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Discernment of transformer oil 
stray gassing anomalies using 
machine learning classification 
techniques
M. K. Ngwenyama 1,2* & M. N. Gitau 1,2

This work examines the application of machine learning (ML) algorithms to evaluate dissolved 
gas analysis (DGA) data to quickly identify incipient faults in oil-immersed transformers (OITs). 
Transformers are pivotal equipment in the transmission and distribution of electrical power. The 
failure of a particular unit during service may interrupt a massive number of consumers and disrupt 
commercial activities in that area. Therefore, several monitoring techniques are proposed to ensure 
that the unit maintains an adequate level of functionality in addition to an extended useful lifespan. 
DGA is a technique commonly employed for monitoring the state of OITs. The understanding of DGA 
samples is conversely unsatisfactory from the perspective of evaluating incipient faults and relies 
mainly on the proficiency of test engineers. In the current work, a multi-classification model that is 
centered on ML algorithms is demonstrated to have a logical, precise, and perfect understanding of 
DGA. The proposed model is used to analyze 138 transformer oil (TO) samples that exhibited different 
stray gassing characteristics in various South African substations. The proposed model combines the 
design of four ML classifiers and enhances diagnosis accuracy and trust between the transformer 
manufacturer and power utility. Furthermore, case reports on transformer failure analysis using 
the proposed model, IEC 60599:2022, and Eskom (Specification—Ref: 240-75661431) standards are 
presented. In addition, a comparison analysis is conducted in this work against the conventional DGA 
approaches to validate the proposed model. The proposed model demonstrates the highest degree of 
accuracy of 87.7%, which was produced by Bagged Trees, followed by Fine KNN with 86.2%, and the 
third in rank is Quadratic SVM with 84.1%.

With the radical growth in the power system capacity, the demands for power generation, transmission, and 
distribution, have become greater1. As a significant piece of equipment for power distribution in power systems, 
the power transformer (PT) is critical for the secure operation of the complete power system. The occurrence of 
a fault in a PT will result in damage to the unit. The most severe faults might even cause the failure of the entire 
power system, adversely affecting the functioning of the total national economy. Thus, it is beneficial to exam-
ine fault diagnosis technology relating to PTs2. PT faults usually emerge from electrical and thermal stresses, 
such faults vary merely in their energy, site, and time of occurrence. The oil temperature increases and several 
gases will be generated when the fault occurs. Generally, the combustible gasses found in the TO in service are 
hydrogen (H2) , methane (CH4) , ethane (C2H2) , ethylene (C2H4) , and acetylene (C2H6)

3,4. The pollutants in oil 
are mostly the consequence of the degradation of insulating elements (oil or sheet) because of faults or chemical 
responses in the apparatus in question.

The quality and quantity of disintegrated gases have a prominent function in assessing the fault type in PTs5,6. 
Many conventional techniques have been developed to analyze transformer faults with gas chromatography; a 
procedure where a chemical combination transported through a gas or liquid is broken down into its constitu-
ent parts as a result of the substances flowing differently along or above a static solution. Such schemes for fault 
analysis are usually categorized into three types, specifically, the distinctive gas scheme7–10, the gas production 
rate scheme10, and the three-ratio scheme11–13. In China, over 50% of the PT faults in the energy system were 
evaluated by employing DGA-based analysis schemes which analyze transformer fault types and their severity 
following the content, proportion to one another, and the gas production rate of the DGs in the TO13. Adding 
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to the above three key conventional techniques, some enhanced schemes have emerged, like the Doernenburg 
scheme, the Rogers ratio scheme, the Duval triangle scheme, the International Electrotechnical Commission 
(IEC) ratio scheme, and the Key Gas (KG) scheme14–18. Such schemes usually employ numerous gas ratios or 
compare gas levels with the appointed criteria to analyze the state of a PT. However, most of these conventional 
analysis techniques provide a restricted impact to a transformer’s fault analysis, which is unable to precisely iden-
tify its correct fault type. Particularly, it is extremely complex to precisely determine the fault state with several 
DGs, a great probability of misdiagnosis will occur when the calculated and analyzed gas ratio is near the critical 
value19. Furthermore, the more comprehensive the classifications of fault types are, the lesser the precision rate 
of fault analysis is, and vice versa. Moreover, rough classifications are not conducive to the fault analysis of a PT, 
and it is challenging to meet the demands of applications.

DGA is a technique for detecting and forecasting problems in OITs by (i) determining the levels of various 
gases contained in the insulation oil, as well as respective gas rates and gas proportions, (ii) fault detection utiliz-
ing diagnosis instruments such as KG20,21, IEC ratios22, Rogers ratios23, Doernenburg ratios24 and Duval triangle23. 
Nevertheless, these instruments have certain flaws. In certain situations, the computed gas ratios deviate from 
the instruments’ specified ratio codes. Faults that develop within the transformer might be undetectable25. Addi-
tionally, these instruments can produce various analytical outcomes for the equivalent dissolved gas (DG) file, 
making it challenging for experts to reach a definitive conclusion when confronted with such a wide range of 
data26. Due to these constraints, several scientists have developed systems that are integrated with ML approaches 
that use historical DGA information to forecast imminent or undiscovered faults for diagnosing faults. The com-
plexity of identifying the appropriate fault situation and the analytic precisions for units under fault categories 
are defined by these aspects27,28. The KG ratios, as well as graphic depiction schemes, are all DGA schemes that 
are utilized as data inputs to ML classifiers for fault classification. In the current study, a multi-classification 
model that is centered on ML algorithms is shown to have an intelligible, precise, and clear understanding of 
DGA. This enthusiasm is supported by (i) efficient adaptation to fresh data in ML; (ii) for structural layout, ML 
needs minimal exertion (i.e. several control settings are involved.); and (iii) the capability of ML to categorize 
unpredictable issues29. Capitalizing on these benefits, the proposed model is used to analyze and evaluate the 
state and suitable gas name subscription of 138 TO samples that exhibited different stray gassing characteristics 
in various South African substations. The model uses four ML classifiers, namely: (i) Decision Tree (DT)30; (ii) 
Support Vector Machine (SVM)31; (iii) K-Nearest Neighbour (KNN)32; and (iv) Ensemble Classifier (EC)33. 
These classifiers are applied for oil sample classification and are selected based on their capacity to compare new 
data inputs to existing data to identify the class that closely resembles existing classes to place new data within. 
In MATLAB/Simulink, the proposed model serves as the framework underlying the various classifiers and is 
designed to aggregate ML algorithms for information-gathering activities. A detailed summary of the various 
ML classifiers utilized in this work is provided in the section that follows:

•	 DT: As shown in Fig. 1, the DT classifier34 is an ML technique that makes predictions using a tree structure. 
It builds a flowchart-like tree structure where each internal node represents a feature test, each branch repre-
sents a test outcome, and each leaf node stores a class label. It is constructed by constantly splitting the train-
ing data into subsets depending on feature values until a stopping requirement is met, such as the maximum 
depth of the tree or the minimum number of samples needed to divide a node. The method replicates the 
operation for every split subgroup that is the offspring of a given node. Lastly, the tree is trimmed by deleting 
limbs that are not useful for classification.

•	 SVM: The working of the SVM classifier35 can be understood by using Fig. 2. SVMs fall within the broad 
group of kernel schemes36 that rely solely on data using mark pairings. To guarantee that the hyperplane 
is as broad as feasible across categories, the kernel function determines an estimation product for certain 
potentially large-scale feature regions. SVMs possess the benefits of becoming less mathematically intensive 
compared to different methods of classification, performing well in large-scale areas, as well as managing 

Figure 1.   Example of DT.



