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Unbalanced regularized optimal 
mass transport with applications 
to fluid flows in the brain
Xinan Chen 1*, Helene Benveniste 2 & Allen R. Tannenbaum 3

As a generalization of the optimal mass transport (OMT) approach of Benamou and Brenier’s, the 
regularized optimal mass transport (rOMT) formulates a transport problem from an initial mass 
configuration to another with the optimality defined by the total kinetic energy, but subject to an 
advection-diffusion constraint equation. Both rOMT and the Benamou and Brenier’s formulation 
require the total initial and final masses to be equal; mass is preserved during the entire transport 
process. However, for many applications, e.g., in dynamic image tracking, this constraint is rarely 
if ever satisfied. Therefore, we propose to employ an unbalanced version of rOMT to remove this 
constraint together with a detailed numerical solution procedure and applications to analyzing fluid 
flows in the brain.

The optimal mass transport (OMT) problem is concerned with finding a transport mapping from an initial 
density distribution to a final one, with optimality defined relative to a given cost function1–4. A reformulation 
of the OMT problem in a fluid dynamical framework was proposed by Benamou and Brenier5 using the L2 
distance as the basis for the cost function, which may be written as follows in the special case of interest to us 
in the present work.

Given an initial density distribution function ρ0(x) � 0 and a final one ρ1(x) � 0 both defined on a bounded 
region � ⊆ R

3 and with the same total mass (i.e., 
∫

�
ρ0(x) dx =

∫

�
ρ1(x) dx ), the dynamic OMT problem by 

Benamou and Brenier5 aims to solve 

 where a temporal dimension t ∈ [0,T] is added to the transport process. In the above formulation, ρ(t, x) is 
the dynamic density function, and v(t, x) is the dynamic velocity field defining the fluid flows from ρ0 to ρ1 . 
Equation (1b) is called the continuity equation in fluid dynamics, and characterizes the advective transport of a 
conserved quantity in bulk flows. The cost function (1a) is the total kinetic energy of the transport process. The 
square root of the achieved minimum of (1a), if it exists, is called the L2-Wasserstein distance between ρ0 and ρ1.

As an extension of model (1a)–(1c), a regularized version of OMT (rOMT) has been developed and applied 
in various places in which one includes a diffusion motion into the transport; see relavent work6–8 and the many 
references therein. More precisely, a diffusion term is added into the continuity equation (1b) to make it

where the constant σ > 0 is the diffusion coefficient. Equation (2) is thus an advection-diffusion equation in 
fluid dynamics. The rOMT model has been proven useful for a number of important tracking problems in 

(1a)min
ρ,v

∫ T

0

∫

�

‖v(t, x)‖2ρ(t, x) dx dt

(1b)subject to
∂ρ

∂t
+∇ · (ρv) = 0,

(1c)ρ(0, x) = ρ0(x), ρ(T , x) = ρ1(x)

(2)
∂ρ

∂t
+∇ · (ρv) = σ�ρ
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computational fluid dynamics, such as in quantifying and visualizing the movement of solutes in the brain on 
dynamic contrast enhanced magnetic resonance imaging (DCE-MRI)8–12.

As is well-known, both the OMT and rOMT models must satisfy the total mass conservation constraint, 
namely 

∫

�
ρ0(x) dx =

∫

�
ρ1(x) dx . In this case, we usually call the problem as balanced to refer to the con-

servation of total mass. Indeed as formulated in (2), neither advection nor diffusion will change the total mass 
locally or globally in a given region � . However, for applications in dynamic imagery in which either OMT or 
rOMT is employed as an optical flow tracking method, this is almost never the case. For example, in DCE-MRI 
data where gadolinium-based tracers are injected and delivered into the body, an early climbing period of the 
total image intensity is usually observed, since it takes time for the tracers to reach and fill the region of interest. 
Under these circumstances, if we assume that the intensity of image signal which reflects the concentration of 
the tracers is proportional to the density in the aforementioned two models, the total mass conservation law is no 
longer satisfied, and thus the OMT and rOMT models cannot be directly applied. Notably, analyzing the initial 
accumulating stage of tracers may help uncover interesting and physiologically relevant transport patterns in 
the brain, and therefore a new model is necessary.

In the present work, we propose an unbalanced regularized OMT (urOMT) model for applications to the 
DCE-MRI fluid flow data, where an independent variable and its indicator function are added as an “invisible” 
sink or source of mass. The urOMT problem is formulated as follows: 

 where r(t, x) is the relative source variable, χ(t, x) is the given indicator function of r(t, x) which takes values 
either 0 or 1 to constrain r to a certain spatial and temporal location, and α > 0 is the weighting parameter of 
the source term in the cost function. This model takes inputs ρ0(x) , ρ1(x) and χ(t, x) , and solves for the optimal 
ρ(t, x) , v(t, x) and r(t, x). The added second term in the cost function (3a) is called the Fisher-Rao term which 
arises from the Fisher-Rao metric in information geometry. Our model therefore can be viewed as the interpola-
tion between the L2-Wasserstein and the Fisher-Rao metrics13,14.

The partial differential equation (3b) indicates that there are three types of physical phenomena taking place 
in the dynamic system, advection ( ∇ · (ρv) ), diffusion ( σ�ρ ) and mass creation/destruction ( χρr ). We should 
note that for numerical convenience, we prefer to use the relative source r which controls the rate of mass gain 
( r > 0 ) and loss ( r < 0 ), rather than the source s = ρr , as the unbalanced variable in our urOMT formulation. 
Even though r plays a role as a sink of mass when r < 0 and a role as a source of mass when r > 0 , for simplicity 
we call r as the relative “source” to broadly refer to both mass gain and loss. In other words, one can imagine that 
r is the source of both positive and negative mass. The main point however, is that we no longer require the total 
mass conservation condition for the input images ρ0 and ρ1.

The unbalanced OMT problem has been studied both theoretically14–17 and with various applications in 
meteorology18, shape modification19, image registration20, image deformation21,22, image generation23,24, tumor 
growth modeling25,26, population modeling27 and dynamical tracking28, etc.

Our work presented here should be considered as an extension of the rOMT algorithm10 since both share 
the similar numerical structure and setup. We are specifically interested in applying the urOMT method into 
DCE-MRI studies to quantify the fluid flows in the rat brain which is our motivation of introducing an unbal-
anced term to analyze unbalanced data. Although there has been a good amount of work in unbalanced OMT as 
mentioned above, to the best of our knowledge, this is the first work to incorporate the unbalanced regularized 
OMT for the quantification of dynamic fluid flows using DCE-MRI imaging.

