 77.01 84.91 80.77

Continued
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and sensitivity to initial conditions. For edematous OD classification, accuracy relied heavily on the precision of 
OD segmentation. Finding more useful features, such as the cloud OD boundary and the ratio of OD diameter 
to that of the retina, and improving the limitations of FGVF will be our future work.

Table 4.   OD segmentation performance. *The highest is bold.

Type Dataset Method

Performance (%)

Precision Recall F1 measure

All type combined

Internet

ADI-GVF 70.04 74.44 85.56

GVF 89.82 86.69 87.90

RG 70.18 86.76 76.24

SPC 86.23 72.70 78.88

FGVF (ours) 94.15 82.64 88.01

RFMiD

ADI-GVF 63.05 88.24 71.81

GVF 92.76 83.60 87.24

RG 79.75 85.39 81.76

SPC 81.49 78.37 79.85

FGVF (ours) 88.81 89.57 89.18

RFMiD2.0

ADI-GVF 60.67 88.16 71.79

GVF 82.65 79.65 81.01

RG 65.41 81.48 70.62

SPC 96.99 57.32 71.08

FGVF (ours) 76.73 92.36 82.24

Average

ADI-GVF 64.59 83.61 72.88

GVF 88.41 83.31 85.78

RG 71.78 84.54 77.64

SPC 88.24 69.46 77.73

FGVF (ours) 86.56 88.19 87.37

Table 5.   Accuracy comparisons of the proposed method (all featured combined) against each feature set and 
also against a state-of-the-art method (Yousaf et al.7). *The highest number in class is bold.

Methods Feature type

Accclassify (%)

Average Accclassify (%)Internet RFMiD RFMiD2.0

GLCM 84.90 84.10 95.00 88.00

Vessel 89.00 94.50 97.50 93.67

Color 90.40 87.40 100.00 92.60

Intensity line profile 100.00 97.80 92.50 96.80

Proposed All types combined 98.60 99.50 100.00 99.40

Yousaf et al.7 95.90 94.50 97.50 95.97
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Data availability
The datasets used in the current study are available in Google Drive through the provided link. https://​drive.​
google.​com/​drive/​folde​rs/​1vgHm​gvxkF​tU4m7​NZ4Ib​ZWwCz​enLh7​xXG.
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