3

Vol.:(0123456789)

Scientific Reports |          (2024) 14:376  | https://doi.org/10.1038/s41598-023-50833-7

www.nature.com/scientificreports/

unpredictable classification effectively by utilizing the kernel trick, which subsequently converts the data area 
into a different large-scale feature area.

•	 KNN: The KNN classifier37 is a monitored learning approach utilized for numerous machine learning scenar-
ios. It arranges elements using the nearest trained samples in the characteristic domain. The goal underlying 
KNN is to locate a well-known amount of training data that is nearest in proximity to a particular querying 
case and estimate the querying case’s category based on them. Regarding categorization, KNN is comparable 
to a DT method, except that rather than developing a tree, instead, it creates a route through the graph. KNNs 
are also quicker compared to DTs. The working of the KNN is shown in Fig. 3.

•	 EC: The ensemble classifier38 produces classification forecasts using a set of classifiers, which achieves more 
accurate specialization than one classifier and results in an improved measurement grade. A dataset is used 
to train a list of classifiers, and the separate predictions made by each of the classifiers applied to the dataset 
form the basis of EC. The ensemble model then combines the outcomes of each classifier prediction to get 
the final result. This sort of classifier remains simple to simulate but is often appropriate for large samples. 
The working of the EC is shown in Fig. 4.

In monitoring the insulation status in OITs, several chemical and electrical processes are employed, such 
as DGA and Furan Analysis (FA), which indicate the Degree of Polymerization (DP) of the cellulose paper6,39. 
DGA is one of the most common methods for detecting an incipient fault in PTs. DGA can be used to assess 
present-day transformer status, predict future failures, and identify inconvenient transformer operations to pro-
vide appropriate maintenance planning. Figure 5 illustrates the standard technique employed by the transformer 
manufacturing sector to collect transformer oil on-site for DGA at the testing facility.

The presented DGA approaches do not contain any mathematical development, and the assessment depends 
on an experiential method that can vary depending on the expertise of the laboratory analyst, which results in 
unpredictable assessment40. To overcome this limitation, several computational models based on ML have been 
used in assessing incipient faults in PTs. In the proposed research work, recent related studies and their contri-
butions to transformer fault diagnosis have been highlighted and a multi-classification model for transformer 
fault diagnosis is proposed. Table 1 presents a comparative study of the existing recent survey and the proposed 
model for transformer fault analysis.

Contribution and novelty
Research contribution
This research work provided a summary of recent transformer fault analysis. Several ML-based techniques based 
on conventional DGA approaches have been discussed. The following are the contributions of the proposed 
research analysis:

•	 A multi-classification model for fault diagnosis is proposed, that enhances diagnostic accuracy and optimism 
between transformer manufacturer and power utility.

Figure 2.   Example of SVM.

Figure 3.   Example of KNN.
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•	 Case reports on transformer fault analysis utilizing the proposed multi-classification model, IEC 60599:2022 
and Eskom (Specification—Ref: 240-75661431) standards for fault analysis have been presented.

Research novelty
The main objective of the current research is to contribute to the practice of TO analysis. Although various cur-
rent research studies have concentrated on TO analysis, minimal and occasional research has been published on 
the adoption of a multi-classification model, IEC 60599:2022, and Eskom (Specification—Ref: 240-75661431) 
standards for OIT analysis. The proposed model is a significant technique for overcoming the inadequacies of 

Figure 4.   Example of EC.

Figure 5.   Extraction of transformer oil for DGA.

Table 1.   Summary of recent related studies.

Ref Year Proposed technique Contribution

41 2018 Doernenburg ratio approach, Roger’s ratio approach, multi-layer ANN 
perceptron

A fault diagnostic analysis was performed by developing a hybrid Doernen-
burg and Rogers ratio technique to determine a gas ratio suitable to train a 
multi-layer ANN perceptron

42 2019 Mean Shift algorithm (MSA), ANN

An MSA-based ANN is proposed. The IEC 60,599:2007 standard consists 
of gases that are used to create parameters that will be trained using the 
proposed method. The MSA was used to effectively avoid the limitation 
of the number of training patterns (data size). The training and validation 
techniques both produced acceptable outcomes

43 2020 Fuzzy Logic, IEC ratio approach
A fuzzy logic-IEC ratio approach was proposed for transformer fault diagno-
sis. The outcomes demonstrate an improvement over the conventional IEC 
ratio technique

44 2022 ANFIS, Roger’s ratio approach
A hybrid Rogers ratio technique-based ANFIS was proposed to detect 
transformer faults. The training was carried out by employing the gas ratios 
presented by the IEEE C57-104 and IEC 60,599 standards

Current study 2023 Multi-classification model

A multi-classification model for fault diagnosis is proposed, that enhances 
diagnostic accuracy and optimism between transformer manufacturer and 
power utility
Case reports on transformer fault analysis utilizing the proposed multi-
classification model, IEC 60599:2022, and Eskom (Specification—Ref: 240-
75661431) standards for fault analysis have been presented
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the IEC gas ratio technique to create an effective oil analysis tool. The seven fault categories utilized in the IEC 
60599:2022 standard were considered and concluded that the degree of accuracy for fault detection is not ideal as 
a consequence of the limits defined by the gas ratio codes, and leads to "not detectable" in certain cases scenarios. 
However, after introducing the proposed model, the analysis is on an equal footing with the actual fault analysis. 
Furthermore, this research work addressed the optimal ratios of fault analysis. It is crucial to train the proposed 
model. Consequently, the DGA data utilized to train the proposed model is made up of samples that cover all 
known types of faults as defined by the IEC 60599:2022 standard. According to the findings of this research, the 
forecasting of transformer faults employing the proposed model as well as the IEC 60599:2022 gas ratio technique 
is comparable to actual fault analysis and offers an improvement over the IEC 60599:2022 gas ratio technique.

Paper organization
The rest of the work is structured as follows: Section “Review of existing DGA approaches” provides an over-
view of current DGA approaches. Section “Applicable works” provides an overview of techniques employed by 
researchers to explore DGA. Section “Proposed approach” discusses the research approach and model. Section 
“Materials and protocols” presents the materials and protocols of the study. Section “Results” presents the results 
and discussions that validate the proposed model. and finally, Section “Conclusions” presents the conclusions 
of this work.

Review of existing DGA approaches
There are several procedures for diagnosing deformities in transformer insulation. DGA analysis strategies are 
dependent on scientific hypotheses and practical knowledge gained by specialists across the world45,46. However, 
if these analysis strategies are not implemented with caution, they might detect abnormalities erroneously since 
they simply signal potential faults47. DGA strategies can vary regarding diagnosed faults in several instances, 
which is undesirable for an accurate fault analytic technology48. Flammable and non-flammable gases can be 
discovered within the gases contained in the oil, as shown in Table 2. These gases can also be categorized based on 
the type of fault that induced them, as shown in Table 3. Gas levels, KGs, KG ratios, and graphic interpretations 
are mutual ideologies adopted in analysis strategies49. The DGA can recognize different faults such as partial 
discharge, excessive heat, as well as arcing in a wide range of PTs. A single dataset is required for the efficiency 
analysis and analytical comparison of conventional DGA approaches50. Figure 6 illustrates a dataset of potential 
transformer faults. Furthermore, DGA can give the timely detection required to maximize the probability of 
establishing a suitable remedy51,52. Numerous informative techniques based on DGA to identify the emerging 
fault type have been stated. In this work, seven of the DGA approaches were explored: (i) the CIGRE approach, 
(ii) the Doernenburg ratio approach, (iii) the KG approach, (iv) the Nomograph approach, (v) the IEC ratio 
approach, (vii) Duval triangle approach, and (viii) Rogers ratio approach.