Briefly summarizing the present paper, in the section “Numerical method”, we give the detailed numerical 
method for solving the urOMT problem (3a)–(3c), and in the section “Results”, we test our urOMT model and 
show results of applications to studying dynamic fluid flows in both synthetic data and DCE-MRI rat brain 
data. In the section “Discussion”, we further discuss and summarize the urOMT method. Some relevant efforts 
and potential future work are also provided. Lastly in the section “Conclusion”, we conclude our present work.

Numerical method
In this section, we elaborate on the numerical method developed for the urOMT problem (3a)–(3c) on 3D 
images, especially on DCE-MRI-based images in which the signal intensity levels are reflecting the concentra-
tion of the gadolinium based tracers, and are therefore proportional to the density in our model. Note that this 
method can be easily adapted to images in any dimension with minor changes. The numerical method used in 
this work is largely inspired by and based on the previous work10.

Model
Given a pair of 3D images, ρimg

0 (x) and ρimg
1 (x) , and an indicator χ(x, t) , in avoidance of the over-matching of 

the image noise, we consider posing a free end-point condition, so that we can remove the end-point constraint 

(3a)
min
ρ,v,r

∫ T

0

∫

�

(

�v(t, x)�2ρ(t, x)

+ αχ(t, x)r(t, x)2ρ(t, x)
)

dx dt

(3b)subject to
∂ρ

∂t
+∇ · (ρv) = σ�ρ + χρr,

(3c)ρ(0, x) = ρ0(x), ρ(T , x) = ρ1(x)
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ρ(T , x) = ρ
img
1 (x) . Another fitting term is consequently added into the cost function. The numerical model we 

solve is therefore written as: 

 where β > 0 is the weighting parameter for the fitting term in the cost function. The dynamic density function 
ρ(t, x) can be explicitly derived starting at ρimg

0  and following equation (4b) with a velocity field v and a relative 
source r with its indicator χ , so ρ is removed from the optimized variables. Basically, with this setup ρ becomes 
a state variable. We call this model (4a)–(4c) the unbalanced regularized OMT with free end-point (free-urOMT).

Discretization
Since 3D images are typically defined on cubical domains, we divide the cubical space � into a cell-centered grid 
size n1 × n2 × n3 with uniform spacing �x , �y and �z in x, y and z-direction, respectively. Let n = n1n2n3 be 
the total number of voxels. The time interval [0, T] is partitioned into m equal sub-intervals with length �t = T

m . 
Then we have m+ 1 discrete time steps ti = i�t for i = 0, . . . ,m.

We use a bold font to denote a flattened vector discretized from its corresponding continuous function 
onto the cell-centered grid defined above. Therefore, the given initial and final images ρimg

0 (x) and ρimg
1 (x) is 

discretized into vectors ρimg
0ρ
img
0ρ
img
0  and ρimg

1ρ
img
1ρ
img
1  . The density function ρ(t, x) is discretized into ρiρiρi for i = 0, . . . ,m , each 

denoting the density distribution at ti , and where ρ0ρ0ρ0 = ρ
img
0ρ
img
0ρ
img
0  denotes the given initial image. The velocity field 

v(t, x), relative source r(t, x) and its indicator χ(t, x) may also be discretized into vivivi , ririri and χiχiχi for i = 0, . . . ,m− 1 , 
each denoting the velocity field, relative source, and the indicator transforming ρiρiρi to ρi+1ρi+1ρi+1 , respectively. For each 
vector vivivi , its length is three times as that of ririri and χiχiχi and is written as the form of vivivi = [vi,xvi,xvi,x;vi,yvi,yvi,y;vi,zvi,zvi,z] where the 
subscript indicates its direction along x, y or z axis. We further denote ρρρ = [ρ1ρ1ρ1; · · · ;ρmρmρm] , vvv = [v0v0v0; · · · ;vm−1vm−1vm−1] , 
rrr = [r0r0r0; · · · ; rm−1rm−1rm−1] and χχχ = [χ0χ0χ0; · · · ;χm−1χm−1χm−1].

So far, we have defined the discretized variables on the space and time grids. The cost function equation (4a) 
may therefore be approximated by

where 

 Here ⊗ denotes the Kronecker tensor product, and ⊙ denotes the Hadamard product. Further, [·|·] represents the 
block matrix, and � · � means taking the L2 norm of a vector. Ik is the k-dimensional identity matrix for k ∈ N

+.

Solving the partial differential equation
Next, we deal with the partial differential equation (4b). We place ghost points outside of the boundary and 
employ the Neumann boundary condition such that the derivative across the boundary is always 0. The Lapla-
cian operator � may be approximated with a matrix Q under the aforementioned numerical grid and boundary 
condition. Similar to the technique employed in the previous work10, we use the operator-splitting method to 
numerically solve the equation but in this work we divide the equation into three steps. To be precise, at each 
time step from ti to ti+1 for i = 0, . . . ,m− 1 , we divide the whole process (4b) into first, mass gain/loss: ∂ρ

∂t = χρr ; 
second, advection: ∂ρ

∂t +∇ · (ρv) = 0 ; and third, diffusion: ∂ρ
∂t = σ�ρ , in total three steps, and then integrate 

them together.
For the first mass gain/loss step, given an initial condition ρ(ti , x) = ρi(x) , the equation may be discretized into 

(4a)

min
v,r

∫ T

0

∫

�

ρ(t, x)
(

�v(t, x)�2

+ αχ(t, x)r(t, x)2
)

dx dt

+ β

∫

�

(ρ(T , x)− ρ
img
1 (x))2 dx

(4b)subject to
∂ρ

∂t
+∇ · (ρv) = σ�ρ + χρr,

(4c)ρ(0, x) = ρ
img
0 (x)

(5)Ŵ(vvv, rrr) = Ŵ1(vvv, rrr)+ αŴ2(vvv, rrr)+ βŴ3(vvv, rrr)

(6a)Ŵ1(vvv, rrr) = (�t�x�y�z)ρρρT (Im ⊗ [In|In|In])(vvv ⊙ vvv),

(6b)Ŵ2(vvv, rrr) = (�t�x�y�z)ρρρT (rrr ⊙ rrr ⊙ χχχ),

(6c)Ŵ3(vvv, rrr) = (�x�y�z)�ρmρmρm − ρ
img
1ρ
img
1ρ
img
1 �2.

(7a)
1

�t
(ρsrc

iρ
src
iρ
src
i − ρiρiρi) = ρiρiρi ⊙ ririri ⊙ χiχiχi
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 where 1n1n1n is a vector of length n consisting of 1’s. The second advection step with an initial condition 
ρ(ti , x) = ρsrc

i (x) can be discretized and solved with

where S(vivivi) is the averaging matrix linear to vivivi using the particle-in-cell method which redistributes the trans-
ported mass to its nearest neighbors by a certain ratio29. See Fig. 1 for more details. The (j, k) entry of S(vivivi) is 
the ratio of mass allocated from the old location k to the new location j. Multiplying S(vivivi) by a vector which 
represents a density distribution, we can derive a new density distribution transported by the velocity vivivi under 
the pre-defined numerical grid. The third diffusion step with an initial condition ρ(ti , x) = ρadv

i (x) employs the 
Euler Backwards scheme in the following manner: 

 Combining all three steps (7b), (8) and (9b), we have

If we denote 

 where diag(·) is the operator turning a vector into a diagonal matrix. Equation (10) may be re-written as

(7b)⇒ ρsrc
iρ
src
iρ
src
i = (1n1n1n +�t · ririri ⊙ χiχiχi)⊙ ρiρiρi

(8)ρadv
iρ
adv
iρ
adv
i = S(vivivi)ρ

src
iρ
src
iρ
src
i ,

(9a)
1

�t
(ρi+1ρi+1ρi+1 − ρadv

iρ
adv
iρ
adv
i ) = σQρi+1ρi+1ρi+1

(9b)⇒ (In − σ�t · Q)ρi+1ρi+1ρi+1 = ρadv
iρ
adv
iρ
adv
i .

(10)(In − σ�t · Q)ρi+1ρi+1ρi+1 = S(vivivi)(1n1n1n +�t · ririri ⊙ χiχiχi)⊙ ρiρiρi .

(11a)L � In − σ�t · Q,

(11b)R(ririri) � In +�t · diag(ririri ⊙ χiχiχi),

Figure 1.   Particle-in-Cell Method. For a cell-centered point C0 , it is transported by a velocity field v over 
time �t to arrive at a new location Cadv

0  . Then the mass at Cadv
0  will be split to the eight nearest cell-centered 

neighbors at a ratio. For example, neighbor C1 will be allocated at a ratio which is the volume colored in cyan 
over the total voxel volume.

t0 t1 · · · tm−1 tm

0ρ 1ρ · · · m−1ρ mρ

R(r0),S(v0),L−1 R(r1),S(v1),L−1 R(rm−2),S(vm−2),L−1 R(rm−1),S(vm−1),L−1

Figure 2.   Numerical Pipeline of urOMT. From ti to ti+1 for i = 0, . . . ,m− 1 , the interpolated image ρiρiρi is firstly 
added with mass by applying matrix R(ririri) , and is secondly advected via the velocity field vivivi by applying the 
averaging matrix S(vivivi) and is lastly diffused by applying matrix L−1.
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for i = 0, . . . ,m− 1 where S(vivivi) and R(ririri) are n-dimensional matrix in vivivi and ririri , respectively. See Fig. 2 for the 
pipeline of the numerical dynamics.

In conclusion, we have discretized the free-urOMT problem (4a)–(4c) as follows: 

 where Ŵ1,Ŵ2 and Ŵ3 are explicitly given in (6a)–(6c). Given the stable property of the particle-in-cell method 
used in our work, a small time step �t is still recommended to avoid error or instability of the entire algorithm29.

Computing the gradient and the Hessian
Notice that in the discrete problem (13a)–(13c), we can equivalently re-write the constraint (13b) as

for i = 1, . . . ,m , which explicitly gives the expression of density distributions at all time steps from a given initial 
density distribution ρ0ρ0ρ0 , a velocity field vvv and a relative source rrr . One can prove that S(vivivi) is linear to vivivi and R(vivivi) is 
linear to ririri for i = 0, . . . ,m− 1 . Then according to equations (14) and (13c), ρmρmρm and ρρρ = [ρ1ρ1ρ1; · · · ;ρmρmρm] in Ŵ(vvv, rrr) 
can both be explicitly written in linear to vvv and rrr . Therefore, the optimization problem (13a)–(13c) can indeed 
be viewed as an unconstrained minimization problem. Observe that in the cost function, Ŵ1 is linear to rrr and its 
component vvv ⊙ vvv is quadratic to vvv ; Ŵ2 is linear to vvv and its component rrr ⊙ rrr is quadratic to rrr ; Ŵ3 is quadratic to 
both vvv and rrr . It is then natural to employ the Gauss-Newton method to optimize on the problem, which involves 
computing the gradient and the Hessian matrix of Ŵ with respect to variables vvv and rrr.

Next, we focus on calculating the gradient of Ŵ:

and the Hessian matrix of Ŵ:

Equation (14) shows that ρkρkρk is determined by v0v0v0, . . . ,vk−1vk−1vk−1, r0r0r0, . . . , rk−1rk−1rk−1 and is thus independent of vjvjvj and rjrjrj for 
j � k . Defining

for k = 1, . . . ,m, j = 0, . . . ,m− 1 , then Jkvjvjvj = 0 and Jkrjrjrj = 0 always hold for j � k . If we further denote

then Jvvv and Jrrr are lower-triangular block matrices of the form

where Jkvvv =
[

Jkv0v0v0 |J
k
v1v1v1
| · · · |Jkvk−1vk−1vk−1

]

 denotes the row block of Jvvv , and Jkrrr  for that of Jrrr for k = 1, . . . ,m . With the nota-
tions defined above, then for the gradients we have 

 and 

(12)ρi+1ρi+1ρi+1 = L−1S(vivivi)R(ririri)ρiρiρi

(13a)min
vvv,rrr

Ŵ(vvv, rrr) = Ŵ1(vvv, rrr)+ αŴ2(vvv, rrr)+ βŴ3(vvv, rrr)

(13b)subject to ρi+1ρi+1ρi+1 = L−1S(vivivi)R(ririri)ρiρiρi , for i = 0, . . . ,m− 1,

(13c)ρ0ρ0ρ0 = ρ
img
0ρ
img
0ρ
img
0 ,

(14)ρiρiρi = L−1S(vi−1vi−1vi−1)R(ri−1ri−1ri−1)L
−1S(vi−2vi−2vi−2)R(ri−2ri−2ri−2) · · · L−1S(v0v0v0)R(r0r0r0)ρ0ρ0ρ0

(15)g � [gvvv; grrr], where gvvv =
∂Ŵ

∂vvv
, grrr =

∂Ŵ

∂rrr

(16)H �

(

H11 H12

H21 H22

)

, where H11 =
∂2Ŵ

∂vvv2
, H12 =

∂2Ŵ

∂vvv∂rrr
, H21 =

∂2Ŵ

∂rrr∂vvv
, H22 =

∂2Ŵ

∂rrr2
.

(17)Jkvjvjvj �
∂ρkρkρk

∂vjvjvj
, Jkrjrjrj �

∂ρkρkρk

∂rjrjrj

(18)Jvvv �
∂ρρρ

∂vvv
= (Jkvjvjvj )k,j , Jrrr �

∂ρρρ

∂rrr
= (Jkrjrjrj )k,j ,

(19)Jvvv =











J1v0v0v0
J2v0v0v0 J2v1v1v1
...