These approaches are experimental, with assumptions established on relationships between gases discovered 
through gas analysis54. For instance, The Rogers Ratio technique considers the ratios of H2 , CH4 , C2H6 , C2H4 , and 
C2H2 to create code acknowledging fault analysis. The ratio range, related codes, and related diagnostics for the 

Table 2.   DGs in TO.

Gases

Flammable Non-flammable

Carbon monoxide ( CO) Oxygen ( O2)

Hydrogen ( H2) –

Methane ( CH4) Nitrogen ( N2)

Ethane ( C2H6) –

Ethylene ( C2H4) Carbon dioxide ( CO2)

Acetylene ( C2H2)

Table 3.   Types of DGs according to the fault type and material concerned.

Fault type Flammable Non-flammable

Overheating of windings CO –

Oil overheating CH4, C2H6,C2H4 –

Partial discharge H2 –

Arcing C2H2 –

Minimal temperatures CH4, C2H6 –

Excessive temperatures C2H4, H2 , CH4, C2H6 –

All faults – O2 , N2,CO2
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several code combinations are provided in Table 13. The ratios of the approaches are illustrated as: R1:(CH4/H2)

, R2:(C2H2/C2H4); R3:(C2H2/CH4); R4:(C2H6/C2H2); and R5:(C2H4/C2H6).

CIGRE approach
This approach55 explores KG ratios and gas levels. The 5 KG ratios evaluated using this approach are C2H2/C2H6

,H2/CH4,C2H4/C2H6,C2H2/H2 , and CO/CO2 . A transformer is declared efficient if consecutive deployments of 
these approaches produce gas ratios and levels that are within permissible thresholds. The incidence of catas-
trophes in PTs discussed in Ref.56 is graphically shown in Fig. 7. The catastrophe statistics of CIGRE consist of 
approximately 800 catastrophes57.

Doernenburg ratio approach
Reserve integrated safety sensors (RIS2) are required in this approach, and a significant volume of gas is required 
to demonstrate its application. RIS2 is an essential accessory in the protection of oil transformers. It allows con-
tinuous control of the pressure, temperature, oil level, and gas states. The work presented in Ref.58 states that gas 
ratio approaches utilize encoding algorithms that designate certain pairings of codes to specific fault categories 
for efficient fault identification. The codes are formed by estimating gas level ratios as well as comparing them 
to predefined values acquired from experience and constantly modified. The author discovered that when a gas 
composition matches the code for a certain fault, a fault state is identified. In Ref.59, the approach was applied 
to diagnose faults by monitoring gas levels of CH4/H2 , C2H2/CH4 , C2H4/C2H6 and C2H2/C2H4 . To determine 
whether there is an actual fault with the unit, the concentration of the gases must initially exceed the acceptable 
limits, and is adequate formation of each gas for the ratio analysis must be present to be valid60. Table 4 demon-
strates the KGs as well as their concentration limits.

KG approach
This approach61,62 monitors the gases emitted from TO upon a failure, which causes the temperature in the trans-
former to rise. It must be noted that the utility of oil in the transformer provides insulation, and cooling, and 
helps quench arc. This approach is the most critical and commonly utilized since it presents the earliest signal 
of an incident. Table 5 demonstrates the diagnostic explanations by using different KG concentrations. The 
ppm concentration standard value limit detected in PTs according to IEC 60599:2022 is specified in Table 6. 

Figure 6.   Dataset of potential faults53.
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Figure 7.   Catastrophe statistics of distinct transformer parts reported by CIGRE57.



7

Vol.:(0123456789)

Scientific Reports |          (2024) 14:376  | https://doi.org/10.1038/s41598-023-50833-7

www.nature.com/scientificreports/

The faults in this approach are compared with the gas concentration profile. According to the IEEE standard, 
KGs are gases produced in OITs that alert to observational fault-type diagnostics, depending on which gases are 
common or prominent at certain temperature levels63. If there is no previous DG data is provided for analysis, 
hazards in the apparatus can be detected and evaluated using the guidelines indicated in Table 7. Healthy opera-
tion is represented by State 1. State 2 signifies that the instrument is possibly malfunctioning, with overall gases 
exceeding normal concentrations. State 3 implies a high amount of degradation. State 4 indicates that excessive 
deterioration and continued operation may end in failure or breakdown64,65.

Nomograph approach
The author66 proposed the Nomograph approach to enhance fault analysis precision through the combination of 
fault gas ratios67. It was proposed to supply both a visual demonstration of fault-gas data as well as the resources 
to understand its importance. The Nomograph is built from upright exponential measurements that depict the 
amounts of various gases. Using this methodology, straight lines are created between neighboring measurements 
to link the dots reflecting different gas level values. The gradients of these lines serve as a guide for diagnosing 
the type of fault. The key (T) across the two axes specifies the fault type for the two axes. The positioning of the 
line about the intensity scales allows you to determine the degree of the fault. The example to calculate the value 
of T is shown in Fig. 8.

Table 4.   Concentration for Doernenburg ratio scheme.

Doernenburg ratio scheme

KG Concentration (ppm)

C2H2(acetylene) 35

C2H6(ethane) 65

C2H4(ethylene) 50

CH4(methane) 120

CO(carbon monoxide) 350

H2(hydrogen) 100

Table 5.   Gas dissolved in oil for analysis.

KG scheme

Gas detected Interpretation

C2H2(acetylene) Electric fault (arc, spark)

C2H6(ethane) Secondary indicator of thermal fault

C2H4(ethylene) Thermal fault (overheating local)

CH4(methane) Secondary indication of arc or severe excessive heat

CO(carbon monoxide) Paper degradation

CO2(carbon dioxide) Paper degradation

H2(hydrogen) Electromagnetic disposal

O2(oxygen) Transformer seal fault

Table 6.   Limit concentrations of DGs for values observed in the transformer.

Gas H2 CH4 C2H2 C2H4 C2H6 CO CO2

Concentration (ppm) 100 120 1 50 65 350 2500

Table 7.   Risk assessment in transformers using DG levels (ppm).

States H2 CH4 C2H2 C2H4 C2H6 CO CO2 Total gas

State 1 100 120 1 50 65 350 2500 720

State 2 101–700 121–400 2–9 51–100 66–100 351–570 2500–4000 721–1920

State 3 701–1800 401–1000 10–35 101–200 101–150 571–1400 4001–10,000 1921–4630

State 4 > 1800 > 1000 > 35 > 200 > 150 > 1400 > 10,000 > 4630
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The formula to calculate the value of T is given in (1).

where S is the pre-test gas, R is the post-test gas and T is the likelihood fault type ratio.

IEC ratio approach
This approach68 analyzes and predicts transformer faults using the first five gases provided in Table 8. The gases 
are employed to harvest three gas ratios, namely: C2H2/C2H4 , CH4/H2 as well as C2H2/C2H6 . There are two 
critical considerations to emphasize regarding the approach. Different countries utilize differing ratios, as well 
as (the C2H2/C2H6) ratio usually employed to substitute the (CH4/H2) ratio. The ratios should be identified 
mainly when one of the DGs contains a significant concentration and/or a fast-rising rate69. Table 9 depicts the 
IEC standard for describing fault types and provides estimates for the 3 KG ratios using prescribed fault analy-
sis. Whenever key-gas ratios exceed certain limitations, incipient faults in the transformer are to be foreseen70.