...
. . .

Jmv0v0v0 Jmv1v1v1 · · · Jmvm−1vm−1vm−1











�











J1vvv
J2vvv
...
Jmvvv











and Jrrr =











J1r0r0r0
J2r0r0r0 J2r1r1r1
...

...
. . .

Jmr0r0r0 Jmr1r1r1 · · · Jmrm−1rm−1rm−1











�











J1rrr
J2rrr
...
Jmrrr











(20a)gvvv =
∂Ŵ1

∂vvv
+ α

∂Ŵ2

∂vvv
+ β

∂Ŵ3

∂vvv

(20b)

= (�t�x�y�z)
(

2(Mdiag(vvv))Tρρρ + JTvvv M(vvv ⊙ vvv)
)

+ α(�t�x�y�z)JTvvv (rrr ⊙ rrr ⊙ χχχ)

+ 2β(�x�y�z)(Jmvvv )T
(

ρmρmρm − ρ
img
1ρ
img
1ρ
img
1

)
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 where we use M � Im ⊗ [In|In|In] for simplicity of notation. For the Hessian matrix H, we use a function han-
dle which is a MATLAB data type in anticipation of solving the linear system Hxxx = −g in the next step. To be 
specific, we compute vector Hxxx where xxx = [xvxvxv;xrxrxr] and xvxvxv ∈ R

3mn,xrxrxr ∈ R
mn rather than matrix H. To satisfy the 

symmetry of the Hessian matrix and to omit some complex second-order terms, we have the approximations 

 The motivation of using a function handle Hxxx instead of the matrix H itself is to avoid numerical multiplication 
of two big matrices which could be time-consuming. With the function handle, for example, in (22c) we can 
instead multiply a matrix by a vector twice to arrive at the desired computation.

As for the formulation of Jkvjvjvj and Jkrjrjrj , by the structure of (13b) we have that for j = 0, . . . ,m− 1 and k > j,

where

is dependent only on ρjρjρj ,vjvjvj because S(vjvjvj) linear to vjvjvj , and

With the explicit and recursive expressions in equations (23) and (25), one can compute Jmvvv = [Jmv0v0v0 |J
m
v1v1v1
| · · · |Jmvm−1vm−1vm−1

] , 
Jmrrr = [Jmr0r0r0 |J

m
r1r1r1
| · · · |Jmrm−1rm−1rm−1

] and their transpose multiplied with a vector in an iterative manner. JTvvv  and JTrrr  multiplied 
with a vector can also be computed recursively due to their lower-triangularity.

Algorithm
With the analytic formulation of the gradient g and the Hessian handle Hxxx given above, we can then utilize the 
Gauss-Newton method to find the optimal solution. See Algorithm 1 for the pseudo-code.

If we have more than two successive given images, ρimg
0ρ
img
0ρ
img
0 ,ρ

img
1ρ
img
1ρ
img
1 , . . . ,ρ

img
q−1ρ
img
q−1ρ
img
q−1 which is inherent to DCE-MRI studies 

and corresponding given indicator functions χ img
0χ
img
0χ
img
0 ,χ

img
1χ
img
1χ
img
1 , . . . ,χ

img
q−2χ
img
q−2χ
img
q−2 between adjacent images where q > 2 and q ∈ N

+ , 
we can run the algorithm iteratively between each pair of adjacent images to derive prolonged velocity fields and rela-
tive sources. In other words, the process can be graphed as ρimg

0ρ
img
0ρ
img
0

urOMT−−−−→
loop 1

ρ
img
1ρ
img
1ρ
img
1

urOMT−−−−→
loop 2

· · · urOMT−−−−→
loop q-2

ρ
img
q−2ρ
img
q−2ρ
img
q−2

urOMT−−−−→
loop q-1

ρ
img
q−1ρ
img
q−1ρ
img
q−1 , 

where the urOMT algorithm is run for q− 1 times and therefore q− 1 successive outputs are returned. If one would 
like the prolonged velocity fields to be smoother in the temporal dimension, one can put the last interpolated image 
ρmρmρm of the previous loop into the next loop as the initial image to avoid constantly introducing new data noise into the 
system10.

(21a)grrr =
∂Ŵ1

∂rrr
+ α

∂Ŵ2

∂rrr
+ β

∂Ŵ3

∂rrr

(21b)

= (�t�x�y�z)JTrrr M(vvv ⊙ vvv)

+ α(�t�x�y�z)
(

2diag(rrr ⊙ χχχ)ρρρ + JTrrr (rrr ⊙ rrr ⊙ χχχ)

)

+ 2β(�x�y�z)(Jmrrr )T
(

ρmρmρm − ρ
img
1ρ
img
1ρ
img
1

)

(22a)H11xvxvxv ≈ 2(�t�x�y�z)diag(ρρρTM)+ 2β(�x�y�z)(Jmvvv )T Jmvvv xvxvxv ,

(22b)H22xrxrxr ≈ 2α(�t�x�y�z)diag(ρρρ ⊙ χχχ)+ 2β(�x�y�z)(Jmrrr )T Jmrrr xrxrxr ,

(22c)H12xrxrxr ≈ 2β(�x�y�z)(Jmvvv )T Jmrrr xrxrxr ,

(22d)H21xvxvxv ≈ 2β(�x�y�z)(Jmrrr )T Jmvvv xvxvxv .

(23)Jkvjvjvj = L−1S(vk−1vk−1vk−1)R(rk−1rk−1rk−1) · · · L−1S(vj+1vj+1vj+1)R(rj+1rj+1rj+1)L
−1B(ρjρjρj , rjrjrj)

(24)B(ρjρjρj , rjrjrj) =
∂

∂vjvjvj
(S(vjvjvj)R(rjrjrj)ρjρjρj)

(25)Jkrjrjrj =�t · L−1S(vk−1vk−1vk−1)R(rk−1rk−1rk−1) · · · L−1S(vj+1vj+1vj+1)R(rj+1rj+1rj+1)L
−1S(vjvjvj)diag(ρiρiρi ⊙ χiχiχi).
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1: Load in ρ img
0 , ρ img

1 and χ , and other parameters;
2: x = [v;r] = initial guess (all zeros);
3: for i= 1,2, · · · ,MaxIter do
4: Compute interpolations ρ recursively from the discretized partial differential equation (13b): ρ =

SrcAdvDiff(ρ img
0 ,χ ,v,r);

5: Compute S(v j), R(r j) and B(ρ j ,r j) for j = 0, · · · ,m−1;
6: Compute gradient g and the Hessian function handle Hx according to equations (20)-(22);
7: Solve linear system Hx =−g for x;
8: Do line search to find length l;
9: if line search fails then
10: return [v;r];
11: end if
12: Update [v;r] = [v;r]+ lx;
13: end for
14: return [v;r];

Algorithm 1.   Gauss-Newton Method.

Results
In this section, we give some examples illustrating the application of the urOMT methodology. Obviously, the 
model admits both the Eulerian and Lagrangian perspectives for post-processing. The Eulerian formulation 
focuses on the fluid flows at fixed locations over time, while the Lagrangian formulation enables one to follow 
the trajectory of a given particle over time, and therefore to analyze the features along the given trajectory.

Specifically, suppose we run the urOMT algorithm on given density images ρimg
0ρ
img
0ρ
img
0 ,ρ

img
1ρ
img
1ρ
img
1 , . . . ,ρ

img
q−1ρ
img
q−1ρ
img
q−1 and given 

indicators χ img
0χ
img
0χ
img
0 ,χ

img
1χ
img
1χ
img
1 , . . . ,χ

img
q−2χ
img
q−2χ
img
q−2 with discretization described before, the algorithm will run q− 1 successive 

loops and return the solutions

for k = 1, . . . , q− 1 where the subscript k stands for the k-th loop. By taking the L2 norm of v∗k,0v∗k,0v∗k,0, . . . ,v
∗
k,m−1v∗k,m−1v∗k,m−1 , we 

derive the optimal speed

Therefore, r∗k,ir∗k,ir∗k,i and s∗k,is∗k,is∗k,i are called the Eulerian relative source maps and Eulerian speed maps, respectively, for 
k = 1, . . . , q− 1 and j = 0, . . . ,m− 1 , and they allow us to observe the fluid flows at fixed coordinates at different 
discrete time steps. For ease of visualization, we define the time-averaged Eulerian speed map and time-averaged 
Eulerian relative source map between ρimg

N0
ρ
img
N0

ρ
img
N0

 and ρimg
N1

ρ
img
N1

ρ
img
N1

 as

respectively, where 0 � N0 < N1 � q− 1 and N0,N1 ∈ N
+.

In contrast, the post-processing framework developed and applied in the previous work8–10,12 that follows 
Lagrangian coordinates present data as binary trajectories of the fluid flows, which we refer to as the pathlines in 
our work. By connecting the starting and terminal points of the pathlines, we have the velocity flux vectors, which 
are also called the displacement fields in physics. These vectors may be used to visualize the direction and the 
distance travelled in a compact and interpretable manner. If we endow the pathlines with more information, for 
example, speed (the L2 norm of the velocity field) and Péclet (Pe) number (i.e., the ratio of the rate of advection 
to diffusion), we can derive what we call speed-lines and Péclet-lines, respectively. More details of this Lagrangian 
method may be found in Koundal et al.8 and Chen et al.10

Now that we have briefly described the two post-processing methods, the Eulerian and the Lagrangian 
perspectives, we next utilize two datasets to exhibit the results of the urOMT analysis. The first dataset is a syn-
thetic geometric dataset derived from Gaussian spheres as a simple demonstration of the urOMT method. The 
second is the DCE-MRI data from a rat brain where we elucidate the application of urOMT in in vivo datasets 
for quantifying and visualizing the fluid flows.

(26)v∗kv
∗
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Figure 3.   The First Test on 3D Gaussian Spheres. (a) Five successive images, shown in 3D rendering, were 
created from Gaussian spheres as inputs into the urOMT algorithm. In addition to advection (from top-left 
to bottom-right) and diffusion included in the transport process, mass was gained from ρimg

0  to ρimg
2  and was 

lost from ρimg
2  to ρimg

4  in the center region. (b–e) Under Eulerian coordinates, the time-averaged speed maps 
and relative source maps visualized in 3D indicate the speed and mass gain/loss distribution in the domain, 
respectively. (b) and (c) are derived between every pair of input images; (d) and (e) are derived between ρimg

0  
and ρimg

4  . (f–i) Under Lagrangian coordinates, the binary trajectories of the transport are recorded by pathlines 
color-coded with start and end points. Connecting the start and end points of pathlines, we derive the velocity 
flux vectors illustrating the direction and distance of the overall movement. By endowing the pathlines with 
speed and Péclet (Pe) number, we derive the speed-lines and Péclet-lines, respectively.
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Tests on Gaussian spheres
We first start with creating five successive 3D images from Gaussian spheres denoted as ρimg

0 , ρ
img
1 , . . . , ρ

img
4  

in order to test the urOMT algorithm. These spheres were created to first gain mass and later lose mass in the 
center region of the spheres over time, and in addition the spheres are spatially transported forward and are also 
exhibiting active diffusion over time (Fig. 3a). Specifically, ρi was created from a 3D Gaussian function

then advection is naturally included in the whole process to reflect the forward translation of the center of the 
Gaussian spheres from top-left to bottom-right (Fig. 3a). We define the center region of these Gaussian spheres as 
the region within a radius of 1.5 of the center [0.8i, 0.8i, 0.8i] which are denoted as χi(x, y, z) for i = 0, . . . , 4 . Then 
we apply χi to Gi to imitate mass gain and loss in the center region which are given by (1+ aiχi(x, y, z))Gi(x, y, z) 
where [a0, a1, a2, a3, a4] = [0, 0.1, 0.2, 0.1, 0] . We then discretize these functions by taking a uniform spatial length 
and fitting them into the same numerical grid of size 50× 50× 50 . Diffusion was further added to ρi by applying 
a MATLAB inbuilt 3D Gaussian filter imgaussfilt3 to ρi with standard deviation = (i + 1)

√
0.2 for i = 1, . . . , 4.

(29)Gi(x, y, z) =
100
√
2π

exp
(

−
(x − 0.8i)2 + (y − 0.8i)2 + (z − 0.8i)2

2

)

,

Figure 4.   The Second Test on 3D Gaussian Spheres. (a, b) Given input images ρimg
0  and ρimg

1  visualized in 
Fig. 3a, Eulerian outputs, shown in 3D rendering, were returned from the urOMT analysis. (c) The transport in 
the system can be separated into two channels where the advection and diffusion take place in the R3 space and 
the relative source pushes or draws mass between the two channels.

Table 1.   Parameters used in the urOMT algorithm.