(1)T = (1.84S + 4.66)0.37+ (1.21R)1.333,

Figure 8.   The logarithmic nomograph.

Table 8.   Evaluation of DGA data and categorization of fault categories by IEC 60,599.

Fault type Report C2H2/C2H4 CH4/H2 C2H2/C2H6

PD Partial discharges Insignificant value < 0.1 < 0.2

D1 Low energy discharges < 1.0 0.1–0.5 > 1.0

D2 High energy discharges 0.6–2.5 0.1–1.0 > 2.0

T1 Thermal faults, T < 300 °C Insignificant value Insignificant value < 1.0

T2 Thermal faults, 300 °C < T < 700 °C < 1.0 > 1.0 1.0–4.0

T3 Thermal faults, T < 700 °C < 0.2 > 1.0 > 4.0

Table 9.   Zone limitations are represented graphically.

Fault type Fault definition CH4 C2H4 C2H2

PD Partial discharges 98% – –

D1 Low energy discharges – 23% 13%

D2 High energy discharges – 23–40% 13–29%

T1 Thermal faults – 20% 4%

T2 Thermal faults – 20–50% 4%

T3 Thermal faults – 50% 15%

D + T Thermal and electrical faults – 40–50% 4–29%
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Duval triangle approach
The work in Ref.71 analyzes DG data by utilizing a triangle of comparative percentages of CH4 , C2H2 , and C2H4 . 
These gases are converted into triangular data to represent the triangle. Even though this approach is regarded 
as simple to implement, incorrect classifications might occur because no section of the triangle is identified as 
a sample of typical aging72,73. Therefore, before adopting this approach to examine transformers that have been 
in operation for several years, the acceptable level of DG must be identified. A fault is detected by summing 
the quantities of the three Duval Triangle gases CH4 , C2H2 , and C2H4 as well as extrication the sum by the 
volume of each gas to get the proportion of each gas overall. The intensities of CH4, C2H4, as well as C2H2 are 
indicated as a proportion of the overall ( CH4 + C2H4 + C2H2) and specify a point (%CH4, %C2H4, and %C2H2) 
in an organized structure denoted in a triangle, which has been sub-divided in separate zones74. Each zone is 
correlated to a specific class of fault. The Duval triangle solely contains areas correlated to fault events; there is 
no area for normal states. As a result, this approach can only be utilized to classify the kind of fault in the situ-
ation of a defective transformer75,76. Figure 9 shows the fault type identified in each zone. Internal transformer 
failures are classified into five kinds based on DL/T 722–2000 and IEC 60599–2022 standards: partial discharge 
(PD), low energy discharge (D1) and high energy discharge (D2), thermal faults; < 300 °C (T1), thermal fault; 
300 °C–700 °C (T2) and a combination of thermal and electrical faults (DT)77,78. Figure 9 may be interpreted in 
a table that shows the fault limitations, which are represented in Table 8.

Rogers ratio approach
This approach adopts the exact protocol as the Doernenburg Approach, but just three proportions are utilized, 
and the approach’s validity is not dependent on the gas concentration threshold71,80. This approach is proficient 
since it compares the outcomes of several failure diagnoses with the gas testing of each trial. Nevertheless, 
certain ratios in this approach are inconsistent with the analytic codes allocated for specific faults81. Faults are 
diagnosed using a basic coding technique based on ratio intervals, as illustrated in Tables 10 and 1182. Table 12 
shows the proportions for DG in the oil as well as free gases, including the indicated failure detection based on 
the Rogers Approach. The coding results in 12 distinct forms of transformer malfunctions. Table 13 shows the 
different types of faults depending on the code.

Figure 9.   Coordinates and zones of Duval triangle transformer fault diagnosis79.

Table 10.   Gas ratio code.

Gas ratios Ratio codes

CH4/H2 i

C2H6/CH4 j

C2H4/C2H6 k

C2H2/C2H4 l
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Applicable works
The seven (7) DGA approaches provided in Section “Review of existing DGA approaches” are performed to 
monitor as well as synthesize the importance of gases existing in OITs. Concerning the faults of the above-men-
tioned conventional schemes, artificial intelligence (AI) schemes of PT fault analysis have attracted substantial 
consideration due to their superior flexibility and influential fault analysis presentation (e.g. expert system 
(EPS)83, fuzzy theory84, SVM85, extreme learning machine (ELM)86, as well as ANN87). EPS remains a clever AI 
setup scheme linked with skilled knowledge, which can analyze faults more thoroughly, precisely, and instantly.

For instance, in Refs.49,88, the author built an EPS for PT insulation fault analysis, which undertook DGA as 
the normal factor. The analysis results demonstrated that the suggested EPS can thoroughly examine the insula-
tion state of a unit and detect the type of fault accurately. In Ref.89, the authors reported an instinctive fuzzy EPS 
to analyze PT faults, in such a manner that the approximation of KG ratio in the TO can be easier. The fuzzy 
concept mostly analyzes the interrelations amongst fuzzy matters, so it can handle these matters appropriately 
with fuzziness and ambiguity.

Table 11.   Coding of Roger’s ratios.

Ratio code Interval Code

i

≤ 0.1 5

> 0.1, < 1.0 0

≥ 1.0,< 3.0 1

≥ 3.0 2

j
< 1.0 0

≥ 1.0,< 3.0 1

k

< 1.0 0

≥ 1.0,< 3.0 1

≥ 3.0 2

l

< 0.5 0

≥ 0.5,< 3.0 1

≥ 3.0 2

Table 12.   Categorization based on Roger’s ratio code.

i j k l Analysis

0 0 0 0 Common degradation

5 0 0 0 Partial discharge

1–2 0 0 0 Slight overheating < 150 °C

1–2 l 0 0 High-temperature 150 °C–200 °C

0 1 0 0 High-temperature 200 °C–300 °C

0 0 1 0 General conductor overheating

1 0 1 0 Winding flowing currents

1 0 2 0 Core and tank overheating links

0 0 0 1 Flashover without power follow-through

0 0 1–2 1–2 Arc with energy follow-through

0 0 2 2 Constant flashing to free potential

5 0 0 1–2 Partial discharge with stalking (note CO)

Table 13.   Correlations for DG in oil, free gas, and catastrophe analysis are recommended by the approach of 
Rogers.

Event R2,C2H2/C2H4 R1,CH4/H2 R5,C2H4/C2H6 Catastrophe analysis recommended

0 < 0.1 > 1.0,< 0.1 < 0.1 Healthy unit

1 < 0.1 > 1.0 < 0.1 Partial discharge

2 1.0–3.0 0.1–1.0 > 3.0 High energy discharge

3 < 0.1 > 1.0, < 0.1 1.0–3.0 Low-temperature thermal failure

4 < 0.1 > 1.0 1.0–3.0 Thermal collapse < 700 °C

5 < 0.1 > 1.0 > 3.0 Thermal collapse > 700 °C
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Also, the authors in Ref.90 applied fuzzy logic linked with evaporated gas of crystal oil for PT fault analysis. 
Experimental outcomes proved that the extremely useful fault analysis scheme was to syndicate outputs from 
several DGA approaches as well as to combine them into a complete assessment.