Parameter Definition Value for Gaussian Sphere Data Test 1 Value for Gaussian Sphere Data Test 2 Value for Brain Data

n1 grid size in x axis 50 56

n2 grid size in y axis 50 106

n3 grid size in z axis 50 51

q number of input images 5 2 15

m number of time intervals between two 
input images 10

�t temporal spacing 0.4

�x x-axis spacing 1

�y y-axis spacing 1

�z z-axis spacing 1

σ diffusion coefficient 0.002

α weighting parameter for the source term 9000 10000

β weighting parameter for the fitting term 5000 50

χ indicator function of the relative source r 1’s in the center regions, otherwise 0’s all 1’s



10

Vol:.(1234567890)

Scientific Reports |         (2024) 14:1111  | https://doi.org/10.1038/s41598-023-50874-y

www.nature.com/scientificreports/

One can imagine the five successive images as visualizing a “wormhole”, which is moving forward (advection) 
with mass diffusing into its surrounding area. At the same time, at the center region of the wormhole mass is 
gained ( ρimg

0  to ρimg
2  ) or lost ( ρimg

2  to ρimg
4  ) from or to another interconnected space.

In our first test on the Gaussian sphere data, we fed all five images, ρimg
0 , ρ

img
1 , . . . , ρ

img
4  , into the urOMT 

algorithm. From ρimg
i  to ρimg

i+1 , we utilize the indicators as the linear translation of χi to χi+1 (the region within a 
radius of 1.5 centered at [0.8(i + j

m ), 0.8(i + j
m ), 0.8(i + j

m )] for j = 0, . . . ,m, i = 0, . . . , 3 ) to only allow mass 
gain and loss to occur in the center regions. The parameters used in this experiment are listed in Table 1. Compu-
tations were run with MATLAB 2018b on the departmental High Performance Computing cluster at Memorial 
Sloan Kettering Cancer Center with Red Hat Enterprise Linux 7.5 operating system using 3 CPUs and 128GB of 
memory which took about 3 hours and 20 minutes.

From the Eulerian perspective, we show the time-averaged Eulerian speed maps and relative source maps 
between every pair of input images (Fig. 3b,c) and between ρimg

0  and ρimg
4  (Fig. 3d,e). The algorithm recognized 

the core regions of the spheres as having higher speed. Moreover, it successfully captured the mass gain and loss 
patterns during the entire process with the red color indicating the initial mass gain from ρimg

0  to ρimg
2  and the 

blue color indicating the later mass loss from ρimg
2  to ρimg

4  . The Eulerian relative source map is restricted in the 
center region of the spheres because of the indicator functions. With Lagrangian post-processing, we derived 
the pathlines, velocity flux vectors, speed-lines and Péclet-lines under Lagrangian coordinates (Fig. 3f-i). The 
pathlines exhibit what trajectories of particles would look like over time if they were placed at given initial points 
in the system at t = 0 . The funnel-shape of the pathlines is a reflection of the accumulated effect of diffusion 
which gradually disperses the mass. The velocity flux vectors are also provided to show the direction and distance 
of the whole transport process. The speed-lines, i.e., pathlines endowed with speed, indicate that higher speed 
occurred mainly in the core of the spheres which is in agreement with the Eulerian speed map. The Péclet-lines 
show that initially the transport was dominated by advection and later by diffusion.

To further understand how indicators affect the results and how mass is transferred in the urOMT system, 
we performed a second test with only two input images ρimg

0 , ρ
img
1  and indicators as a constant 1 to allow mass 

gain/loss everywhere. The parameters used in this test are listed in Table 1. The computational runtime was about 
30 minutes with the same machine and configuration as the first test. Eulerian relative source map (Fig. 4a) and 
Eulerian speed map (Fig. 4b) were returned from the urOMT algorithm. We observe that the top-left of the 
Eulerian relative source map was negative and colored in blue where the input sphere leaves and the bottom-
right was positive colored in red where the sphere arrives. In other words, without any constraint on the relative 
source term, the Eulerian relative source map can provide global information on the transport status in terms 
of mass loss and arrival.

In this case, mass is freely transferred via two “channels”, the real R3 space and the imaginary source layer (Fig. 4c). 
Advection and diffusion occur only in the R3 space. The source layer can generate infinite amount of mass and push 
it to the corresponding location in the R3 space; it can also draw a certain amount of the mass from the R3 space to 
the corresponding location in the source layer. The activities in both channels happen simultaneously. Suppose in R3 , 

one would like to move mass ρ0 > 0 at location x0 to mass ρ1 > 0 at location x1 , i.e., 
[

(x0, ρ0)
(x1, 0)

]

⇒
[

(x0, 0)
(x1, ρ1)

]

 . We 

denote x′0 and x′1 as the corresponding locations of x0 and x1 in the source payer, respectively; the amount of mass 
transported in R3 from x0 to x1 as ρtrans

0→1 > 0 ; the amount of mass drawn from x0 to x′0 as ρsrc
0 > 0 ; and the amount of 

mass pushed from x′1 to x1 as ρsrc
1 > 0 . Therefore, the following equations hold

The weighting parameter α in the urOMT formulation therefore balances the split of ρ0 into ρtrans
0→1 and ρsrc

0  whose 
effect will be demonstrated in the next section.

In this test, to move ρimg
0  to ρimg

1  , part of the mass was transported in R3 and part in the source layer, and 
these two phenomena facilitate each other. We know a priori from the creation of the data that the sphere should 
be transported forward and mass gain only occurs in the center region. However, allowing a global relative 
source, the urOMT algorithm finds an easier way to transform ρimg

0  into ρimg
1  by making use of the source layer 

to transfer mass.
Most importantly, removing the indicator constraint the relative source globally compensates the transport 

in R3 and is indicative of the leaving and arrival of mass. This can be very useful in the context of applications 
to some real dataset. As a matter of fact, a priori indicator for the source layer is sometimes unavailable due to 
the complexity of the system.

Application to rat brain MRI
A very useful application of the urOMT model is to quantify the transport properties of brain fluids with DCE-
MRI data. It still remains debated in the scientific community how fluid and solutes are transported in brain 
parenchyma and how the “dirty” fluid is drained out of the brain to maintain homeostasis30,31. The relative source 
in the urOMT model may be helpful in revealing fluid and solute clearance patterns in the brain.