The authors in Ref.91 found the smart analysis logic centered on principal component analysis (PCA) as well 
as an adaptable evaluation scheme under fuzzy logic facilitates to forecasting initial fault analysis of PTs. SVM 
is an AI system based on the numerical learning hypothesis which holds impressive benefits in non-linear com-
plications. The author92 examined a new extension technique in which an SVM was utilized to examine the PT’s 
faults and to elect the extremely applicable gas signature among the DGA conventional approaches and a new 
extension technique. The examination outcomes showed that the new extension technique as well as the SVM 
scheme can notably enhance the analysis precisions for PT fault categorization.

The authors in Ref.93 suggested an improved prototype merging SVM with a genetic algorithm (SVMG) to 
analyze PT faults. The trial outcomes revealed that the SVMG technique can accomplish better ranking analytical 
precision compared to the IEC three ratios, typical SVM classifier, as well as ANN. ELM is a developing learning 
procedure that has been initiated for transformer fault analysis in current years. In Ref.3, the author employed 
ELM mixed with PCA to categorize the initial faults of PTs and assessed its execution with fuzzy logic as well as 
ANN. The evaluated outcomes demonstrated that ELM could supply decent analysis findings. Again in Ref.51, 
the author proposed an integrated particle swarm optimization (PSO) as well as an ELM technique to analyze 
PT faults.

Despite that, these analysis techniques examined earlier retain their fundamental disadvantages as follows: (i) 
For EPS, a complete understanding root is a vital feature to guarantee the precision of analysis. Nevertheless, it 
is challenging to acquire a comprehensive knowledge base. Moreover, the EPS produces inadequate understand-
ing capability; (ii) Fuzzy theory is challenging to establish a suitable link equation linking the input and output 
parameters94; (iii) SVM is a double-categorization procedure, that causes difficulty in terms of constructing an 
acquiring mechanism, choosing kernel features, and establishing variables in dual-classification challenges. Con-
sequently, SVM has the inherent deficiency of low categorization effectiveness95,96; (iv) The execution of ELM is 
not balanced given that its concealed layer variable is casually selected. Compared to the fault analysis techniques 
discussed in Section “Review of existing DGA approaches”, the neural network has an extra general function in 
fault analysis of PTs due to its lack of sophistication, solid nonlinear-fitting capability, and high accuracy. For 
instance, the authors in Ref.97 used a neural-fuzzy network to determine the initial faults in PTs, as well as to 
execute and examine the anticipated procedure using simulation trials. In Ref.98 the author published validated 
research for selecting the best multi-layer perceptron (MLP) neural network simulation through comparisons of 
two output data kinds and three concealed layer categories. According to the trial findings, MLP neural network 
ratio amalgamation simplifies more accurately compared to different MLP neural network simulations.

In Ref.99, the author presented an ML-based scheme for PT fault analysis based on DGA, a bat algorithm 
(BA), as well as improving the probabilistic neural network (PNN). Investigation revealed that the recommended 
ANN-based approach was detected more precisely when compared to the Rogers ratios technique when a DGA 
technique centered on ANN was applied. The back propagation neural networks (BPNN) model is a highly 
common one amongst several neural network processes and it is being broadly utilized in various grounds of 
fault analysis. In particular, power electronic systems100, transformers101, batteries102,103, photovoltaic systems 
(PV)104,105, etc. be that as it may, the BPNN model still has several underlying deficiencies, for instance, dull 
merging speed and over-fitting difficulty106,107. Fortunately, a significant compilation of optimization processes 
has been established to optimize the BPNN version, such as Genetic algorithm (GA)108–111, Means end analysis 
(MEA)112, Particle Swarm Optimization (PSO)113,114, Simulated Annealing (SA)115, BA116,117, etc. Adaptive sys-
tems, including GA and MEA, are among these techniques and are currently utilized as optimizing approaches 
aiming for the perfect weights and limitations of ANNs.

Proposed approach
In this work, a multi-classification model that is based on ML algorithms is presented to have an intelligible, 
precise, and clear understanding of DGA. Transformers are pivotal equipment in the transmission and distri-
bution of electrical power. The failure of a particular unit during service may interrupt a massive number of 
consumers and disturb commercial activities in that area. Therefore, several monitoring techniques are proposed 
to ensure that the unit maintains an adequate level of functionality in addition to an extended useful lifespan. 
DGA is a technique commonly employed for monitoring the state of OITs. The understanding of DGA samples 
is however unsatisfactory from the perspective of evaluating incipient faults and relies mainly on the proficiency 
of test engineers.

The proposed model is utilized to investigate as well as assess the state and suitable gas name subscription of 
138 TO samples that revealed different stray gassing characteristics in various South African substations. This 
is achieved by employing four ML classifiers. The advantages of the selected classifiers are discussed in Section 
“Introduction” of this study. The primary objective of this study requires the development of an ML-based 
health index (HI) model. It is suggested that HI be used to forecast the predicted output parameter, which is 
conceptually connected to the input characteristics, centered on the crucial assessment4. SVM can generate fresh 
information and categorize non-linear problems. KNN, in comparison, serves as a reliable, trained ML classifier 
that may be used to address categorization and prediction issues. Its primary drawback is the fact that it gets 
much more sluggish as the amount of data being used grows. During the normalizing step, the normalized ratio 
of every gas in every data collection sample is introduced. Figure 10 shows a flowchart that depicts an outline 
of the planned research.
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Dataset preparation
Relating to the 138 oil samples, 83 oil samples are utilized as training data, 25 oil samples as testing data, and the 
remaining 30 oil samples for validation purposes. The DT, SVM, KNN, and EC classifiers serve as a parameter 
to the HI model to forecast a trait. As a result, the presented HI computation technique will be considerably less 
costly. HI prognosis classifications are utilized as feature inputs with the transformer, and monitored modeling 
is applied. The developed HI framework must be solidly verified before it can be employed in practical applica-
tions. The dataset is loaded and distributed into the feature inputs (x) as well as feature outputs (y). The feature 
inputs are gases: (H2) , (CH4) , (C2H4) , (C2H6) , and (CO) level in ppm, and feature outputs are faults category. 
In this present research, 83 oil samples are classified as training, 25 oil samples as evaluation, and the final 30 
oil samples as verification. In Fig. 11, the function block diagram on the proposed model is illustrated for the 
diagnosis of various incipient transformer faults.

The proposed model generates a system response based on the feature inputs (x) as well as targeted feature 
outputs (y) absorbed into the network. The construction of a multi-classification model includes the identifica-
tion of the best-performing system training techniques and parameters. In this present research, parameters are 
developed implicitly by considering efficiency and network reliability. The diagnostic gas contents acquired by 
DGA serve as the experimental base for diagnosis. The content data reflects the transformer conditions. These 
diagnostic gases include (H2) , (CH4) , (C2H4) , (C2H6) , and (CO) . To increase the effect of classification, the con-
tents of these diagnostic gases are pre-processed using a specific data processing method, and seven features for 
fault diagnosis are extracted for the proposed model. From the successful implementation of the model, it can 
be concluded that the model has some potential advantages, which are as follows:

•	 It is a highly regularized strategy that is suitable for ill-posed issues.
•	 It offers a unique approach and has a high training curve/speed.

Experimental setup
The training databank of 138 TO samples is used to develop the proposed model. A k-fold cross-validation 
method is employed in the development of the model. The k-fold cross-validation method is employed to assess 

Figure 10.   Research flowchart for MC model.

Figure 11.   Function block diagram on the proposed model.
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the model’s competence with new data. The procedure has a single parameter called k that refers to the number of 
groups that a given data sample is to be split into. In the setup, a 30-fold cross-validation approach is employed to 
execute the experiment. As a result, during the 30-fold validation process, the operation is performed numerous 
times with varied partitions of the data findings into 30 parts. When a specific value for k is selected, it may be 
used in place of k in the reference to the model, such as k = 30 becoming 30-fold cross-validation. It implies that 
the model will be evaluated several times to increase confidence in the model design. This eliminates the concept 
of training the model only once and not knowing if the positive result is due to luck or not. Cross-validation is 
a strategy for testing ML models that involves training numerous ML models on subsets of the given input data 
and then evaluating them on the corresponding subset. Cross-validation can be used to detect overfitting, or the 
failure to generalize a pattern. Performing 30-fold cross-validation generates 30 models, 30 data sources to train 
the models, 30 data sources to evaluate the models and 30 evaluations, one for each model.

In the present study, to evaluate the efficiency, several classifiers were put to work: (i) DT, (ii) SVM, (iii) KNN, 
and (iv) EC. Consequently, before the construction of the ML model, the settings of the proposed classifiers need 
to be established. Table 14 summarizes the ML setting configuration. The forward selection feature of stepwise 
regression118 is used in the setup. Each term is either removed or included as a feature input vector according to 
the p-value of the present or newly entered data inputs. The p-value determines the likelihood it is to obtain a 
certain result when the null-hypothesis is assumed to be true. The null-hypothesis is the argument in scientific 
study, that no relationship exists between two sets of data or variables being trained/tested. The null-hypothesis 
states that any empirically observed difference is due only to chance and that no fundamental causal relationship 
exists, thus the word "null"119. As a result, if the null-hypothesis is considered to be true, the p-value estimates 
how odd the tested sample is. The likelihood of a null-hypothesis experiment is denoted as a p-value using the 
α parameter for term addition as well as the β parameter120 for term deletion. The α and β parameters are the 
threshold values against which p-values are measured. It demonstrates how significant the observed results must 
be for a significance test to reject the null-hypothesis. Every data entry point indicates a different form of gas 
collected from DGA. The p-value following a stepwise regression analysis was used to choose the input data. The 
benefit of the p-value is that its parameters can be experimentally modified to achieve the best results.

Training and testing of the ML models
As the input characteristics are supplied through the transformer HI estimation, supervisory training is adopted. 
83 of the oil samples are classified as training, 25 as evaluation, and the final 30 oil samples as verification. To 
accommodate the narrow distribution of data, an evaluation threshold of 30 was utilized, particularly for the 
"Very Poor" data. In Ref.121, even though 83 of the transformer HI classifications are chosen to be utilized for 
training along with 25 for assessment, minimal transformer HI classifications are evaluated. As a result, obtain-
ing more accurate data distribution is advantageous. Furthermore, a cross-validation approach is adopted for 
detecting overfitting or underfitting. After the model has been cross-validated, the settings can be adjusted for 
the next model if it does not meet the required standards. In light of this, a 30-fold cross-validation approach is 
carried out in a manner comparable to selection in Ref.122. The 30-fold validating approach is carried out repeat-
edly using different 30-part splits within the test findings. Furthermore, in this work, a comparison analysis is 
also conducted against the conventional DGA approaches to certify the proposed model.

Classification accuracy
The proposed model is tested using 30-testing datasets. The precision of the classification indicates how frequently 
a classification algorithm is accurate. The formula for the Sfn is given in (2).

where Sfn is the proportion of valid prognosis of a certain fault type, fn , and P is the valid prognosis11.
Consistency (C) indicates the precision of the model in each dataset. This gives an enhanced metric of incor-

rectly categorized occurrences. The equation for the C is provided in (3).

fn = type fault code (n=1,2,3,4,5).

(2)Sfn =

Pfn

Number of cases of fn
× 100,

(3)C =

∑fn
1 Sfn

Number of fault types
.

Table 14.   Summary of MC model configuration.

No Classifier Parameter

1 DT Highest no. of splits: 121, Splitting criteria: Towing rule

2 SVM Regularization = 12 norm, Box restriction setting: 896.5514
Kernel operation: Cubic, Loss = Square hinge

3 KNN No. of neighbour = 30, Distance = Minkowski

4 EC Ensemble scheme: AdaBoost, No. of trainees: 138, Training ratio: 0.8995, Highest no. of split up: 30
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The precision (A) of the classifiers is determined by their valid prognosis (P) in identifying distinct faults. 
The precision of (A) is calculated as illustrated in (4).

where Tsp is the total number of correct predictions and Ttc is the cumulative number of events76,93,100,105.

Materials and protocols
Transformers help diversified settings that make them liable to broad failures whose outcomes are extended 
occurrences of power outages and disrupted commercial activities. In contrast to an overhead power line that 
is painless to overhaul, transformers are factory-sealed, denying technicians on-site the ability to inspect their 
active-part assemblies. The inception of faults of transformers during operation generates considerable hammer-
ing of revenues to power utility owners in addition to the excessive damages or replacement expenditures and 
the probability of an explosion. DGA is the only available scheme that provides the means to feasibly identify 
incipient transformer faults. Though the estimation precision of DGA schemes remains reasonably eminent, the 
schemes employed to understand DGA samples remain dependent on the proficiency of test engineers as opposed 
to precise interpretation. This work consequently sought to introduce and carry out a novel multi-classification 
ML-based DGA interpretation scheme that explains DGA samples strictly concerning multinomial data sets.

The oil samples used in this research came from several South African power stations. The databank contains 
five flammable gases initiated from distinct oil specimens collected from transformers in service. Classifica-
tion Learner App in MATLAB/Simulink was employed to train the gas concentrations of 138 oil samples. The 
proposed MATLAB model is valid since the coding tool, MATLAB Simulink as well as the toolbox are widely 
utilized in the research and engineering field. The Classification Learner tool is a highly efficient platform that 
allows you to engage with data, choose features, establish cross-validation methods, train models, and evaluate 
outcomes13,20,90. It is used for routine activities such as:

•	 Data import and cross-validation scheme configuration.
•	 Data exploration as well as feature selection.
•	 Model training employing different classification tools.
•	 Model comparison and evaluation.

Researchers can develop and verify classification models by applying different techniques through the use of 
the Classification Learner app. Analyze the validating flaws of the simulations post-training, then select the most 
accurate model based on the outcomes. From the data, 83 oil samples are utilized as training data, 25 oil samples 
as testing data, and the remaining 30 oil samples for validation purposes. Eight classes of faults were detected 
from the oil data samples with a supplementary label designating a normal gas concentration. In response to 138 
oil samples investigated, there is a total of 7 types of faults present as indicated in Table 15. Five gas proportions 
are assessed by adopting the IEC 60599:2022 guideline proposal considering the six flammable gases extracted 
in the different oil samples21.

The objective of the preliminary exercise was to check the oil data samples so that faults may be detected and 
diagnosed. Following data pre-processing, DGA data clarification began, and a model was established utilizing 
the stages shown in Fig. 12. The authors provided Fig. 13, which depicts the different phases, to broaden the 
reader’s perception.

Results
Classification Learner App in MATLAB/Simulink was utilized to train the gas concentrations of 138 oil samples 
extracted from various South African plants. ML classifiers in the Classification Learner App were selected and 
a 30-fold cross-validation was used to set the training and testing data for the model. Based on the total dataset, 
83 oil samples are utilized as training data, 25 oil samples as testing data, and the remaining 30 oil samples for 
validation purposes. Cross-validation of 30-folds was selected, which in other words implies that the training 
and testing operations were repeated 30 times. Stepwise regression was used to choose the gases from the DGA 

(4)%A =
Tsp

Ttc
× 100

Table 15.   Classification of transformer faults.