In this experiment, our urOMT method was applied to 3D DCE-MRI dataset derived from a 3-month-old 
healthy rat brain. The tracers, gadoteric acid, were injected into the cerebrospinal fluid (CSF) of the rat after the 
rat was anesthetized. The DCE-MRI data series of the rat brain was collected every 5 minutes and lasted for 140 

(30)ρ0 = ρtrans
0→1 + ρsrc

0 , ρ1 = ρtrans
0→1 + ρsrc

1 .
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minutes, ending up with 29 images in total. The MRI signal images were then processed to derive the %-signal 
change from the baseline to approximate the concentration images of tracers. More information of the DCE-MRI 
data may be found in Chen et al.9

In this numerical experiment, we assume that the intensity of the DCE-MRI images is proportional to the 
density in the urOMT model. We used every other image within the brain region as input images in order to save 
running time, which resulted in a total of 15 images: ρimg

0 , ρ
img
1 , . . . , ρ

img
14  for the urOMT algorithm (Fig. 5a). In 

the previous work9, the rOMT model was applied right before the peak of the total signal intensity of the input 
images, i.e., ρimg

3 , . . . , ρ
img
14  in current notation. In the present experiment, due to the introduction of the rela-

tive source term in the model we were able to include earlier frames when the total intensity was still rapidly 
increasing (Fig. 6a, the red dashed curve). Since the mechanism of the fluid transport in brains is complex and 
still under intense investigation, there is no information provided a priori for the relative source term. So we set 
its indicator function χ to be equal to 1 everywhere with the assumption that the entire brain system is “leaky” 
to allow the tracers to enter and exit the system through unknown ways. In order to derive smooth prolonged 

Figure 5.   Application to 3D Rat Brain MRI. (a) Rat brain MRIs, shown in 3D rendering from the right-lateral 
view plane, were fed successively into the urOMT algorithm. (b, c) As returned outputs, the Eulerian time-
averaged relative source maps and speed maps between every other image were plotted, indicating the rate of 
mass gain/loss and speed distribution over time, respectively. (d–g) Under Lagrangian coordinates, pathlines, 
color-coded with start and end points, show the trajectories of the tracers in brain. The speed-lines show the 
speed values along pathlines, and similarly Péclet-lines indicate whether the transport is advection or diffusion-
dominated along pathlines. The velocity flux vectors show the direction and distance of the transport. All lines 
and vectors are shown from both the right-lateral and bottom views, and are overlaid on the anatomical data in 
gray.
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dynamics, we used the last interpolated image from the previous numerical loop as the initial image in the next 
loop. The parameters used in this experiment are listed in Table 1. The computation was also run with MATLAB 
2018b on our departmental High Performance Computing cluster at Memorial Sloan Kettering Cancer Center 
with Red Hat Enterprise Linux 7.5 operating system using 3 CPUs and 128GB of memory which took about 8 
hours and 50 minutes.

We show the Eulerian relative source maps and speed maps between every other input frame (Fig. 5b-c). 
The Eulerian relative source maps indicate that the tracers first entered the CSF surrounding the brain causing 
the intensive mass gain noted in the first frames, and then subsequently moved into deeper brain tissue regions 
resulting in mass loss in CSF and mass gain in the brain tissue. The Eulerian speed maps indicate that the initial 
speed of tracers when entering the CSF was very high, and slowed when the tracers penetrated deeper, probably 
due to diffusion dominating the transport in the tissue. From the Lagrangian perspective, we show the path-
lines of tracers starting at t = 0 as well as those lines endowed with speed and Péclet number (Fig. 5d, f, g). The 
pathlines signifies the pathways/trajectories of the tracers entering CSF and brain tissue. The speed-lines show 
that higher speed was mainly in the CSF and along the perivascular space of the large vessels, and further that 
the transport was identified as advection-dominated according to the high values in the Péclet-lines in those 
regions. The velocity flux vectors were also derived and demonstrated that the tracers entered the brain tissue in 
a symmetrical pattern about the the midline of the skull base (Fig. 5e).

Recall that in the urOMT model (3a)–(3c), the weighting parameter α > 0 penalizes the source term in the 
cost function. In theory, as α → +∞ , r gets suppressed and this model approximates the rOMT model where 

Figure 6.   Examination of the Effect of the Parameter α . (a) The comparison of the total image intensity curve 
of the input images and interpolations with different α’s. (b) The normalized mean squared error curve over 
the numerical steps with different α’s. (c) The percent change in total mass curve over the numerical steps with 
different α’s. (d) The comparison of the Eulerian relative source maps (first row) and Eulerian speed maps 
(second row) from ρimg

6  to ρimg
8  (shown in Fig. 5a) and the speed-lines (the third row) returned from the urOMT 

and its post-processing algorithm with different α’s. The first two rows are from the right-lateral view and the 
third row is from both the right-lateral and bottom views.
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unbalanced mass gain and loss are not allowed. In the test, we used above α = 10000 . We ran further tests with 
different values including α = 1000, 3000, 6000, 20000 and 50000 to demonstrate the effect of α on the results.

From the urOMT algorithm, we can compute the final interpolation ρi,m for i = 1, . . . , q− 1 . To test the 
numercial performance, we define the normalized mean squared error (NMSE) between each pair of final inter-
polation ρi,m and the ground truth ρimg

i  as

We also define the percent change in total mass (PCTM) between ρi,m and ρimg
i  as

where sum(·) denotes taking the sum of all entries in a vector. Both NMSE and PCTM measure the fidelity of the 
urOMT algorithm and the lower they are, the closer the urOMT results are to the data. However, NMSE measures 
the closeness of the ground truth and the interpolations in a local manner, while PCTM in a global manner. We 
emphasize that urOMT is a data-driven method; in other words, the transport between two images is a black box 
and urOMT is simply giving the most likely evolving path under a pre-defined least cost assumption. Therefore, 
it is difficult to define the ground truth between two input images for us to compare with.

By fixing the rest of the parameters but using various α values (1000, 3000, 6000, 10000, 20000 and 50000), 
we ran our novel urOMT algorithm and the post-processing procedure on the same rat brain data. In Fig. 6a, we 
plot the curves of the total image intensity of both input images and interpolations with different α’s. From the 
curves, the smaller the α is, the closer the curve of interpolations is to the curve of input images. This is in agree-
ment with the theoretical observation that the smaller the α is, the less the source term is penalized, which means 
more mass gain/loss is allowed in the system in order to adjust the total mass. From Fig. 6b, c, we found that a 
smaller α may help derive more fidelitous numerical simulations, because for both NMSE and PCTM the trend 
is that the larger the α is, the higher the NMSE and PCTM values are. This makes sense because when the system 
is highly unbalanced, and forcefully using a high α produces a nearly balanced environment which contradicts 
with the data setting. To further examine the effect of α on the quantitative and visual results, we plot the Eulerian 
relative source maps and Eulerian speed maps from ρimg

6  to ρimg
8  and speed-lines with different α ’s in Fig. 6d. 

They show that when the source term is greatly penalized with a high α , the speed is consequently elevated. For 
example in Fig. 6d with α = 50000 where the model most approximates rOMT, there is very high speed transport 
color coded in red at the base of the brain, which could be artificial and potentially over-estimated because in 
such a system mass has to move more quickly in order to match the final input image. In contrast, in a system 
with low α where instantaneous mass gain/loss is promoted, mass does not need to transport in the same degree 
to match the final input image, since it can instead pull in (or push out) mass from (or into) the “invisible sink” 
(the source layer in Fig. 4c) via the relative source r. For example in Fig. 6d with α = 1000 , the rapid movement 
of tracers at the base of CSF almost disappeared because the change of the system is mostly accounted by the 
relative source. In general, the relative source r and the velocity field v compensate each other and their effects 
in the system are actively controlled by the weighting parameter α.