Type Fault

PD Partial discharge

D1 Low energy discharge

D2 High energy discharge

NF No-Fault

T1 Thermal fault < 300 °C

T2 Thermal fault, 300˚C < T < 700 °C

T3 Thermal fault, > 700 °C

D + T –
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that had the most significant feature for identifying transformer faults from the input (x) and output (y) data. 
Table 16 demonstrates the results of stepwise regression. The samples utilized to train as well as test the model 
have comparable traits. The p-value examines the null-hypothesis, and it possesses a likelihood of zero. An indi-
cator with a small p-value, such as CO , which has a value of 1.0214 × 10–34, is a good contributor to the model 
in terms of the specified characteristics. A small p-value for the gas indicates that the DGA data for that specific 
gas has a higher connection with the transformer fault type. The standard error is crucial for establishing the 
robustness of the connection between the predictive model and the reaction variable. Furthermore, standard 
error provides accessibility to the credibility of the p-values since it shows the numerical range that the measured 
numbers deviate from the prediction line. As demonstrated in Table 16, a smaller standard error correlates to 
a faster reaction since the model developed provides measurements of the reaction variable, which is the fault 
type closest to the aptness line.

The transformer states are classified into four categories: A, B, C, and D, with A signifying excellent state, B 
signifying fair state, C indicating that servicing is needed, and D signifying a detrimental or failing unit. This 
is shown in Table 17. The interpretations and constraints offered by national standards such as IEEE, ICE, and 
Eskom standards are used to identify these categories.

Figures 14, 15, 16 and 17 show the results of the four classifiers employed to analyze and evaluate the state and 
suitable gas name subscription of 138 TO samples that revealed different stray gassing characteristics in various 
South African substations. These gases: (H2) , (CH4) , (C2H2) , (C2H4) , and (CO) concentration were detected in 31 

Figure 12.   ML workflow.

Figure 13.   TO evaluation phases.

Table 16.   Findings of feature extraction utilizing stepwise regression118.

Type of gas

Training data Testing data

p-value
Regression coefficient 
(× 10–3) Standard error (× 10–3) p-value

Regression coefficient 
(× 10–3)

Standard error 
(× 10–3)

C2H6 0.0398  − 0.0156 0.007424 0.0378  − 0.0156 0.007421

C2H4 0.9540  − 0.0006 0.009493 0.9326  − 0.0009 0.009492

CH4 0.1683 0.0162 0.001128 0.1768 0.0016 0.001506

CO 1.0214 × 10–34 0.0073 0.000359 1.0978 × 10–34 0.0072 0.000359

H2 5.6277 × 10–21 0.1694 0.014008 5.3724 × 10–21 0.1685 0.013928
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Table 17.   Transformer categories.

Category Percentage (%) Transformer state

A 85–100 Excellent

B 70–84 Fair

C 50–69 Service

D 30–49 Detrimental/failed
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Figure 14.   Analyzed databank using DT classifier.
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Figure 15.   Analyzed databank using SVM classifier.
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transformers. These were based on transformers that were significantly affected by faults. The same dataset was 
used to train the classifiers, and it was performed to determine how well each classifier performs when underfit-
ting or overfitting occurs. This occurs when the model cannot determine a meaningful relationship between the 
input (x) and output (y) data. Underfit models are more probable if they have not been trained for the proper 
amount of time on a large number of data points.

Therefore, the following observations were made, and suggestions were made based on the findings and 
consultation with the IEC 60599:2022 and Eskom standard:

In Fig. 14:
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Figure 16.   Analyzed databank using KNN classifier.
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•	 Transformers (in pink) are classified as state 2 since the C2H4 concentration is between 101 and 700 ppm, as 
specified in Table 7. These transformers are classified as Class C, as specified in Table 17. The recommenda-
tions are: (i) exercise caution; (ii) analyze for individual gases to find cause; (iii) determine load dependence.

•	 Transformers (in red) are classified as state 2 since the C2H6 concentration is between 66 and 100 ppm. 
These transformers are classified as Class B. The recommendations are: (i) exercise caution; (ii) analyze for 
individual gases to find cause; (iii) determine load dependence.

•	 Transformers (in purple) are classified as state 4 since the CH4 concentration is < 120 ppm. These transformers 
are classified as Class A. The recommendation is to: (i) No action is required.

•	 The moisture is 25 ppm (light blue), which is greater than 15 ppm (Eskom Specification—Ref: 240-75661431.). 
These transformers are classified as Class C. The recommendation is to (i) TO needs refinement/service to 
enhance the oil state and resampling.

•	 Transformers (dark blue) are classified as state 1 since the CO concentration is < 350 ppm. These transformers 
are classified as Class A. The recommendations are: (i) No action is required.

•	 Transformers (in green) are classified as state 1 since the H2 concentration is < 100 ppm. These transformers 
are classified as Class A. The recommendations are: No action is required.

In Fig. 15:

•	 Transformers (in pink) are classified as state 2 since the C2H4 concentration is between 51 and 100 ppm, as 
specified in Table 7. These transformers are classified as Class B, as specified in Table 17. The recommenda-
tions are: (i) exercise caution; (ii) analyze for individual gases to find cause; (iii) determine load dependence.

•	 Transformers (in red) are classified as state 3 since the C2H6 concentration is between 101 and 150 ppm. 
These transformers are classified as Class C. The recommendations are: (i) plan service/maintenance; (ii) 
analyze for individual gases to find cause; (iii) remove if possible.

•	 Transformers (in purple) are classified as state 1 since the CH4 concentration is < 120 ppm. These transformers 
are classified as Class A. The recommendation is to: (i) No action is required.

•	 The moisture is 25 ppm (light blue), which is greater than 15 ppm (Eskom Specification—Ref: 240-75661431.). 
The recommendation is to (i) TO needs refinement to enhance the oil state and resampling.

•	 Transformers (dark blue) are classified as state 1 since the CO concentration is < 350 ppm. These transformers 
are classified as Class A. The recommendations are: (i) No action is required.

•	 Transformers (in green) are classified as state 1 since the H2 concentration is < 100 ppm. These transformers 
are classified as Class A. The recommendations are: No action is required.

In Fig. 16:

•	 Transformers (in pink) are classified as state 2 since the C2H4 concentration is between 51 and 100 ppm, as 
specified in Table 7. These transformers are classified as Class B, as specified in Table 17. The recommenda-
tions are: (i) exercise caution; (ii) analyze for individual gases to find cause; (iii) determine load dependence.

•	 Transformers (in red) are classified as state 2 since the C2H6 concentration is between 66 and 100 ppm. 
These transformers are classified as Class B. The recommendations are: (i) exercise caution; (ii) analyze for 
individual gases to find cause; (iii) determine load dependence.

•	 Transformers (in purple) are classified as state 1 since the CH4 concentration is < 120 ppm. These transformers 
are classified as Class A. The recommendation is to: (i) No action is required.

•	 The moisture is 25 ppm (light blue), which is greater than 15 ppm (Eskom Specification—Ref: 240-75661431.). 
The recommendation is to (i) TO needs refinement to enhance the oil state and resampling.

•	 Transformers (dark blue) are classified as state 1 since the CO concentration is < 350 ppm. These transformers 
are classified as Class A. The recommendations are: (i) No action is required.

•	 Transformers (in green) are classified as state 1 since the H2 concentration is < 100 ppm. These transformers 
are classified as Class A. The recommendations are: No action is required.

In Fig. 17:

•	 Transformers (in pink) are classified as state 2 since the C2H4 concentration is between 51 and 100 ppm, as 
specified in Table 7. These transformers are classified as Class B, as specified in Table 17. The recommenda-
tions are: (i) exercise caution; (ii) analyze for individual gases to find cause; (iii) determine load dependence.

•	 Transformers (in red) are classified as state 2 since the C2H6 concentration is between 66 and 100 ppm. 
These transformers are classified as Class B. The recommendations are: (i) exercise caution; (ii) analyze for 
individual gases to find cause; (iii) determine load dependence.

•	 Transformers (in purple) are classified as state 1 since the CH4 concentration is < 120 ppm. These transformers 
are classified as Class A. The recommendation is to: (i) No action is required.

•	 The moisture is 25 ppm (light blue), which is greater than 15 ppm (Eskom Specification—Ref: 240-75661431). 
The recommendation is to i) TO needs refinement to enhance the oil state and resampling.

•	 3 × Transformers (dark blue) are classified as state 1 since the CO concentration is < 350 ppm. These trans-
formers are classified as Class A. The recommendations are: (i) No action is required. 3 × Transformers (dark 
blue) are classified as state 2 since the CO concentration is between 351 and 570 ppm. These transformers are 
classified as Class B. The recommendations are: (i) No action is required.
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•	 Transformers (in green) are classified as state 1 since the H2 concentration is < 100 ppm. These transformers 
are classified as Class A. The recommendations are: No action is required.

The ML classification outcomes of 138 oil samples without using the principal component analysis (PCA) are 
presented in the study. PCA is a well-known feature-harvesting method in mathematical research. This method 
removes key elements by linear conversion and obtains minimum sizes to demonstrate original data72. As a 
result, PCA is utilized to minimize parameter sizes, remove duplicate data, optimize classifier construction with 
minimal data loss, as well as enhance classification efficiency29. PCA includes the following stages: (i) obtaining 
the dataset; (ii) normalizing the dataset; (iii) calculating the correlation array; and (iv) interpreting the correla-
tion array55. Figure 18 depicts the principle.

The classification learner app utilized for ML classification in MATLAB software provides a diverse set of 
sub-classifiers. The purpose of integrating these classifiers was to achieve optimal accuracy, and then employ the 
classifier/s that produce significant results for condition monitoring of the transformer. The results of the classifi-
ers will differ due to some classifiers experiencing overfitting/underfitting as a result of (i) training data size being 
too small or not containing enough data samples to accurately represent all possible input data values; (ii) when 
the training data contains large amounts of irrelevant information, known as noisy data; and (iii) when the model 
trains for too long on a single sample set of data. Moreover, each classifier has different strengths and attributes. 
The training, validation, and testing process usually takes time, and the amount of time varies depending on 
the size of the data set and the competence of the classifier. Therefore, the longer it takes to train the classifier, 
the lower the accuracy, hence the results will be slightly different. The results of the ML classifiers are shown in 
Table 18. It is worth noting from the results that the highest degree of accuracy is 87.7%, which was produced by 
Bagged Trees, followed by Fine KNN with 86.2%, and the third in rank is Quadratic SVM with 84.1%.

Figure 18.   Principal analysis component (PCA) principle.

Table 18.   ML DGA classification outcomes.

Classifier Type Accuracy (%) Prediction speed (objects/sec.) Training time (sec.)

DT

Fine tree 82.6 360 79.946

Medium tree 82.6 360 68.674

Coarse tree 82.6 390 80.457

SVM

Linear SVM 82.6 53 70.575

Quadratic SVM 84.1 55 59.946

Cubic SVM 82.6 71 84.655

Fine Gaussian SVM 82.6 73 84.433

Medium Gaussian SVM 82.6 100 103.5

Course Gaussian SVM 79 100 143.28

KNN

Fine KNN 86.2 230 77.51

Medium KNN 82.6 240 79.36

Coarse KNN 77.5 250 159.39

Cosine KNN 82.6 240 81.82

Cubic KNN 81.9 350 111.81

Weighted KNN 81.9 390 111.42

EC

Boosted trees 77.5 540 116.2

Bagged trees 87.7 34 59.93

Subspace discriminant 79 38 139.66

Subspace KNN 81.9 28 64.11

RUSBoosted trees 82.6 46 67.58
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Table 19 illustrates the comparison results of the proposed model and seven DGA approaches, namely: the 
CIGRE approach, Doernenburg approach, KG approach, Nomograph approach, IEC approach, Duval triangle 
approach, and Roger’s ratio approach. The accuracy of the proposed multi-classification model, consisting of 
DT, SVM, KNN, and EC is 82.6%, 84.1%, 82.6%, and 87.7% respectively. These were the outcomes of the study. 
Therefore, when these findings are compared to DGA approaches, they demonstrate a considerable increase in 
the proportion of accurate fault-type estimation, which is above 20%.

Conclusions
In this work, a novel multi-classification model that is based on ML algorithms was proposed to have an intel-
ligible, precise, and perfect understanding of DGA. The proposed model was used to analyze 138 TO samples 
that revealed different stray gassing characteristics in various South African substations. This was achieved by 
employing four ML classifiers. Experimental evidence using DT classifier viz. Fine Tree, Medium Tree, and 
Coarse Tree suggested that these classifiers are feasible in classifying stray gas characteristics from normal TO 
with a degree of accuracy of 82.6%. Additionally, the test results from the SVM classifier comprised Linear SVM, 
Quadratic SVM, Cubic SVM, Fine Gaussian SVM, Medium Gaussian SVM, and Course Gaussian SVM conclude 
that these classifiers are viable in classifying stray gassing specificities with the degree of accuracy from 79 to 
84.1%. Further, experimental findings from KNN employing Fine KNN, Medium KNN, Coarse KNN, Cosine 
KNN, Cubic KNN, and Weighted KNN appear to indicate that these classifiers are feasible in classifying stray 
gassing properties with a degree of accuracy from 77.5 to 86.2%. Lastly, experimental information Boosted Trees, 
Bagged Trees, Subspace Discriminant, Subspace KNN, and RUS Boosted Trees indicate that these classifiers 
are feasible in classifying stray gassing peculiarities with a degree of accuracy from 77.5 to 87.7%. The findings 
can be explained that there are different DG concentrations in stray gassing phenomena from normal TO. In 
this work, it was demonstrated that the gas concentrations of transformer H2 , CH4,CO , C2H4 , and C2H6 can be 
used to discriminate stray gassing phenomena from normal TO and their differences can be classified with the 
highest degree of accuracy of 87.7% by the Bagged Trees classifier over other ML classifiers. It is advisable that 
the training, testing, and validation of DGA oil samples be extended and tested several times to validate the 
findings in this work.

For forthcoming studies, the findings amassed in this work can be employed as a benchmark in develop-
ing a portable device that utilizes ML algorithms herein for the validation of DGA results. Another proposal 
is that additional research is undertaken in applying DTs to formulate new stray gassing limits for the various 
gas concentrations. In this fashion, the production of DGs will be easily interpreted with proper permissible 
levels thereby utility owners and consequently, consumers do not have to suffer from prolonged power outages. 
Furthermore, the authors will test the proposed model based on ANN algorithms and compare it to the results 
presented in this work to determine which approach yields more accurate statistics.

Data availability
The data that support the findings of this study are available from the corresponding author upon reasonable 
request.
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