Discussion
In this work, we introduced an unbalanced version of the rOMT model for studying brain fluid dynamics using 
DCE-MRI images, which we referred to as urOMT. This method was utilized to make rOMT8–10 more physi-
cally and biologically relevant by removing the mass conservation constraint. Specifically, the urOMT model 
accounts for the change of the total mass in the system by adding an independent relative source term into the 
formulation, while the rOMT model requires the total mass to be conserved. As discussed before, both theo-
retically and numerically the rOMT model can be approximated by the urOMT model when the parameter α 
goes to infinity. In other words, urOMT “incorporates” rOMT, and one can use urOMT with a large enough α 
(thereby assuring that the mass conservation condition of input images to be met) in place of the previous ver-
sion of rOMT. As such the new urOMT introduced in the present work is a more powerful and flexible model 
for analysis of fluid transport.

The unbalanced regularized OMT problem has been proposed before, and there have been many efforts 
investigating into its numerical methods19,20,22,32–35 among which most are scaling algorithms generalized from 
the Sinkhorn algorithm6. The Sinkhorn algorithm solves a balanced entropy-regularized OMT problem, but has 
limitations in stability and may not be practical for problems with large amount of sample points. The rOMT 
algorithm, which our urOMT method is built upon, is stable when the regularization term approaches zero and 
can deal with density distributions of larger scale. The urOMT model generalized from rOMT inherits these 
advantages compared to the other numerical methods for solving the unbalanced regularized OMT problem. 
More importantly, for practical application into studying the transport behavior of fluids in brains, both rOMT 
and urOMT are naturally fitted in a fluid dynamical framework where a partial differential equation in fluid 
dynamics is directly solved.

The urOMT method may be particularly useful for studying the cross-talk between the glymphatic system and 
meningeal lymphatics. See relevant work30,36,37 for more details about how the two systems interplay. With the 
additional information of the relative source in our urOMT model which reveals mass gain and loss, we are now 
able to observe and quantify the solute and fluid entering and exiting the two systems. For example, in Fig. 5b, 

(31)
�ρi,m − ρ

img
i �2

�ρimg
i �2

× 100%.

(32)
|sum(ρi,m)− sum(ρ

img
i )|

sum(ρ
img
i )

× 100%



14

Vol:.(1234567890)

Scientific Reports |         (2024) 14:1111  | https://doi.org/10.1038/s41598-023-50874-y

www.nature.com/scientificreports/

at first we see mainly mass gain (colored in red) indicating that the tracers are flowing into the CSF, and then 
slowly we see blue color along the skull base, indicating that the tracers are either redistributing into the tissue 
bed or exiting via the draining lymphatic vessels. Therefore, our urOMT method has the potential to probe the 
clearance pattern in more depth at the level of the CSF and tissue compartments.

In the test on the rat brain DCE-MRI, we posed no spatial constraint on the relative source r and used an 
indicator χ all 1’s given that so far there is no agreed upon answer yet on the underlying transport mechanisms 
and the exact drainage pathways from the brain30,31. Indeed from the DCE-MRI data (Fig. 5a), we did not observe 
a specific anatomical efflux route of the tracers out of the brain but the total intensity curve did decline in later 
frames (Fig. 6a, the red dashed curve). In this case, we assume that the system is leaky and the tracers can be 
transferred via unknown tunnels in brain (a correspondence of the source layer in Fig. 4c) to form the given 
images. Similarly in the widely used Toft’s model38,39 for pharmacokinetic analysis of DCE-MRI studies of tumors 
where the signal curves are also unbalanced, a leakage between the blood vessels and the tissue is assumed to 
occur everywhere in the images. The popular parameter Ktrans returned from the Toft’s model is used to quantify 
the local leakage of gadolinium-based tracers from the blood to the tissue38,39.

In the urOMT algorithm, the difference between two input images is mainly captured by either the mass gain/
loss rate r in the source layer or the velocity field v in R3 , and α is the parameter balancing the two. Indeed as 
demonstrated by other work19, with a decreasing α parameter the transport (characterized by the velocity field 
v) is being compensated by mass gain and loss (characterized by the relative source r). With the rat brain MRI 
dataset, we demonstrated that a low α value gives higher numerical fidelity, but produces decreased speed by 
allowing the relative source term to play a greater role in the dynamics. Thus, one needs to be aware of the trade-
off between the fidelity and the strength of fluid flows by choosing an appropriate parameter α when applying 
urOMT. One approach would be to make use of the indicator function χ to restrict the behaviors of the relative 
source r within a certain region if the entering and exiting information of the fluid is known beforehand. Another 
approach is to use a time-varying α given that the total intensity curve of the input image is usually not linearly 
increasing or decreasing. Indeed, we plan to explore this possibility in some future work.

Other than the parameter α , there are also additional parameters worthy of examining in the future, such as 
the weighting parameter β for the fitting term in the cost function (4a) and the constant diffusion coefficient σ . 
The parameter β controls the data fidelity and is also coupled with the choice of α . Some preliminary efforts have 
been made in using a non-linear diffusion term in the partial differential equation (2), given the non-constant 
diffusion phenomena in brain fluid flows40. Future work includes adding a non-linear and spatially dependent 
diffusion term in the current urOMT formulation.

The urOMT model was largely motivated by the changing pattern of the total signal curve from DCE-MRI 
experiments. Specifically in rat brains, the temporal signal intensity curve typically peaks at approximately 1 hour 
after tracer injection, and later on, either keeps decreasing (Fig. 6a, red dashed curve) or reaches a plateau (this 
depends on the total amount of tracer administered), signifying that the total mass may be highly unbalanced 
over time in the system. Given that the DCE-MRI protocol has been widely used in cancer imaging in clinics41–43, 
the urOMT method also has the potential to be applied to tumor DCE-MRI data in human experiments to 
investigate the tumor vasculature, and to help pave the way for new medical treatments.

Conclusions
The urOMT methodology incorporates both advection and diffusion motions into the transport process, as 
well as allowing for mass gain and loss in the dynamic images by introducing a relative source variable. For 
special cases, it may also constrain the relative source to a given region or time interval. As an extension of the 
rOMT model8–10, the urOMT model removes the total mass conservation constraint, while keeping the attractive 
advection-diffusion framework, making it applicable to modeling the fluid flows in the brain under DCE-MRI 
protocol and many other real-world modeling problems in computational fluid dynamics.

Data availability
The code for the urOMT algorithm and its post-processings is available at https://​github.​com/​xinan-​nancy-​chen/​
urOMT and was also deposited at Zenodo44 . The synthetic data and the DCE-MRI data used in this work is 
also provided therein.
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